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Chapter

Lys63-Linked Polyubiquitination 
of Transforming Growth Factor β 
Type I Receptor (TβRI) Specifies 
Oncogenic Signaling
Jie Song and Maréne Landström

Abstract

Transforming growth factor β (TGFβ) is a multifunctional cytokine with potent 
regulatory effects on cell fate during embryogenesis, in the normal adult organism, 
and in cancer cells. In normal cells, the signal from the TGFβ ligand is transduced 
from the extracellular space to the cell nucleus by transmembrane serine–threonine 
kinase receptors in a highly specific manner. The dimeric ligand binding to the TGFβ 
Type II receptor (TβRII) initiates the signal and then recruits the TGFβ Type I recep-
tor (TβRI) into the complex, which activates TβRI. This causes phosphorylation of 
receptor-activated Smad proteins Smad2 and Smad3 and promotes their nuclear 
translocation and transcriptional activity in complex with context-dependent 
transcription factors. In several of our most common forms of cancer, this pathway 
is instead regulated by polyubiquitination of TβRI by the E3 ubiquitin ligase TRAF6, 
which is associated with TβRI. The activation of TRAF6 promotes the proteolytic 
cleavage of TβRI, liberating its intracellular domain (TβRI-ICD). TβRI-ICD enters 
the cancer cell nucleus in a manner dependent on the endosomal adaptor proteins 
APPL1/APPL2. Nuclear TβRI-ICD promotes invasion by cancer cells and is recog-
nized as acting distinctly and differently from the canonical TGFβ-Smad signaling 
pathway occurring in normal cells.

Keywords: TRAF6, APPL1/2, TGFβ, biomarkers, cancer

1. Introduction

Ubiquitination is a crucial biological process both in normal homeostasis and in 
diseases including cancer and immunity-related disorders. In cancers, ubiquitination 
of various signaling molecules acts to both promote and suppress tumors [1]. In this 
chapter, we will focus on the tumor-promoting role of TRAF6 in different cancers.

1.1 Ubiquitination and TRAF6

Within the lifespan of proteins, it is difficult for them to avoid post-translational 
modifications, which determine their localization and function. Protein ubiqui-
tination was discovered in the early 1980s, and is a dynamic post-translational 
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modification regulating many cellular processes. The best known role for ubiquitina-
tion is targeting proteins for their destruction by the proteasome. In recent years, 
however, nonproteolytic functions of ubiquitination, including in signal transduction, 
cell division and differentiation, endocytosis, and the DNA damage response, have 
been rapidly discovered [2].

Ubiquitin is a highly conserved protein of 76 amino acids that becomes covalently 
attached to the ε-amino group of lysine (Lys) residues of target proteins. There are 
three types of ubiquitination: mono-ubiquitination, multi-mono-ubiquitination, 
and polyubiquitination. Polyubiquitin chains are formed by the addition of ubiq-
uitin residues to an ubiquitin molecule already linked to a protein and acting as an 
additional residue. The key features of ubiquitin are seven Lys residues (Lys6, Lys11, 
Lys27, Lys29, Lys33, Lys48, and Lys63) and an N-terminal Met residue, all of which 
can be further ubiquitinated to give rise to polyubiquitin chains of distinct linkages. 
Lys63-linked polyubiquitination is involved in endocytosis, signal transduction, 
and DNA-damage tolerance [3, 4]. During recent years has also linear ubiquitination 
been identified to occur through N-terminal Met residue of ubiquitin. It is created 
by the linear ubiquitin chain assembly complex (LUBAC), which so far is the only 
ubiquitin ligase known to build linear ubiquitin chains de novo. Linear ubiquitination 
is crucial for regulation of innate and adaptive immune responses, including inflam-
matory responses and regulation of signals leading to cell death [5–7].

Ubiquitination is catalyzed by a sophisticated enzymatic cascade involving three 
enzymes, an ubiquitin-activating enzyme (E1), an ubiquitin-conjugating enzyme 
(E2), and an ubiquitin ligase (E3). E3 ligase usually determines the mechanism of 
ubiquitin transfer to target proteins, as it can recognize substrate and mediate the 
addition of ubiquitin [3, 8]. E3 ligases have been classified into three subfamilies: 
HECT (homologous to E6-AP C terminus) ligases, RING (really interesting new 
gene)/U-box ligases, and RBR (RING-between-RING) ligases [3]. TRAF6 is a 
Ring/U-box E3 ligase belonging to the tumor necrosis factor (TNF) receptor-
associated factor (TRAF) family.

TRAF family cytoplasmic proteins were originally identified as TNF receptor 
signaling adaptors that bind directly to the cytoplasmic region of TNF-R2. To date, 
six different TRAF family members (TRAF1–6) have been found in mammals. 
TRAF7 is controversially classified as a member of the TRAF family, as it lacks a 
TRAF homology domain and does not directly bind to any member of the TNFR 
superfamily, two key features used to define the TRAF family. The TRAF domain, 
located in the C-terminal portion of TRAF family proteins, is composed of an 
N-terminal less-conserved coiled-coil region (TRAF-N) and a C-terminal highly 
conserved subdomain (TRAF-C). The TRAF domain mediates protein–protein inter-
actions, including association with upstream regulators and downstream effectors 
and homo- and hetero-dimerization of TRAF proteins. Thus, TRAF family members 
are involved in a variety of signal transduction pathways by interaction with recep-
tors. These include the TNF, Toll-like receptor, NLR, TGFβ signaling pathways, and 
others. Through these interactions, TRAF family members participate in the regula-
tion of a broad range of cellular processes, including proliferation, differentiation, 
apoptosis, and survival. With the exception of TRAF1, however, TRAFs also contain 
an N-terminal RING domain, indicating that they are E3 ubiquitin ligases [9, 10].

