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Abstract

Cereals and legumes are the major staples across the globe, thus providing nutri-
tion to humans, and their by-products utilized as animal feeds. However, mycotox-
ins synthesized by fungi contaminate these grains on the field during cultivation 
and are transferred to the storage centers. These fungi infect and deteriorate stored 
grains, thereby tampering with food security. Moreover, the deterioration decreases 
nutrient content and alters the physicochemical properties of grains. The current 
conventional methods used to reduce grain contamination are becoming ineffeci-
tive, coupled with the detrimental health effects it has on the consumer and to the 
environment. Herein, we present an overview of the use of nanoparticles (NPs) as 
an alternative and novel method of reducing mycotoxin biosynthesis due to their 
potent biocidal properties. Silver nanoparticles (AgNPs) are considered and have 
shown promising and effective fungicidal properties against important storage 
fungi, and pests hence could be utilized in the agriculture and food sector for a vast 
myriad of applications. These may help to either minimize/eradicate the exposure 
to the mycotoxins and its adverse health effects, hence contributing to the holistic 
growth and development of people.

Keywords: grains, mycotoxins, nanoparticles, biocidal activities, reactive oxygen 
species

1. Introduction

According to [1], microbial contamination of grains has resulted in a decrease 
in its nutritional quality, therefore, negatively affecting the productivity of humans 
(the workforce of a nation). Grains (cereals and legumes) are staple foods and 
widely consumed around the world due to their nutritional value and calories. 
Eating food prepared from contaminated grains could lead to malnutrition  
due to insufficient nutrients in the grains or food poisoning from mycotoxins. 
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The presence of these mycotoxins affects the safety, quality, and functional proper-
ties of grains. Moreover, the organoleptic properties of products made from these 
grains could also be altered because some fungi strains produce potent odors, which 
serve as an antibiotic against other microorganisms [2]. There have been several 
reports regarding microbial contamination of grains [3–5] and the mycotoxins 
produced by some of these organisms potentially pose a health risk to consumers.

The ability of fungi to penetrate grains, reside within the endosperm, and utilize 
nutrients makes conventional methods insufficient to deal with the menace [6]. 
Therefore, the fundamental problem remains unsolved. A convenient and practical 
approach where the nutritional quality, sensorial properties, color, and shelf life of 
the grains remain unchanged is warranted in curbing this menace. Therefore, we 
propose nanoparticles as the ultimate solution to the predicament mentioned above 
since they are known to exert potent biocidal activities against the vast myriad of 
microorganisms [7–17] involves in contaminating grains, hence could be utilized as 
antifungal agents during grain storage.

This chapter summarizes the microbial contamination of grains and the exist-
ing conventional methods employed to curb and or minimize this menace. Also, 
the potential application of silver nanoparticles as an alternative to the traditional 
techniques is discussed.

1.1 The economic importance of grains

Foodgrains could be cereals or legumes (pulses). The world leading cereal grains 
are wheat, barley, rice, maize, oats, rye, millet, and sorghum. Reports show that 
cereals are the dominant crops cultivated globally, with 2500 million tons harvested 
in 2011. The proportion of maize, rice, and wheat harvested is 883; 723; 704 million 
tons, respectively [18, 19]. Cereals are whole, hulled, cracked, rolled, or ground 
forms of products produced from various grains constituting staple foods for many 
localities globally. They contain a substantial amount of starch, a carbohydrate 
that provides dietary energy [20]. Also, cereals are utilized in feeding livestock. 
Huntington [21] reported a starch content of 72% for corn and sorghum, while 57, 
58 and 77% for barley, oat and wheat. Thus could be utilized to feed ruminants due 
to their high energy values. The role of cereal grains in the world food supply cannot 
be undermined as it provides 75% of the calories and protein in the human diet [22]. 
In Russia, folks use cereals in brewing (beer, kvass), production of distillates, and 
food (i.e., sweets, cookies, porridge, among others).

The second most important family of crops are the legumes, used for their 
grains, and as forage [23]. Previous works [24–26] have reported that legume seeds 
contain protein, soluble and insoluble fiber, slowly digested starch, micro- and 
macronutrients, and vitamins, in addition to various bioactive phytochemicals 
such as flavonoids and other antioxidants which are beneficial to human health. 
Legumes complement proteins in cereals and contain 20–45% protein compared 
to 7–17% in cereals [27]. Grain legumes are also utilized in feeding livestock, either 
as a concentrated compound feed (in poultry production) or as whole-crop forage 
(in cattle, sheep, and pig production) [23]. The presence of antinutritional factors 
(ANFs) such as Kunitz trypsin inhibitor (KTI), Bowman-Birk inhibitor, and lectins 
in legumes limits their utilization by humans and in animal husbandry with excep-
tion to ruminants (i.e., cattle, sheep and goat), which can degrade ANFs due to 
the microbial fermentation in their stomach [28]. ANFs can decrease the nutritive 
value of legumes and cause health problems that may be fatal for both humans (if a 
substantial amount is consumed) and animals [29]. Nevertheless, various methods 
have been proposed to decrease the concentration of these ANFs [30–32]. Legumes 
are also utilized in feeding fish, thus limit the need for expensive fishmeal in the 
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pisciculture industry [33–35]. Therefore, the safety and quality of grain legumes 
ought to be screened before utilization to avoid any further complications due to 
ANFs and mycotoxins.

1.2 Sources of fungi contamination of grains

Microorganisms plays vital role in balancing the ecosystem; they aid in the 
digestion of food in humans; are utilized in the production of food (i.e., starter 
culture in brewing, cheese production, among others), and serve as a good source 
of vital enzymes (exogenous enzymes). Nevertheless, these microorganisms could 
cause problems such as food poisoning (due to some mycotoxins they secrete), food 
spoilage, and grain contamination.

