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Chapter

Investigation of Shielding 
Effectiveness of M-Type Ba-Co-Ti 
Hexagonal Ferrite and Composite 
Materials in Microwave X-Band 
Systems
Charanjeet Singh, S. Bindra Narang and Ihab A. Abdel-Latif

Abstract

Ferrites are a wide class of materials that are still a very rich field of scientific 
interest and under the scope of recent research. The polycrystalline Co2+-Ti4+ sub-
stituted Ba hexagonal ferrite has been synthesized by the standard ceramic method. 
The vector network analyzer has been incorporated to measure different micro-
wave parameters at X-band (8.2–12.4 GHz) frequencies. The microwave shielding 
effectiveness is evaluated by S-parameters for near field and AC conductivity as 
well as skin depth for far field. The doping of Co2+ and Ti4+ ions causes absorption in 
composite x = 0.5 to exhibit good shielding effectiveness and it exhibits large 20-dB 
bandwidth of 4.70 GHz in the near field and 3.60 GHz for far field respectively. The 
AC conductivity increases with frequency in composites x = 0.1, 0.3, and 0.5 and 
skin depth decreases with frequency in all composites. The shielding effectiveness, 
AC conductivity, and skin depth are correlated to each other.

Keywords: ferrites, hexaferrite, microwave shielding, AC conductivity

1. Introduction

Ferrites are a wide class of materials containing iron. These materials are formed 
in different crystalline symmetries. A simple form of ferrites is the spinel AB2O4 of 
cubic structure [1–9]. The orthoferrites ABO3 are another important form with an 
orthorhombic perovskite crystal system [10–19]. The third class of ferrites are garnets 
of form A3B5O12 [20–29]. The fourth class, termed as hexaferrites, may be divided 
into five main groups: M-type (AB12O19), W-type (AMe2B16O27), X-type A2Me2B28O46, 
Y-type A2Me2B12O22, and Z-type or A3Me2B24O41 [30–49]. The preparation of these 
materials and their characterization are very rich topics because of the wide range of 
applications and the cheap materials obtained. Ferrites are a very interesting class of 
materials whose wide range of applications are related to electromagnetic interference 
suppression as well as their use in radar absorbing material (RAM) coatings [50]. 
From this point of view, great scientific interests are devoted to use these materials as 
RAM devices [51–54]. In this work the intensive highlights is devoted to the micro-
wave applications and which class is the best candidate for this application.
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The tremendous rise in speed of electronic devices and widespread incorpora-
tion of information technology for various technological applications have pumped 
up electromagnetic pollution to dangerous levels. The high-speed electronic gadgets 
emit spurious wireless signals rendering the electromagnetic disturbance/interfer-
ence (EMI) to the electrical and/or electronic circuits in the vicinity.

A microwave absorber reduces unwanted radiation emitted from high-speed 
electronic devices such as radar, oscillators, and supercomputers. The ferrimagnetic 
materials ferrites have the potential ability to reduce electromagnetic interference 
(EMI) in contrast with conventional dielectrics owing to their magneto/dielectric prop-
erties [55–60]. Electronic devices constitute integrated circuits (ICs) wherein numerous 
components are embedded and such components are encapsulated with ferrite films 
to mitigate EMI. The frequency range of application of extensively used spinel ferrites 
is limited by Snoek’s limit and they are not effective at GHz range. M-type hexagonal 
ferrites are tailored for EMI diminution in the higher end of microwave region, that is, 
X-band, Ku-band, K-band, etc. [61–65]: these ferrites allow to tune in the frequency 
region through doping accompanied by anisotropy field. Both the electric and magnetic 
properties define the capabilities of these materials to store energy and are described by 
analyzing the real parts of complex permittivity (ε′) and permeability (μ′), respectively. 
On the other side, imaginary parts (ε′′, μ″) are very important parameters that describe 
the loss of electric and magnetic energy.

Different researches have been devoted to electromagnetic interference (EMI) 
shielding effectiveness (SE) and EMI shielding mechanisms [66–68] of high struc-
ture carbon black (HS-CB)/polypropylene (PP) composites and multiwalled carbon 
nanotubes-polymethyl methacrylate (MWCNT-PMMA) in the X-band frequency 
range. They studied different thickness of composite plates electrical conductivities. 
Their results showed that the absorption loss contribution to the overall attenua-
tion is more than the contribution of the reflection loss for HS-CB/PP composites. 
Moreover, EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was 
achieved in Ref. [69] by stacking seven layers of 0.3-mm-thick MWCNT-PMMA 
composite films compared with 30 dB achieved by stacking two layers of 1.1-mm-
thick MWCNT-PMMA bulk composite.

