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Chapter

Game Theory-Based Autonomous
Vehicle Control Via Image
Processing
Mustafa F.S. Zortul,Tayyab Waqar and Sezgin Ersoy

Abstract

Self-driven vehicles slowly but surely are making the transition from a distant
future technology to current luxury by slowly becoming a part of our everyday life.
Due to their self-driving ability, they are making our travels efficient. However,
they are still a work in progress as they require many software and hardware-based
improvements. To address the software part of this issue, an image processing-
based solution has been proposed in this study. The algorithm estimates the
real-time positions and predicts the possible interaction of the objects, such as other
moving vehicles, present in the vicinity of the driven autonomous vehicle in
determined environmental conditions. Cameras and related peripheral present on
autonomous vehicles are used to obtain data related to the real-time situation for
predicting and preventing possible hazardous events, such as accidents, using
these data.

Keywords: autonomous drive, game theory, vehicle control, image processing

1. Introduction

The continuous advancements in technology are constantly making our life
more and more efficient. To this end, autonomous vehicles are one of the important
pillars according to FIA [1] and the reports from IPSOS also show that the trends
will be in the favor of the adaption of autonomous vehicles once the standardization
issues are addressed [2].

Autonomous vehicles use sensors, such as radar, lidar, and camera, to implement
computer vision and odometry techniques for sensing the surrounding environ-
ment and make the travel without any human intervention possible [3]. When we
look into the history of autonomous vehicles, we see that first autonomous projects
appear in the 1980s [4]. The first prototype came to life with navlab and ALV
projects that ran by Carnegie Mellon University [4]. These prototypes were
followed by project Eureka Prometheus by Mercedes-Benz and Bundeswehr part-
nership in 1987 [4, 5]. After these, many companies have manufactured autono-
mous vehicles and some of those vehicles have also found a place in active traffic in
some countries. It is believed that in the near future, autonomous vehicles will cause
an unprecedented change in economic, social, and environmental areas of life [6].

However, still there remains work to be done before the roads are filled with safe
self-driving cars. Researches have been done to make the autonomous vehicles safer
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and environment friendly so that they can be as close to perfect as possible. A
real-time lane detection system for autonomous vehicles is proposed by
Abdulhakam A. M. Assidiq et al. utilizing the images captured by the onboard
camera installed on a moving vehicle to perform real-time lane detection the lane
via image processing using edge detection and Hough Transform [7]. Yen-Lin et al.
presented a night-time vehicle detection method for two vehicles, incoming and
outgoing, using their head and tail lights [8]. They used image segmentation and
spatial clustering processes to perform rule-based vehicle detection and distance
estimation by using the head and tail lights of the vehicle. Image processing tech-
niques have also been applied to detect the current state of traffic light by Guo et al.
They used Histogram of Oriented Gradient (HOG) features to implement Support
Vector Machine (SVM) for the real-time detection of the current state of traffic
lights for self-driving vehicles [9]. Phanindra et al. presented a method for detecting
obstacles and lane using the data collected by a LIDAR sensor and a fisheye camera
[10]. A vector fuzzy connectedness-based algorithm has been proposed by Lingling
Fang et al. to detect the boundary of the lane using the captured images by the
camera [11].

Based on these results, in this study, an image processing software has been
proposed that can autonomously extract data related to factors of the vehicle
environment. The predictions regarding the self-driving vehicle’s environment are
carried out on the basis of the proposed three models which are built using the video
footage taken from an onboard camera placed inside the vehicle. The first model is
an SVM that can detect vehicle positions using the inputted image. The second
model fits a linear-parabolic function for the right and left lane boundaries of the
vehicle. The third model approximates a bird-view version of the inputted image
and carries out a more realistic approximation of steer angle on the bird-view
image, rather than original.