The entire production process (sowing, harvesting, postharvest drying, and 
storage) of grains are possible sources of fungi contamination [36]. Dust, water, 
diseased plants, insects, soil, fertilizers, animal excreta, and environmental pollut-
ants are possible origins of fungi cross contamination. The farmer, the processor, 
and the distributor could be a source of microbial contamination as well as con-
taminated farm machinery and unclean storage facilities (silos, etc.). According 
to [37], microbial contamination from the skin, mouth, and nose of food handlers 
could be directly introduce into the food chain. During drying, most farmers step 
on the grains with their Wellington boots, which is a possible route of introducing 
microorganism [38].

The microflora of grains mainly belong to the Alternaria, Fusarium, 
Helminthosporium, and Cladosporium families. Yeasts were isolated from grains; 
however, its load was less compared to mold [4]. Mechanical damage during 
harvesting or processing could serve as a route via which fungi could penetrate 
the endosperm of seeds, reproduce, and secrete mycotoxins (aflatoxins, etc.), 
rendering the food unsafe for human consumption. According to the International 
Commission on Microbiological Specifications for Foods [39], isolated fungi were 
mainly on the surface of the kernel; only a few species occupy the inner parts of the 
seeds due to damage. Birds could introduce fungi on grains by (1) feeding on crops 
in the field. This can introduce gut microbiota to these plants, which could subse-
quently be spread by rainwater. (2) Their feet could also aid to spread microbes by 
landing and picking up fungi spores from a diseased plant/crop to healthy ones. 
Bats, and insects (bees) could also aid the contamination of crops on the field, 
which can spread during harvesting.

According to [40], the primary cause of spoilage in stored grains in developed 
countries is attributed to fungi, because insects and rodents are controlled success-
fully. Factors such as high temperature, humidity, and poor storage conditions cre-
ate a conducive environment for fungi to flourish and synthesize mycotoxins. These 
secondary metabolites can cause diseases in humans and animals. For instance, 
aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisins, HT-2, and T-2 
are classes of mycotoxins produced by various fungus species [41, 42]. Grapes were 
found to be contaminated with ochratoxin A, thus contaminating any product 
processed from them (juice, wine, vinegar, and dried grapes) [3].

2. Factors promoting microbial growth and mycotoxin production

When deciding whether moisture, temperature, etc., affects the safety of grains, 
other factors should be considered to settle on a scientifically proven conclusion. 
Extrinsic factors (temperature, relative humidity, mechanical injury on seeds dur-
ing harvest or processing, insects, and rodents infestation) are environmental and 



Mycotoxins and Food Safety

4

physical factors surrounding the grains whereas those attributed to the characteris-
tics of the grains are intrinsic factors (pH, acidity, nutrient composition, biological 
structure, moisture content/water activity, redox potential, naturally occurring and 
added antimicrobial factors). Details on how these factors contribute to or promote 
microbial contamination of grains are examined below.

2.1 Nutrient content

Every organism requires essential nutrients for growth and maintenance of met-
abolic functions. Hence, the type and concentration of nutrients needed depends on 
the class of microorganism. A source of energy, water, nitrogen, vitamins, minerals, 
and other compounds provide these nutrients. The growth of Aspergillus flavus on 
grains was significantly affected by the concentration of soluble sugars. Low sugar 
levels retarded its growth, whereas concentrations between 3.0 and 6.0% resulted in 
rapid growth, and the subsequent production of aflatoxin B1. Nevertheless, afla-
toxin B1 production was significantly promoted due to the bioavailability of amino 
acids (arginine, glutamic acid, aspartic acid) and zinc in the grains [43]. In a similar 
study, Li et al. [44] reported different concentrations of mycotoxins (aflatoxin 
B1 (AFB), deoxynivalenol (DON), zearalenone (ZEA) and ochratoxin A (OTA)) 
on numerous swine feeds. These outcomes could be attributed to the nutritional 
composition of the feeds. The nutritional requirement of pigs depends on the state 
(gestating, finisher, grower, starter, etc.) hence varied feed rations are given which 
contain different nutrient concentration; as a result influence fungi growth and 
subsequent mycotoxins production. The bioavailability of nutrients in most grains 
would support the growth of a wide range of microorganisms. Although each 
strain of mold has the genetic potential to produce a particular mycotoxin, nutrient 
bioavailability could influence their levels significantly [45].

2.2 Biological structure

Grains have biological structures which prevent the penetration and growth 
of microorganisms. The testa of seeds and shell of nuts are examples of such 
structures. Some physical structures/barriers may exert antimicrobial potential. 
Intact biological structures prevent the entry of microbes, subsequent growth 
and production of mycotoxins in grains. However, these structures are destroyed 
during harvesting, transporting, or processing of the grains. Insect infestation 
could pave way for microbial proliferation of grains [46, 47]. Extract of Peanut 
testa was reported to exhibit pronounced antifungal activities against Penicillium 
sp., A. niger, and Actinomucor sp. The cardinal and purple peanut testa produced 
a significant zone of inhibition at concentrations of 0.8 and 2.0 g/L, respectively. 
It was concluded that the fungicidal potentials of the testa depend on the type 
of peanut [48]. Nevertheless, the environment, variety, type of farming system 
adopted, duration of storage, etc., may affect the fungicidal potency of these 
peanut testae.

The biocidal activities of Dacryodes edulis and Garcinia kola testae have been 
reported [49]. The antimicrobial activities of these testae are associated with the 
presence of phytochemicals (alkaloids, saponins, etc.), and was confirmed in 
experimental studies [50, 51]. The methanolic extract of Simmondsia chinensis testa 
(Link) C.K. Schneid exhibited no fungicidal activities against Candida albicans 
[52], indicating that not every grain testa could inhibit microbial growth.