Recently, graphene composites have been found to be one of the most promis-
ing candidates for high-performance porous microwave absorbers in ref. [70] 
because of their 3D conductive network and multiple scattering. A qualified 
frequency bandwidth (reflection loss <−10 dB) reaches 5.28 GHz covering almost 
the entire Ku band at 2 mm thickness. These results might open the door for a 
new design of lightweight coating absorber. This may allow us to say that the 
performance of microwave devices is mainly based on the properties of the used 
materials. Knowledge of the frequency dependence of such material is a prerequi-
site to select suitable materials for various microwave applications and vice versa 
[71–73]. Novel nanocomposite systems are prepared for microwave applications 
such as para-toluene sulfonic acid (p-TSA)-doped polyaniline (PANI)-graphene 
nanoplatelet (GRNP) composite films. The addition of GRNPs in the PANI matrix 
allows to improve the conductivity and dielectric properties of the composites due 
to the formation of 3D conducting networks. Shielding effectiveness of the PANI-
GRNP composite films doped with p-TSA was examined by using S-parameters 
obtained from vector network analyzer in the X-band microwave frequencies. The 
efficiency of shielding for these composites depends on GRNP’s content in the 
PANI matrix [74]. Electrical and mechanical properties of carboxylic (▬COOH) 
functionalized multiwall carbon nanotube (MWNTs)/epoxy composites at low 
wt.% (0.5, 0.75, and 1 wt.%) are studied in Ref. [75]. Microwave shielding effec-
tiveness (SE) for X-band (8–12 GHz) and the flexural properties showed that the 
total SE of the nanocomposites was increased with the positive gradient of MWNT 
contents. Great efforts have been made to improve the requirements for microwave 
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applications in X-band and new materials are being tested [70, 76–78]. Promising 
results were found and the search for new materials continues.

In the present chapter, we have explored EMI shielding effectiveness character-
istics of M-type Ba-Co-Ti hexagonal ferrites.

2. Experimental details

The M-type BaCoxTixFe(12−2x)O19 hexaferrites, with x = 0.1, 0.3, 0.5, and 0.7, 
were prepared by ceramic method. The powder chemicals were mixed thoroughly, 
ground, and sintered in an electric furnace at 900°C for 7 h. The pellets were made 
of the powder with the hydraulic press at uniform pressure of 75 kN/m2 and final 
sintering was done at 1100°C for 9 h. The crystal structure was measured using 
Bruker D8Diffractometer of Cu X-ray radiation.

The microwave properties have been studied by the vector network analyzer, 
Agilent model N5225A. Before performing the measurements, permittivity and 
permeability of air were measured with an analyzer for calibration purposes. The 
DC resistivity (ρdc) was investigated using Keithley Electrometer, model 6514. The 
selected thickness of composites for optimized characteristics are x = 0.1–3.3 mm, 
x = 0.3–3.8 mm, x = 0.5–3.4 mm, and x = 0.7–3.2 mm.

3. Results and discussion

Figure 1 shows patterns obtained from X-ray diffraction of BaCoxTixFe(12−2x)O19 
hexaferrite composites. The observed XRD peaks confirm M-type phase of hexafer-
rite with space group P63/mmc. The change of intensity in the peaks shows that the 
substituted Co2+ and Ti4+ ions have occupied crystallographic sites.

3.1 Shielding in near field

The shielding effectiveness (SE) is accompanied by reflection or absorption of 
unwanted microwave signal (EMI) and can be represented as SE = SER + SEA with 
SER due to reflection and SEA as absorption. When the microwave signal passes 

Figure 1. 
X- ray diffraction pattern of BaCoxTixFe(12−2x)O19 ferrite.
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through the material, part of the signal is reflected and remaining transmitted or 
absorbed. The reflected power (Pr) and transmitted power (Pt) are derived from 
measured S-parameters: Pr = |S11|2 and Pt = |S22|2, SEA and SER can be calculated as:

 ( )A t r10 log P / 1 PSE = − −    (1)

 ( )R r10 log 1 PSE = − −  (2)

Figure 2 shows plots of EMI shielding effectiveness (SEA) versus frequency for 
doping of Co2+ and Ti4+ ions. Composites x = 0.5 and 0.7 exhibit highest (38.9 dB) 
and lowest (7.9 dB) values at 10.26 and 12.03 GHz respectively and these composites 
stay at maximum and minimum values in the frequency regime.