2. Methods: research and application steps

2.1 Detection and tracking of lane boundaries

The model developed in this study is designed to work in a highway environ-
ment. Model performance is invariant to the color of the road and is directly
proportionate to the amount of contrast between the road and lane boundary color,
quality, and continuity of lane boundaries. However, the model assumes that the
vehicle which is guided is in the center of the lane that the vehicle is present
according to the horizontal plane and conducts its operations on this assumption.
The rest of this subsection covers the following topics: the detection of the lane
boundaries, the approximation of edge distribution function, weighted Hough
transform which is used to determine the location of lane boundaries in images and
lastly description of both linear and parabolic functions that we approximated for
every single lane boundary. The images used in this study are taken by a vehicle-
centered camera [12], and all studies are continued iteratively as a development and
test loop on these images. The size of the image array (720, 1280) and different
environmental aspects that it contains are shown below (Figure 1).

2.2 Initial detection of lane boundaries

In the first image of the application, we aimed to calculate the slopes of right and
left lane boundaries in the image according to the vehicle-centered camera view.
Firstly, image is converted to grayscale form and with the help of Sobel filter
vertical and horizontal gradient images are obtained. These gradient images are
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then used to form a magnitude matrix and orientation matrix which contains slope
calculation of every pixel in the image. With these matrices, an edge distribution
function is formed, and local maxima points of edge distribution function gave us
the center-lane boundary slopes on the image. Hough transform is applied with
known edge slopes, and global maxima points for every edge are found with
weighted voting. The locations of lane boundaries are found after slope and distance
from origin calculation.

2.3 Edge distribution function (EDF)

To decrease the computational complexity, images are converted to grayscale.
Function (30) is used for this conversion. The grayscale image is named as I x, yð Þ.
With vertical and horizontal differentials of this function, we obtain ∇I x, yð Þ
function [13].

∇I y, xð Þ ¼
∂I

∂y
,
∂I

∂x

� �T

¼ Dy,Dx

� �T
(1)

Dx and Dy represent vertical and horizontal differentials, respectively. Dx and Dy

are used to calculate the magnitude matrix which contains a magnitude of every
pixel in the image. Eq. (2) is used for that.

∇I y, xð Þj j ¼ Dxj j þ Dy

�

�

�

� (2)

After this Dx and Dy matrices are used to calculate the orientation matrix which
contains orientation of every pixel in the image. In the calculation of the orientation
matrix, a lookup table is used to decrease arctangent values.

θ y, x
� �

¼ tan �1 Gy

Gx

� �

(3)

A voting routine in which every I i, jð Þ pixel votes weighted as their magnitude
∇I i, jð Þj j took place. After voting, a histogram of 90 bins with (�90, 90) minimum,
maximum values are created.

For extracting local maxima points in the histogram, we first plotted the histo-
gram as a piecewise function. Then smoothed the plot with a one-dimensional
Gaussian filter (Figure 2). Filter width of 7 seemed enough to eliminate false
positives after some number of tests we did. However, we also tried kernel density
estimation to smooth the histogram. But it caused some meaningful local maxima
points to shift from its original value or completely disappear, so we removed kernel
density estimation from the workflow.

Figure 1.
Image samples used in the study. Images contain distortions that are caused by lane boundaries of various colors,
different environmental aspects, and change of road color that is caused by various light conditions and color
differences which all push the model to make errors.
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When lane and road boundaries are considered as only linear objects in the
image, we can assume that there will be two local maxima that are visibly voted
higher than others. The situation on roads with multiple lanes can slightly differ
from this and more local maxima points can appear in the edge distribution func-
tion. Figure 2 above is generated from a multiple lane road. Below we discussed the
local maxima points from this function (Figure 3).

When we consider that degrees shown above represent the degree value of
horizontal axis lane boundaries, we can see that �30.8356546 is the right boundary
of the center lane, �8.77437326 is the right boundary of the right lane, 14.28969359
is left road boundary, and 33.84401114 is left boundary of the center lane.

Generally, the center orientation of the center lane boundaries will be numeri-
cally closer to the vertical axis and have approximately the same absolute values.

Figure 2.
Smoothed edge distribution function. Pixels between (470, 650) in the y-axis are assumed as the image part
that contains the road from a (720, 1280) sized original image and converted to grayscale. Sobel filter is
applied and magnitude and orientation matrices are obtained. Weighted voting took place, results smoothed
with 1-d Gaussian filter.