All the studies mentioned above support the fact that the biological structures 
of the grains may have the potential to prevent microbial proliferation. These 
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claims cannot be guaranteed when the structures covering the seeds are destroyed 
during harvesting or drying. Therefore, care should be taken to minimize the 
destruction of these structures on grains during or after harvest. Busta et al. [53] 
reported that pathogens lack the enzyme necessary to break down the protective 
layers covering grains.

2.3 Moisture content (MC)

The oldest method of preserving food is controlling the MC. It is applicable 
during grain storage since the moisture influences the growth of microorganisms 
and subsequent production of mycotoxins. The water requirement of microbes is 
known as the water activity (aw) of the food or environment and is defined as the 
ratio of the water vapor pressure of the food substrate to the vapor pressure of pure 
water at a constant temperature [47]. The aw of grains describes the degree to which 
water is bound in the grains, its availability to participate in chemical/biochemical 
reactions, and its accessibility to facilitate the growth of microorganisms [53] which 
leads to the synthesis of metabolites.

Cereals have an aw between 0.10 and 0.20 when adequately dried, making it 
difficult for microbes to reproduce. Although the optimum MC for growth and sub-
sequent toxin production for the various aflatoxigenic fungi varies, many achieve 
the best growth and toxin synthesis at an MC of 17.5% [53, 54]. Aspergillus requires 
about 13% moisture or a relative humidity of 65% (aw, of 0.65) for growth and toxin 
synthesis [55].

The highest A. flavus population was observed at aw = 0.95. Aw significantly 
altered the AFB1 produced and the expression of aflR at aw 0.90 and 0.95 respec-
tively. The optimum expression of the nor-1 gene was at aw 0.95 and 0.90, whereas 
deficient expression occurred in the driest treatment (aw 0.85) [56]. Molds were 
unable to germinate when the aw of the grains remained below 0.60. Also, when 
molds are allow to flourish, they could predispose the stored grain to mite and insect 
infestation [3, 57] because mites feeds on molds. Co-culturing A. parasiticus with S. 
lactis and Lactobacillus casei suppressed aflatoxin synthesis [54]. In a similar study, 
Faraj et al. [58] reported a significant reduction in total aflatoxins synthesized when 
fungi (A. niger and Rhizopus oryzae) were co-cultured with a bacterium (Bacillus 
stearothermophilus). Since aflatoxins synthesis was minimal at 40°C and high between 
8°C and 40°C, the authors associated the findings to the temperature differential 
between the strains [59]. However, mycotoxins such as rubratoxins from Penicillium 
purpurogenum, cerulenin from Cephalosporium caerulens, and Acrocylindrium oryzae 
inhibited fungi growth at the same time enhance aflatoxin synthesized [45, 60].

The growth of Trichoderma asperellum (strains PR10, PR11, PR12, and 659-7) 
was reported being sensitive to aw reduction [61]. Therefore, lowering aw could 
inhibit the growth of fungi. According to [62], grains stored for a year, 8–9 months, 
and weeks should have MC about 9%, 13%, and 14%, respectively. A low MC could 
curb problems like molds infestations, discoloration, respiration loss, insect dam-
age, and moisture absorption.

Adequate drying of grains (produce) to lower moisture levels is critical to 
create unfavorable conditions to inhibit microbial and insect proliferation. It is 
recommended to dry harvested produce to safer moisture levels of 10–13%. Low 
moisture help keep grains longer without losing nutrients and other vital bioac-
tive compounds [63, 64]. Water activity in stored grains could increase depending 
on climatic conditions, cellular respiration of microorganisms, or urine from 
rodents. Improper drying, especially during winter or autumn, could also elevate 
aw levels.
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2.4 pH, acidity and redox potential

For centuries, people have learned to increase the acidity of food either through 
fermentation, or by adding weak acids in the form of preservatives. These techniques 
have proven successful. Organic acids are effective preservatives in their undissociated 
state. pKa is the term used to illustrate the dissociation of an acid. Therefore, lowering 
the pH of grains increases the effectiveness of organic acids as preservatives [39, 53].

Naturally, grains in the field are undried and possess high pH; however,  drying 
decreases the MC and subsequently the aw, thereby reducing the pH. Adadi and 
Obeng [65] reported that the lower the pH value the higher the total acidity (TA), 
which inhibits the growth of microorganisms. The pH of grains could interact with 
other parameters (aw, salt, temperature, redox potential) in the food to inhibit 
microbial growth. The general rule of food microbiology states that pathogens do 
not grow, or grow slowly, at pH below 4.6- but there are exceptions. For instance, at 
pH 4.2, an organism was able to survive and synthesize a mycotoxin [66].

Rice and maize have pH about 6.02 ± 0.01 and 6.53 ± 0.01 during the rainy season 
and 6.20 ± 0.20 and 6.42 ± 0.12, respectively, in the dry season [67]. The season seems 
to influence the aw and the TA, thus altering the pH of the grains. The rainy season is 
defined by continuous rain, resulting in the elevation of the MC of the grains, which 
affects the pH. The pH range of beans (string and lima) is between 4.6 and 6.5 [53].