All composites exhibit nonlinear decrease in SEA with frequency and composites 
x = 0.1, 0.3, and 0.5 show more dispersion in SEA with frequency: x = 0.1, 0.3, and 
0.7 displaying maxima at 9.27 GHz and x = 0.5 at 10.26 GHz. All composites stay at 
SEA > 10 dB or 90% absorption, encompassing the entire frequency region.

Figure 3 depicts the response of shielding effectiveness (SER) of 
BaCoxTixFe(12−2x)O19 ferrite versus frequency for doping of Co2+ and Ti4+ ions. All 
composites exhibit: (i) minimum SER in comparison to SEA encompassing the entire 
frequency region, (ii) nearly the same trend of SER in the investigated frequency 
regime, and (iii) maxima in the mid-frequency region. The shielding effectiveness 
(SER) due to reflection is very small and SER owe excursion between 0.2 and 2.5 dB. 
The low SER implies no composite can act as a microwave reflector shield. The 
composite x = 0.5 has largest SER = 2.48 dB at 10.39 GHz.

3.2 Shielding in far field

Shielding effectiveness for far field can be evaluated by classical electromagnetic 
field theory with the following relation [79]:

 ( ) ( ) ( )010 log / 16 20 d / log eacSE dB σ ωε δ= +  (3)

Figure 2. 
Variation of shield effectiveness due to absorption (SEA) with frequency for BaCoxTixFe(12−2x)O19 ferrite 
(x = 0.1, 0.3, 0.5, 0.7).
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where σac is the AC conductivity, ω is the angular frequency, ε0 is the absolute 
permittivity, d is the thickness of the shield, δ is the skin depth, and μr is the relative 
permeability.

Furthermore, σac = ωε0ε″ and δ = (2/μoωσac)
1/2, where μo and ε″ are dielectric 

loss and absolute permeability respectively. The first term, 10 log(σac/16ωε0), in Eq. 
(3) is the shielding effectiveness due to reflection and second term, 20(d/δ) log e, 
relates to the absorption of the microwave signal. The second term is effective at 
high frequencies and Eq. (3) can be rewritten as:

 ( )µo

1/2
d / 2 e20 logacASE ωσ=  (4)

Figure 4 depicts the graph of AC conductivity (σac) as a function of frequency 
for doping of Co2+ and Ti4+. It increases with doping from x = 0.1, 0.3 and x = 0.5 
followed by prevalent fall in x = 0.7: composite x = 0.5 observes more dispersion 
with frequency and large value of σac in comparison to other composites. The rise 

Figure 3. 
Variation of shield effectiveness due to reflection (SER) with frequency for BaCoxTixFe(12−2x)O19 ferrite (x = 0.1, 
0.3, 0.5, 0.7).

Figure 4. 
Plots of ΑC conductivity versus frequency for BaCoxTixFe(12−2x)O19 ferrite (x = 0.1, 0.3, 0.5, 0.7).
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in σac is seen with frequency in composite x = 0.1, 0.3, and 0.5; however, it remains 
nearly independent of frequency in x = 0.7. This increase in σac is ascribed to Koops-
Wagner model, which explains ferrite comprising of heterogeneous structure [80]: 
ferrites owe layers of good conducting grains, effective at high frequencies, are 
separated by poor conducting grain boundaries that are effective at low frequencies.

The composites x = 0.1, 0.3, 0.5, and 0.7 have DC resistivity (ρdc) of 
693.6 MΩ cm, 2.8 kΩ cm, 0.5 kΩ cm, and 33.8 MΩ cm, respectively. The composite 
x = 0.1 has the highest resistivity but still a large σac attributed to the presence of 
more strength of Fe3+: electron hopping between Fe3+–Fe2+ ions is responsible for 
conduction in ferrites [81]. Among all composites, composite x = 0.5 (i) owe maxi-
mum σac besides with diminution in the number of Fe3+ ions and (ii) has the lowest 
DC resistivity. The competition between these factors altogether increases σac in this 

Figure 6. 
Plots of SEA versus (σac)

0.5(S/m)0.5 for BaCoxTixFe(12−2x)O19 ferrite (x = 0.1, 0.3, 0.5, 0.7).