Figure 3.
The image that edge distribution function generated from and local maxima points. Local maxima points on
edge distribution function are detected and within these points, the possibility of being lane boundaries of the
center lane is found as a result of thresholding.
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To extract center lane boundary orientations and to eliminate false positive local
maxima points which can be caused by organic variations in the road, we applied
thresholding. α1 and α2 are minimum and maximum degree values from local
maxima points, respectively.We applied thresholding to these values with Eq. (1). 15,
20, 25 are tested as threshold values and we saw that 20 shows the best performance.

α1 þ α2j j≤T1 (4)

The α1 and α2 couples that do not meet the requirements of this equation are
removed from the local maxima list and we continue to apply the equation to the
rest of the values. When there are no local maxima points left in the list, the
orientation couple that closest to the vertical axis are selected as center lane bound-
ary orientations. But it should be noted that in most cases, local maxima points of
edge distribution function contain true positives only and this process is just a
formality.

At this point, despite we know the orientations of center lane boundaries, we
still do not know the exact locations of these boundaries. To find exact locations, we
first threshold the magnitude image according to Eq. (5).

g y, xð Þ ¼ f xð Þ ¼
∇I y, xð Þj j, if θ y, xð Þ � αj j<T2

0, else

�

(5)

To find the exact locations, we first get indexes of the pixels that have the same
orientation as each center lane boundaries, then we zero out all the pixels except
these indexes and pixels within a minor threshold value. By the end of this process,
we have a magnitude matrix for each center lane boundary (Figure 4). As a result,
we found two-lane boundary magnitude matrices and we will proceed to find exact
locations of boundaries from these matrices.

2.4 Hough transform

Applying Hough transform on a two-dimensional matrix gives us a two-
dimensional C (ρ, θ) accumulator matrix just as our input (Figure 5).

Slope and distance from image origin of found edges are obtained from the
analysis of the accumulator matrix. But in this study, we already found the slopes of
lane boundaries with techniques that we described in earlier subsections. Thus, we
do not need to do our analysis on a two-dimensional matrix. As a result, our
accumulator matrix will be independent of θ dimension and voting will take place
only for potential ρ values which are only one dimension. Applying Gaussian filter

Figure 4.
Extracted edge images. These images are extracted from earlier images in this paper. A threshold is applied to a
magnitude matrix to extract edge images. Two degrees is used as a threshold value in all tests. Centre lane
boundaries are found with �30° (left), 33° (right). The image on the right is the sum of the edge images we
found.
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on these accumulator arrays will give us global maxima points. Gaussian filter
windows size as 30 is enough in this part to eliminate multiple maxima points and to
extract the true ρ value we are searching for which is the global maxima. After
extracting global maxima points from each accumulator array, we now have the
exact locations of center lane boundaries in the image. After we have exact loca-
tions, we will use these locations to specify a region of interest to be used in the next
frame and edge search that we carried out will only take place in this region of
interest in the next frame which will improve efficiency (Figure 6). Extension of 20
pixels to left and right is chosen as the width of the region of interest. We assume
that lane boundary locations found in the last frame will not change drastically in
the next frame of image array, this assumption is the main reason we specify a
region of interest. Apart from that we also assumed that just as its location, orien-
tation of lane boundary will not change drastically from the last frame processed to
the next frame of the image array. So, we applied a threshold to the orientation
search as well. We only searched in values that differ slightly from the last orienta-
tion we found. After some tests, we decided 4° as the threshold value is optimal.

2.5 Lane tracking

After the initial detection of lane boundaries from the first frame, lane detection
should continue in following frames. A linear model is chosen for the initial frame.