According to [68], fungi can secrete butyrate, oxalate, maleate, citrate, gluco-
nate, and succinate into their environment, thereby changing the acidity of the 
ecological niche. Sclerotinia sclerotiorum and Botrytis sp. secrete oxalic acid while 
Penicillium spp., and Aspergillus spp., synthesize mainly gluconic and citric acids 
[69–71]. Fungi can grow comfortably in pH above 8.5; however, below pH 2.2, 
their growth was inhibited. Microorganisms can modify the pH of the environ-
ment in which they reside, making it challenging for farmers to control the pH of 
stored grain. A phenomenon like this could lead to significant economic loss due 
to microbial prolifera tion. The synthesis of ochratoxin A was maximized at lower 
pH [72]. Different fungi strains (Trichoderma harzianum, Trichoderma aureoviride, 
and Trichoderma viride) can grow over a broader pH range (from 2.0 to 6.0), with 
optimal growth at pH = 4.0 [73]. Hence, adjusting the pH is a great way of inhibit-
ing the germination of any fungi spores on stored grains.

The redox potential (Eh) of a substance is the ratio of the total oxidizing 
(electron-accepting) power to the whole reducing (electron-donating) energy 
of the material. It is quantified in millivolts (mV) at pH 7.0. Eh correlates to the 
pH of a substrate [47]. Generally, aerobes, facultative anaerobes, and anaerobes 
grow well at Eh between +500 to +300 mV, +300 to −100 mV, and + 100 to less 
than −250 mV, respectively [74]. Some microorganisms require an Eh of less than 
+60 mV for growth; nevertheless, slower growth rates were observed at higher 
Eh values [53]. The Eh values of wheat (whole grain), wheat (germ), and barley 
(ground) is within −320 to −360, −470, and +225, respectively [46]. Oxidants 
such as KMnO4, NaClO4, or Fe2O3 can influence the Eh of a material [75]. The 
growth of Fusarium oxysporum and Rhizoctonia solani were suppressed when 
decomposable organic material was introduced [76, 77]. pH and Eh can impact 
a wide range of fungal physiological  processes (regulation and expression of 
genes) [78–80] thus complicating the storage process. Therefore, controlling the 
Eh and pH of grains is necessary to manipulate fungi growth during storage.

2.5 Temperature

All microorganisms have a defined temperature range within which they can grow 
and synthesize toxins which cause food poisoning. Therefore, understanding the 
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temperatures range, coupled with other intrinsic and extrinsic factors, are crucial to 
selecte the proper storage conditions for grain storage. Temperature has a dramatic 
impact on the growth and lag period of an organism. The growth rates of most micro-
organisms are favored at low temperatures, though there are exceptions. Reaction 
rates for specific enzymes in an organism become slower at lower temperatures. 
Also, low temperatures minimize the fluidity of the cytoplasmic membrane, thus 
interfering with transport mechanisms in the cell [46, 53]. The expression of proteins 
are temperature regulated. A slight change in temperature can influence bacterial 
and archaeal community structure. 16S rRNA genes were altered due to changes in 
temperature [81, 82]. A wide range of temperatures play a vital role in the growth and 
synthesis of toxins in fungi. For instance, Penicillium and Cladosporium were able to 
grow below 20°C whereas the growth of Aspergillus species were inhibited. However, 
at a temperature above 20°C, the growth was maximized [55]. Virulent A. niger has 
optimal growth between 30–35°C [83], thus, rendering stored produce susceptible 
to a toxin secreted by these fungi. The growth rates of Phoma spp. 1, Phoma exigua, 
Mortierella gamsii, and Mortierella sp. 1 was high at 4°C [84]. Warmer (33°C) and 
more humid conditions may increase aflatoxin prevalence. However, the opposite 
scenario is expected in tropics, since most aflatoxigenic fungi will not survive the 
expected 40°C [45, 85].

The knowledge of optimal temperature for microbial growth and mycotoxin 
synthesis gives more accurate assessment of the potential risk to human health [72]. 
Molds can grow over a broader range of temperatures, from below freezing to tem-
peratures over 50°C. For a given substrate, the rate of mold growth decrease with 
decreasing temperature and water availability. Below 17°C grains are susceptible to 
insect infestation; however, mite infestations can occur between 3 and 30°C [86]. 
Degradation of fungi mycotoxins can occur at 40°C [58]. Therefore, keeping the 
temperature of the storage room elevated could be of valuable aid in detoxification 
and probable killing of stored microorganisms.

3. Effects of mycotoxins on human health

Mycotoxins are considered a significant health and economic problem. 
Mycotoxins can find their way to the human body by way of contaminated food, 
skin contact, or inhalation [87, 88]. The most common form of exposure is through 
oral ingestion of contaminated food [89].

The level of exposure and the type of mycotoxins which one is exposed to deter-
mine the nature of adverse effects on the human, either in the form of an allergic 
reaction, infections, or a toxic disease [90]. The seriousness of mycotoxins depends 
on the toxicity of the mycotoxin involved, the age, wellbeing of the exposed indi-
vidual, and the length of exposure [91]. Mycotoxicosis is the disease caused by 
mycotoxins. Mycotoxins such as aflatoxins have been documented causing liver 
cancer [92]. Other serious conditions, such as chronic interstitial nephropathy, 
Balkan endemic nephropathy, and urothelial tumors, as well as testicular cancer in 
men, have also been linked to mycotoxins [93]. Acute diseases, namely abdominal 
pains, headache, dizziness, throat irritation, and nausea, have also been associated 
with mycotoxin exposure in humans [94]. It is, therefore, important to ensure that 
grains are free of mycotoxin contamination.

3.1 Methods of detecting and analyzing mycotoxins

The hazardous effects of mycotoxins on humans and animals had called for the 
development of rapid methods for their detection and quantification in cereals 
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and other foods. However, sampling methods, extraction, and the instrument used 
could alter mycotoxin quantification. In response, Rahmani et al. [95] compiled a 
good comprehensive review to address the challenges mentioned above.