Figure 5. 
Change in skin depth (δ) with frequency for BaCoxTixFe(12−2x)O19 ferrite (x = 0.1, 0.3, 0.5, 0.7) with frequency 
in X-band.
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x Near field Far field

Freq. band (GHz) 10 dB bandwidth 

(GHz)

Freq. band (GHz) 20 dB bandwidth 

(GHz)

Freq. 

band 

(GHz)

10 dB 

bandwidth 

(GHz)

Freq. band 

(GHz)

20 dB bandwidth (GHz)

0.1 8.26–8.59 0.33 8.59–9.80 1.54 9.20–12.40 3.20 – –

9.80–12.03 2.23 – – – – – –

0.3 8.26–8.80 0.54 8.80–9.69 0.89 8.70–12.40 3.70 – –

9.69–12.03 2.34 – – – – – –

0.5 – – 8.30–11.90 3.60 8.20–8.70 0.50 8.70–12.40 4.70

0.7 8.20–10.32 2.12 – – – – – –

Table 1. 
Microwave shielding effectiveness (SEA) for 10- and 20-dB bandwidth (BW) in near and far field in BaCoxTixFe(12−2x)O19 (x = 0.1, 0.3, 0.5, 0.7).
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composite. Similarly, steep fall of σac in x = 0.7 is associated with the least number 
of Fe3+ ions available for electron hopping and large DC resistivity.

The dependence of skin depth (δ) on frequency for a different level of substitu-
tion is shown in Figure 5. The decrement trend in δ is observed with frequency, 
and x = 0.7 and 0.5 exhibit large and small δ respectively among the composites in 
the frequency regime. The large conduction loss, as shown in σac (Figure 4), causes 
minimum δ, which attenuates the propagating microwave signal in the composite 
and vice versa; thus further penetration of signal is not possible inside the thickness 
of composite: the signal is attenuated more in x = 0.5 due to highest σac depicted in 
Figure 4, thereby causing lowest δ.

The dependence of shielding effectiveness (SEA) on AC conductivity (σac
0.5) for 

different levels of doping is shown in Figure 6: it increases with doping from x = 0.1 
to x = 0.5 and steep decrement is seen thereafter in x = 0.7. All composites display 
a monotonic trend of increase in SEA with σac

0.5 and x = 0.5 owe maximum value 
while x = 0.7 stay at lowest one.

Table 1 shows bandwidth (10 dB and 20 dB) of SEA for both near and far field 
versus doping: 10 and 20 dB means 90% and 99% absorption respectively. For near 
field, x = 0.1, 0.3, and 0.7 exhibit 10-dB bandwidth of 2.23, 2.34, and 2.12 GHz 
respectively whereas 20-dB bandwidth of 1.54, 0.89, and 3.60 GHz is observed in 
x = 0.1, 0.3 and 0.5 respectively. For far field, x = 0.1, 0.3, and 0.5 show 10 dB-band-
width of 3.20, 3.70, and 0.50 GHz respectively, and 20-dB bandwidth of 4.70 GHz 
is seen in x = 0.5 only.

4. Conclusions

For near and far field, microwave shielding effectiveness in BaCoxTixFe(12−2x)O19 
ferrite is governed by absorption and doping of Co2+ and Ti4+ ion increases SEA 
from x = 0.1, 0.3, and 0.5. Composite x = 0.5 owes the highest SEA of 38.9 dB at 
10.26 GHz and 3.4 mm thickness; σac

0.5, ρdc and δ are the contributing factors and 
same composite carries with highest SEA of 44.6 dB at σac

0.5 of 4.5 (Ohm.cm)−0.5 for 
far field; s-parameter is the deciding factor. Furthermore, SEA increases monotoni-
cally with frequency and it can be tuned by varying intrinsic and extrinsic param-
eters. Composite x = 0.5 has far field and near field wideband of 4.70 and 3.60 GHz 
respectively for 20 dB SEA. The studied composites have the potential for practical 
absorber applications. The applications of these composite materials or other 
composite materials are very an important subject and more research is needed 
to find the optimum properties and optimum materials for X-band microwave 
applications.
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