Figure 5.
Example Hough accumulator matrix. Hough transform is carried out as conversion of every non-zero pixel in
the original image to Hough space (ρ, θ). Every pixel in the original image equals to a sinusoidal curve in Hough
space. With representations of all pixels of the original image on the accumulator matrix, there will be local
maxima points (ρ, θ) from straight lines of the original image. Thus, the locations of edges in the original image
are found.
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But in the following frames, we already have prior information on lane boundaries
which is the region of interest. So, we can work on a more complex model to
predict, a linear-parabolic piecewise function is decided as a model. For this model,
horizontal line that separates linear and parabolic parts of function is chosen as
approximately 15 m in front of the vehicle and area below and above this boundary
named as near and far sections, respectively. The model will act linear in the near
section and will act parabolic in the far section. The mathematical representation of
the model is shown below Eq. (6).

f xð Þ ¼
aþ bx, if x> xm

cþ dxþ ex2, if x≤ xm

�

(6)

The model needs to meet two equations to have continuity and differentiable
features Eq. (7).

f xþm
� �

¼ f x�m
� �

f 0 xþm
� �

¼ f 0 x�m
� � (7)

Below equations were obtained when assumed requirements of Eq. (7) are met
Eq. (8).

aþ bxm ¼ cþ dxm þ ex2m
b ¼ dþ 2exm

�

(8)

If equations in (8) are solved within themselves for c and e parameters piecewise
function below is what we have Eq. (9):

f xð Þ ¼ f xð Þ ¼

aþ bx, if x> xm
2aþ xm b� dð Þ

2
þ dxþ

b� d

2xm
x2, if x≤ xm

8

<

:

(9)

When we assume that both right and left center lane boundaries are found in the
last frame, we can expect that both right and left boundaries will be in their

Figure 6.
Region of interest to be used in the next frame. After Hough transform, we have exact locations and orientations
of center-lane boundaries. A region of interest is specified according to this information and the process is
applied only within the region of interest. The image above is the sum of the region of interest and grayscale
version of the original image.
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corresponding region of interests in the next frame. Before we try to detect center
lane boundaries in the next frame threshold application below should be applied
within the region of interest to eliminate various noise sources that could appear in
the region of interest Eq. (10).

g y, xð Þ ¼
∇I y, xð Þj j, if ∇I y, xð Þj j>0:5gavg

0, else

(

(10)

We assume that usually, lane boundaries will have bigger values in magnitude
matrices than any other source in the next frame and this assumption is the reason
why we apply threshold within the region of interest. Hence, the majority of the
pixels that above the threshold from Eq. (10) will belong to lane boundary we try to
detect, and the majority of the pixels that below the threshold will be independent
of lane boundary and can be considered as noise as a whole. As we remove these
magnitudes from the magnitude matrix, we can carry out a more realistic
approximation of the real lane boundary.

Let xni, yni
� �

be the near section non-zero pixels from threshold applied lane

boundary magnitude matrices and let xfj, yfj

� 	

be the far section non-zero pixels

from threshold applied lane boundary magnitude matrices. Also, letMfj ¼ g xfj, yfj

� 	

be the corresponding magnitude of matrices elements.
This situation gives us three unknown equation below.

aþ bxni ¼ yni, if i ¼ 1, 2, … :,m

2aþ xm b� dð Þ

2
þ dxþ

b� d

2xm
x2fj ¼ yfj, if j ¼ 1, 2, … :, n

8

<

:

(11)

A solution is approximated with the normal equation method for the equation
above. The below function is used to represent error and tried to minimize it.

E ¼
X

m

i¼1

Mni yni � f xnið Þ

 �2

þ
X

n

j¼1

Mfj yfj � f xfj
� �

h i2
(12)

Function E could be written as a matrix multiplication below.

E ¼ b� Acð ÞTW b� Acð Þ (13)

Variables which are stated in Eq. (13) are specified below.

A ¼

1 xn1 0

⋮ ⋮ ⋮

1 xnm 0

1
1

2xm
x2f 1 þ x2m

� 	

�
1

2xm
x f 1

� xm
� 	2

⋮ ⋮ ⋮

1
1

2xm
x2f n þ x2m

� 	

�
1

2xm x f n
� xm

� 	2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

W ¼ diag Mn1,… :,Mnm,M f1,… :,Mfn

� �

c ¼ a, b, d½ �T and b ¼ yn1,… :,ynm, y f1,… :,yfn

h iT
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To solve the Eq. (13), we isolate variable b with matrix multiplication below.