The impact of the sampling on sample preparation and analytical instrument 
contribute to the total variance during the analysis of ochratoxin A (OTA) in 
flour and aflatoxinB1 (AFB1) in oats was recently reported. The authors sug-
gested that increasing sample weight (size) could potentially reduce the high 
heterogeneity encountered [96, 97]. For efficient extraction, methods of detec-
tion and quantification of mycotoxins, the reader(s) are referred to the following 
good sources [95, 98–101].

4.  Some conventional methods of controlling grains microbial 
contamination

Contamination of stored grains by fungi mycotoxins has resulted in economic 
losses of food products, which could have been used to feed the less privileged (i.e., 
refugees, natural disaster victims, etc.). Therefore, preservation of grains during 
storage is necessary to maintain food security. Moreover, with the growing popula-
tion of the world, more food will be required to feed folks. Some conventional 
approaches used in preserving grains are listed in Table 1 besides those described 
below.

4.1 Organic acids (OA)

High-moisture grains are prone to deterioration during storage if moisture exceeds 
14%. For this reason, in the 1970s, chemicals were used to preserve high moisture 
grains. Propionic acid was used alone (applied worldwide) or in combination with 
acetic acid, isobutyric acid. Formaldehyde was mostly used in Europe to inhibit the 
growth of mold and bacteria in outdoor storage of grains. However, when galvanized 
steel equipment are used to store acid treated grains, extreme corrosion occurred. 
Thus, lining the bins with oil was recommended. The combinations of propionic acid 
and sodium benzoate curbed the issue of corrosion, and less harmful compared to pure 
propionic acid [114–116]. Coating the bins with silver nanoparticle protective paints 
[117] could prevent corrosion and exert fungicidal activities.

Reference Methods Limitations

[4, 102, 
103]

Debranning • Not entirely suitable for wheat due to the crease on the wheat kernels.

• Whole-grain demand in the market.

[104–106] Pesticides • High environmental impacts.

• Direct negative impact on human health.

• Increasing resistance against pesticides.

[107–110] Ozone • The cost of treatment can be relatively high due to complex technology.

• Limited to highly vented packages or open-top containers.

[111–113] Irradiation • Can negatively modify the quality and technological properties of 
cereals and cereal products

Modified with permission from ref. 4496530764014 [122].

Table 1. 
Some conventional approaches of grains preservation.
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OA can increase moisture content and penetrate the endosperm, thus alter the 
functionality of the grains [118, 119]. It could also modify the nutritional com-
position of the stored grain, consequently decreasing the quantity and quality of 
nutrients. The combination of organic acids, such as propionic, sorbic, and acetic 
acids, as well as their salts, had antimould activities, which extended the shelf life of 
bakery products [36]. Similarly, calcium propionate (0.003%), potassium sorbate 
(0.03%), and sodium benzoate (0.3%) suppressed the growth and mycotoxin pro-
duction in Eurotium, Aspergillus and Penicillium. However, the author claimed that 
aw and pH contributed to the effectiveness of the compounds and should therefore 
be carefully considered during application [115]. High sorbate concentration altered 
the sensorial properties of food [120]; therefore, the concentration used is crucial to 
maintain grain quality after storage. Propionic acid and its salts exhibited antimi-
crobial effect against Bacillus spp., and was ascribed to their high MW fatty acids 
[120]. Valerio et al. [121] tested the antifungal activities of organic acids synthe-
sized by lactic acid bacteria (LAB) isolated from a semolina ecosystem. The results 
showed that all the acids produce by the LAB had inhibitory effects on the test 
species (Penicillium roqueforti, A. niger, and Endomyces fibuligera). This approach 
could be classified as biopreservation since the metabolites of living organisms were 
used to inhibit the growth of microorganisms on the product.

4.2 Drying

According to [122], drying is the phase of postharvest processing during which 
grains are dried to achieve low MC, thereby guaranteeing safe storage (<0.70 aw). 
The MC of adequately dried grains ranged within 10–14%. Russ and coworkers 
[123] reported that at higher MC, residue of fermentable sugars and other nutrients 
predispose grains to microbial colonization, resulting in rapid deterioration. Thus, 
a productive drying process warrants the reduction of moisture, thereby lowering 
the pH and creating an uninhabitable environment for the germination and prolif-
eration of a microorganism. Dried grains should be allowed to cool before bagging 
because heat generated during drying could cause a warm spot. Earlier works [36] 
reported that warm spot in grains support fungal growth, resulting in contamina-
tion of grain by mycotoxins. Kumar and coworkers [124] reviewed a paper on 
heat convection solar drying systems. Some of the techniques described could be 
employed when drying grains. The low-cost material utilized in manufacturing 
these dryers, coupled with user friendly, make them ideal for large scale drying, even 
for small-scale farmers.

Different drying methods have been described: (1) high temperature or heated 
air-drying; (2) low-temperature air-drying; (3) combined air-drying; (4) dry ration 
and in-storage cooling method (an alternative to in-dryer cooling) [125, 126].

The expensive nature (cost of power) of artificial drying makes it unpopular, 
couple with the technicalities involved. For instance, in Russia, sun drying becomes 
insufficient due to the high MC (i.e., in St Petersburg, Yekaterinburg, etc.); thus, it 
is impossible to achieve uniform drying of grains. In Africa, sun drying is efficient 
and effective since there is almost 13-h of sun during the dry season [127]. Applying 
excessive temperatures (using artificial means) can lead to grains cracking, loss of 
viability, as well as economic losses [122, 128].

4.3 Chlorine and hypochlorite

Chlorine dioxide (ClO2) has biocidal activities due to its oxidizing capacity 
(strong oxidant), and is widely used for decontamination. It is used both in its gas-
eous and aqueous forms to sanitize food and, exert potent biocidal activity against 
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bacteria, yeasts, and molds [129–133]. All bacteria and their spores in a hospital 
room were reported killed/inactivate by ClO2 gas [134].

Poliovirus was found to have been inhibited due to the application of ClO2, 
which interreacted with the viral RNA and damaged the genome’s ability to act as a 
template for RNA synthesis [135]. Aqueous ClO2 was documented to have signifi-
cantly enhanced the inactivation of F. graminearum on wheat at high concentra-
tion, (15 mg/L) compared to lower levels (5 and 10 mg/L) [131]. Inexpensive, less 
corrosive, the ease with which it mixes with air, rapid diffusion, and being easy 
to use are some merits associated with this method. However, it can produce toxic 
by-products and interfere with the flavor compounds in the grains. It also requires 
expensive onsite generation [136–139]. Chlorine solution (0.4%) was ineffective 
against highly contaminated grains [140, 141]. The reason could be the colonies 
were mature and had thicker peptidoglycan, hence, the chlorine could not pen-
etrate the cells to reach the genetic material. Another hypothesis could be that the 
concentration was not enough to destabilize cell and react with the amino acids. 
Sun and collaborators [133] documented that coupling aqueous sanitizer with 
gaseous ClO2 enhanced the decontamination of foodborne and plant pathogens. 
It also improved the safety, quality, and sensory properties of products (fruits 
and vegetables). Nevertheless, higher concentrations may cause bleaching or 
browning.

5. Nanoparticles

The term ‘nano’ is a Greek word for dwarf, and a nanometer (nm) is 1-billionth 
of a meter. Nanotechnology has been in existence for decades now, and not an 
invention of the twentieth century. Nanomaterials and nanoparticles (NPs) are 
materials that have at least one dimension on the nanoscale (1–100 nm) or whose 
basic unit in the three-dimensional space is in this range. NPs have a more compre-
hensive range of applications in food science and technology, drug delivery, bio-
medical engineering, tissue engineering, textile industry, environment, electronics, 
agriculture, etc. [10, 142–145]. Nanoparticles are classified as organic (also known 
as nanocapsules) and inorganic.

Organic NPs act as core shells to shield sensitive bioactive ingredient such as 
carotenoids [146] against environmental factors, thereby enhancing their bio-
availability for safer delivery [10, 147]. Nanoprecipitation, emulsion-diffusion, 
double emulsification, emulsion-coacervation, polymer coating, etc. are examples 
of organic NPs [148]. All these techniques are used to prepare the core materials 
(β-carotene, probiotic bacteria, folic acid, omega fatty acid, protease enzymes, 
etc.) for encapsulation. Fluorescent organic NPs have recently been used to develop 
nanosensors [149] which are used to detect contaminants and other foodborne 
pathogens as well as in bioremediation [150].

Inorganic NPs have attracted the attention of researchers in the last two decades 
due to their multiple antimicrobial activities (antifungal or antiviral) coupled with 
the pronouncement from Food Safety Authority that these NPs are safe and do not 
affect humans/consumers in any way [151–153]. Silver, silica, and titanium dioxide 
NPs are the main NPs used in the agri-food industries [154].

5.1 Silver nanoparticles (AgNPs)

Several studies have confirmed the potent biocidal effects of silver nanoparticles 
(AgNPs) towards fungi [155–158]. Due to their peculiar properties (i.e., optical, 
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electrical, and thermal, and biological properties), AgNPs have been used in 
several applications: as biocidal agents; medical device coatings; optical sensors; 
in cosmetics; in the food industry (food products); in diagnostics, orthopedics, 
drug delivery; as anticancer agents and have greatly enhanced the tumor-killing 
effects of anticancer drugs [158–163]. Healthcare products, such as scaffolding, 
burn dressings, water purification systems, and medical devices are manufactured 
using AgNPs [164, 165]. It was reported that 10 μg/mL AgNPs completely inhibited 
the growth of 107 CFU/mL E. coli ATCC 8739 cells in liquid medium. The leakage of 
reducing sugars and proteins forced respiratory chain dehydrogenases into an inac-
tive state, suggesting that AgNPs penetrated the bacterial cell membrane with high 
efficiency and could therefore be used in the manufacturing of drugs used against 
bacterial diseases [158]. AgNPs extracted from Pistacia atlantica were effective 
against important clinical pathogens [166]. AgNPs synthesized (green AgNPs) from 
the leaf of CRCP (medicinal plant) was utilized against multidrug-resistant (MDR) 
P. aeruginosa, S. aureus and CoNS isolates (106 CFU each) from post-surgical wound 
infections. 80 mg/mL AgNPs was reported effective against, S. aureus and CoNS 
isolates but had little effects on P. aeruginosa. However, 100-120 mg/mL AgNPs 
completely inhibited P. aeruginosa [153]. These findings shows that the concentra-
tion of AgNPs utilize is critical therefore should carefully be considered during 
application.