ATWAc ¼ ATWb (14)

If we draw a plot with found parameters from Eq. (14), we get a straight line in
near section and parabolic line in the far section as seen below (Figure 7).

2.6 Steer angle estimation

Steer angle estimation is prone to errors because as the distance from the camera
increases the distortion of the road in the image also increases. For this reason, we
first estimated the bird view version of the image with inverse perspective mapping
(IPM) [14] (Figure 8).

We cropped the IPM image in a way that it only contains pixels from the center
lane boundaries. Later we extract Canny edges from it (Figure 9).

After that,we applyHough transformon theCanny image andget a two-dimensional
accumulatormatrix. Two highest localmaxima points from the accumulatormatrix give
us the angle between the vertical plane and center lane boundaries.We averaged the two
angle values andwe found to estimate steer angle to keep the car on its lane.

2.7 Vehicle detection and tracking

We used a mix of GTI and KITTI datasets as the dataset. Dataset as a whole
contains 8792 positive and 8968 negative and 17,760 examples in total. Every
example is a (64, 64) size, RGB encoded, png image.

Figure 7.
Plot fitting example. Original image (left) went through the process covered in recent subsections. For found center
lane boundaries, we fit a plot with the normal equation method which is covered in this subsection. Two-line
image (middle) found as output and finally added to the grayscale version of the original image for comparison.

Figure 8.
Inverse perspective mapping example. Average camera parameters for bird view image of the original image
(left) manually selected and bird view image (right) is found. The original image size is (720, 1280) and the
bird view size is (200, 200).
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First, we extracted histogram of oriented gradients in order to be used in train-
ing. Histogram of oriented gradients basically puts a grid on image. A magnitude
weighted voting takes place for each bin. Then, a histogram is created from voting
results.

To shrink the histogram of oriented gradients features space, the principal
component analysis is applied. Then the support vector machine is trained. After
training, images size of (720, 1280) scanned for vehicle detection with a sliding

Figure 9.
Canny edges from bird view image.

Figure 10.
Support vector machine flow chart. Green blocks represent training and orange blocks represent the test part of
the application.
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window. Calculated vehicle positions are used to form a heat map and the
thresholded heat map is used to find a singular location for each vehicle
(Figure 10).

3. Conclusion

This paper presents an approach based on image processing using edge distribu-
tion function and Hough transform for lane detection and tracking, steer angle
estimation and vehicle detection and tracking for the autonomous vehicles. It was
found that the instant change in the image feed is one of the most challenging parts
in lane detection, and tracking part of this study as the model was vulnerable to
instant changes in image feed. In order to prevent that, a temporal filter was applied
to the region of interest which allowed shifting and hence increased the model’s
resistance to the aforementioned instant changes. According to the results of the
tests, it was concluded that that the application of the temporal filter alone on the
region of interest will not be ample; therefore, a filter was applied to the orientation
of lane boundaries too, and the changes of greater than 2° in one frame. The model
was found to be less dynamic, and an increase in its overall prediction accuracy was
observed after those added aforementioned additions. One other issue that was
discovered for this model is that it could be affected by the color changes. The
model was found to be affected by the color changes on the road, shades of other
vehicles, and trees on the side of the road. Errors caused by this situation usually
hits the parabolic side of the estimation rather than linear.

Steer angle estimation model has a similar problem to the lane detection and
tracking model. Considering the techniques that both the models share, it can be
said that this was expected. This model is affected by color changes on road and
shades also. If the same solution is applied, error can be lowered in color dynamic
parts of the road. Another issue that was discovered was related to the parts of the
road. The changes in the slope of the road cause an additional error. Because the
model uses an inverse perspective mapping method that uses camera parameters as
inputs, even if place occupied in Euclidean space by the camera does not change,
the vanishing point which is one of the input parameters of IPM changes and this
causes the model to make false predictions. To prevent this situation, image
processing techniques or additional sensors can be used to estimate road slope. After
predicting road slope, a model that can adapt to vanishing points shifts in the image
can be developed and the error rate can be decreased drastically.
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