The fungicidal activities of AgNPs are documented in many studies [13, 152, 
160, 167–170]. Six fungal species (Aspergillus fumigatus, Penicillium brevicompactum, 
Cladosporium cladosporoides, Mortierella alpina, Chaetomium globosum, and Stachybotrys 
chartarum) isolated from an indoor environment were used to test the antifungal 
activity of AgNPs. The results revealed that the presence of AgNPs in concentrations 
of 30–200 mg/L significantly inhibited or decreased the growth of all the fungi species 
except Mortierella species, which were insensitive to the AgNPs but instead metabo-
lized the AgNPs for its own benefit (the presence of AgNPs in agar substrates signifi-
cantly enhanced Mortierella growth rate) [152]. AgNPs and a conventional antifungal 
agent, Amphotericin B (for a positive test), were tested against Saccharomyces cerevisiae 
(KCTC 7296), Trichosporon beigelii (KCTC 7707), and Candida albicans (ATCC 
90028). The AgNPs exhibited a minimum inhibition concentration (MIC) value of 
2 μg/mL, similar to the positive control [155]. AgNPs was found to effectively suppress 
growth and AFB1 production in A. parasiticus (Figure 1) [171]. In a similar study, the 
addition of AgNP HA1N, AgNP HA2N, and AgNP EH resulted in 88.2%, 67.7% and 
83.5% reduction of AFB1 synthesized by A. flavus [172]. Also, the fungicidal activity of 
Capsicum annuum L. was recently reported [173]. The active ingredient could be iso-
lated and encapsulated in NPs, which may exhibit potent inhibitory activities against 
storage pest and microorganism.

5.1.1 Mechanistic action of AgNPs biocidal activities 

The potent antimicrobial activity of AgNPs has attracted global attention, hence 
its application in multiple fields (i.e., food industries, medicine, textile industries, 
etc.). However, the exact mechanistic action is still not clear, because the mechanism 
depends on the type of microorganism (i.e., bacteria, fungi, etc.) involved and, 
since different organisms possess different cell structure, the mechanistic action 
differ. Several researchers have tried to understand the antimicrobial effects of 
AgNPs using various model microorganisms, e.g., E. coli [158, 174, 175], P. aeruginosa, 
S. aureus [175], V. cholera [174, 176], S. cerevisiae [177, 178] and S. typhi [174]. Other 
groups [179, 180] have also worked on fungi. Mitochondrial dysfunction predispose 
cells for easier penetration by AgNPs via diffusion and endocytosis. The efficiency of 
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AgNPs uptake by skin keratinocytes depends on the size, shape, pH, zeta potential, and 
incubation time. Smaller (<5 nm) NPs are more toxic than the larger ones. This could 
be ascribed to the secure attachment and penetration of the smaller NPs compared to 
the larger NPs, which requires larger pores to penetrate, into the cell membrane and 
internalized. AgNPs were able to attach and penetrate cell membrane causing toxic-
ity in Caenorhabditis elegans. Ag0 can interact with molecular oxygen, as well as with 
other redox-active compounds to produce ionic silver, which then further interact with 
environmental factors to yield Ag+ [181–186]. AgNPs ranging from less than 10 nm can 
inhibit E. coli and P. aeruginosa due to their potent biocidal activities [187, 188]. Certain 
viruses were unable to bind to their host cells due to the presence of AgNPs of 1–10 nm, 
thus starving them to death [189]. Concerning shapes, Pal et al. [190] reported that 
triangular AgNPs were found to be effective compared to rod and sphere AgNPs. The 
biocidal efficiency of AgNPs is related to Ag+, which interact with biological macromol-
ecules (proteins, carbohydrates, nucleic acids, and lipids). When AgNPs adhere to the 
surface of the cell, it automatically alters membrane properties, undermining the fluid-
ity of the cell. AgNPs can degrade lipopolysaccharide molecules causing them to accu-
mulate inside membrane by forming “pits”, thereby increasing membrane permeability 
[191]. According to reports Ag+ can inhibit phosphate uptake, resulting in the efflux of 
phosphate, mannitol, succinate, glutamine, and proline from the cell [192–198].

The minimal bactericidal concentration (MBC) of AgNPs on Gram (+) bacteria 
was 32 times higher compared to Gram (−) cells [199]. Thus, the sensitivity of the 
cell wall depends on the class of microorganisms. Research [174] also demonstrated 
that AgNPs can interact with bacterial cell membranes. Furthermore, the AgNPs 
found inside the cells are the same sizes as the ones interacting with the membrane, 
therefore providing more evidence to support the theory that particles that interact 
with the membrane penetrated into the bacteria.

Several studies [176, 200, 201] have reported that the positive charge of AgNPs 
is crucial for its antimicrobial activity through the electrostatic attraction with the 
negatively charged cell membrane of the microorganism.

The permeability of the cell membrane was altered after treatment with AgNPs, 
resulting in the leaking of reducing sugars and proteins which induced respiratory 
chain dehydrogenases into inactive state. The amount of reducing sugars leaked 
after 2 h was 102.5 and 30 μg/mg per bacterial dry weight in the treated and the 
control cells, respectively. While the activity of respiratory chain dehydrogenases 

Figure 1. 
Inhibition of aflatoxin B1 production at different concentration of AgNPs. Modified with permission from 
© Iranian Journal of Medical Sciences [171].
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of positive control increased at 37 ± 2, nearly no change was observed in nega-
tive control cells. Furthermore, the enzymatic activity of cells treated with 5 μg/
mL AgNPs decreased [158]. The survival rate of bacterial species decreased with 
increase in the adsorption of AgNPs. Additionally, the adsorption and toxicity of 
AgNPs on P. aeruginosa, M. luteus, B. subtilis, B. barbaricus, and K. pneumonia was 
optimum at pH 5, NaCl concentration of <0.5 M. A manifestation of less toxicity 
was noticed at pH 9 and NaCl concentration >0.5 M, indicating that the environ-
mental pH under which the microorganism grows plays a crucial role in either 
protecting or exposing it to rapid interaction with the AgNPs [185]. The ability of 
AgNPs to bind, interact, deform, and induce DNA damage was documented [181, 
202–204]. Hackenberg and coworkers [203] used comet assay and chromosomal 
aberration (CA), a method previously recommended by [205], to determine the 
damage AgNPs inflict on DNA. In both methods, maximum damage to human 
mesenchymal stem cells occurred less than an hour after treatment (0.1 μg/mL). 
Circular dichroism spectra analysis of treated calf thymus DNA revealed that 
AgNPs interacted and formed a new complex with the double-helical DNA, then 
induced an alteration of non-planar and change the orientations of DNA bases 
which act as an intercalator, increasing the stability of DNA which in turn increase 
the Tm value of the DNA [202]. A researcher [206] suggested that AgNPs can 
interact with nucleic acids by forming bonds with pyrimidine bases, thus condens-
ing DNA and inhibiting replication. In a recent study, Li et al. [207] showed that 
citrate-AgNPs (C-AgNP20) induced different cytomorphological alterations and 
intracellular distributions in cetacean (bottlenose dolphins (Tursiops truncatus)) 
polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells 
(cPBMCs). High dose (10 and 50 μg/mL) of C-AgNP20 triggered apoptosis in 
cPMNs and cPBMCs (induced cytotoxicity). Additionally, the functional activities 
of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activ-
ity) were negatively altered at sub-lethal dose of 0.1 and 1 μg/mL. AgNPs induced 
structural damage to cell wall, intracellular proteins (enzymes), and organelles, 
leading to the disruption or the collapse of metabolic processes, like antioxidant 
defense mechanisms, thereby inhibiting growth [177, 178].

The cellular oxidative stress in microbes was enhanced by increasing the concentra-
tion of Ag (+) ions [206]. Several reports [208–213] have highlighted the potential 
antiviral, antifungal, and antibacterial activities of AgNPs and was ascribed to its 
ability to generate enough reactive oxygen species (ROS), free radicals (i.e., hydrogen 
peroxide (H2O2), superoxide anion (O2−), hydroxyl radical (OH•), hypochlorous acid 
(HOCl)) and singlet oxygen. During mitochondrial oxidative phosphorylation, ROS 
are produced. Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase catalyzes series of reactions where molecular oxygen (O2) is reduced to O2•. 
With dismutation and metal-catalyzed Fenton reaction, the O2• is further reduced to 
H2O2 and OH•, respectively [214–216]. Apoptosis and cell membrane damage were 
induced by ROS, leaving the cells incapable of regulating transport through the plasma 
membrane, resulting in cell death [217–220]. A research group [221], evaluated the 
effects of ROS against S. aureus and E. coli. The results showed the inactivation of 
lactate dehydrogenase and protein denaturation in both test organisms. Membranal 
damage allowed influx of calcium, thus inducing intracellular calcium overload, 
further doubling ROS generation and mitochondrial membrane potential variation 
[222]. The overproduction of ROS was reported to have interfered with ATP synthesis, 
leading to DNA damage [223]. Free radicals and ROS (an excessive amount) can inflict 
damage/stress on the mitochondrial membrane, causing necrosis, peroxidation of 
lipids, proteins, and DNA damage [206, 224, 225]. According to [184, 225], elevated 
levels of ROS can stress the endoplasmic reticula and deactivate antioxidant enzymes 
in cells, resulting in genotoxic effects.
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It has been discovered that OH•, interacted with constituents of DNA, which 
led to the breakage of DNA single-strands via the formation of 8-hydroxyl-2′-
deoxyguanosine (8-OHdG) DNA adduct [226, 227]. In vivo studies have shown that 
AgNPs influenced the activity of chicken oxidative stress enzymes [228]. AgNP 
treatment induced a pronounced ROS in P. aeruginosa compared to AgNO3. The 
expression levels of ROS related proteins (PA4133, Hmp, KatA, CcoP2, SodB, CcpA, 
RibC, EtfA, and PiuC) were specifically regulated after exposure to AgNPs in 
concentration and time-related modes. Cells treated with AgNO3 did not show any 
perturbation in intracellular ROS generation at low levels, which supports the exist-
ing theory that oxidative stress is triggered solely by AgNPs at their corresponding 
concentrations [229]. As reported by [220], the biocidal activities of Ag+ could 
also be attributed to its interactions with the thiol-related compounds found in the 
respiratory enzymes of cells, resulting in cell death. A researcher [230] proposed a 
theory using Ag with cellular energy production. Essential proteins of prokaryotes 
and eukaryotes located on the cell exterior and interior (mitochondrial organelles), 
respectively, deactivated after coming in contact with AgNPs. However, the interior 
components (mitochondrial proteins) required higher concentrations and much 
smaller AgNPs before they are rendered inactive, because the cellular membrane 
acted as a diffusion barrier. Moreover, the eukaryotes possessed numerous biologi-
cal energy conservation system due it extensive mitochondria when compared to 
the prokaryotes, thereby predisposing the latter cells to AgNP interaction, hamper-
ing cell respiration, which led to cell death.

6. Conclusions

It is shown from the above studies that all the mentioned microorganisms, 
especially the fungi, are involved in grain contamination and subsequent mycotoxin 
production during storage. Mechanical damage during harvesting or processing 
served as an easy route via which microorganisms penetrated the endosperms of 
seeds, and secrete mycotoxins (aflatoxins, etc.) rendering stored grains unsafe for 
human consumption. The ability of AgNPs to inhibit microbial growth makes them 
a promising candidate for utilization in storing grains to minimize the economic 
losses and food poisoning caused by mycotoxins contamination. Moreover, AgNPs 
inhibited the synthesis of these mycotoxins by switching off molecular pathways 
via which they are produced, thus guaranteeing the safety of stored grains for 
consumption. The utilization of AgNPs could enhance shelf-life, maintain the qual-
ity and nutritional values of grains. This innovative method is safe and do not pose a 
threat to the consumer or the environment.
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