TRAF6 was isolated for the first time in 1996 in a yeast two-hybrid screen 
with CD40 as bait [11], and later independently found to mediate the expression 
of interleukin 1 (IL-1) signaling, based on a screen of an EST expression library 
[12]. TRAF6 is well conserved across species and broadly expressed in mammalian 
tissues such as brain, lung, liver, etc. As an E3 ligase, TRAF6 interacts with the 
E2 complex Ubc13-Uev1A and participates in a number of signal transduction 
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pathways, including those of nuclear factor kappa B (NF-κB), toll-like receptor 
4 (TLR4), and TGFβ, the last of which is further discussed later in this chapter. 
Knockdown of TRAF6 or inhibition of TRAF6 E3 ligase activity in vitro suppresses 
the proliferation, survival, migration, invasion, and metastasis of many human 
epithelial cell lines [10].

TRAF6−/− mice, with a complete lack of normal T and B cell areas, exhibit 
perinatal or postnatal death due to severe splenomegaly, osteopetrosis, lymph node 
deficiency, and thymic atrophy [9]. All these findings indicate the critical and 
highly various roles of TRAF6 in cytokine signaling, innate immune responses, and 
perinatal and postnatal survival [9, 13].

1.2 The TGFβ signaling pathway and its role in cancer

Cells communicate by sending and receiving signals through cytokines and 
membrane-associated proteins. Among the secreted growth factors and cytokines, 
the TGFβ family attracts a lot of attention because it controls cell fate decisions during 
embryonic development, tissue homeostasis, and regeneration. All cells in the 
developing embryo and the adult can respond to TGFβ, as it regulates proliferation, 
differentiation, adhesion, movement, and apoptosis in a cell-context–dependent 
manner. Perturbation of TGFβ signaling is often seen in inflammatory diseases, 
fibrotic diseases, and cancers [14, 15].

1.2.1 Basics of TGFβ signaling

The TGFβ superfamily consists of more than 30 members in humans, and they 
are grouped into different subfamilies based on sequence similarity and functional 
criteria, including TGFβ isoforms, activins, bone morphogenetic proteins (BMPs), 
growth and differentiation factors (GDFs), activin, nodal, and anti-mullerian 
hormone (AMH). The TGFβ subfamily comprises three different isoforms: TGFβ1, 
TGFβ2, and TGFβ3. All of them act in an autocrine, paracrine, and sometimes 
endocrine manner [14, 16].

Mammalian genomes encode two subfamilies of TGFβ receptors, seven type 
I (TβRI) and five type II (TβRII) serine/threonine kinase receptors, which are 
classified by their structures and functions. Both types of receptors are single-
pass transmembrane kinases and share structural similarities: they have an 
N-terminal cysteine-rich extracellular domain, an α-helical transmembrane 
domain, a short juxtamembrane sequence, and a C-terminal cytoplasmic kinase 
domain with 11 subdomains organized in an N-lobe and a C-lobe. A conserved 
glycine/serine-rich sequence, the GS domain, is present in the juxtamembrane 
domain only in TβRI [17, 18].

The most-studied mediators of TGFβ signaling pathways are Smad proteins. 
TGFβ signaling pathways include canonical Smad-dependent and non-canonical 
Smad- independent pathways [15, 19].

1.2.2 Smad-dependent TGFβ signaling pathways

Smad proteins are named after two proteins: small body size (Sma) in 
Caenorhabditis elegans and mothers against decapentaplegic (Mad) in Drosophila 
melanogaster. The mammalian genome encodes eight Smads which form three 
subfamilies based on their structures and functions: receptor-activated Smads 
(R-Smads; Smad 1, 2, 3, 5, and 8); a single common mediator of Smad (Co-Smad; 
Smad4); and two inhibitory Smads (I-Smads; Smad6 and Smad7). Smad2 and 
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Smad3 act as signal transducers for TGFβ, activin, and nodals, whereas Smad1, 
Smad5, and Smad8 mediate signals by BMPs and GDFs.

Upon TGFβ ligand binding, the two types of receptors are brought together and 
induce the formation of a heterotetrameric complex. The constitutively active type 
II receptor phosphorylates the type I receptor in its highly conserved GS domain, 
leading to the activation of its kinase. The active serine/threonine type I receptor 
propagates signaling by phosphorylating R-Smads, which in turn form a trimeric 
complex with Smad4 and then translocate to the nucleus. In the nucleus, the Smad 
complex works together with other transcription factors, coactivators, and corepres-
sors to regulate the expression of genes such as snail family transcriptional repressor 
1 (Snail1), plasminogen activator inhibitor type 1(PAI1), and matrix metallopepti-
dase 2 (MMP2). In summary, canonical Smad-dependent TGFβ signaling pathways 
regulate cell proliferation, apoptosis, and the epithelial-mesenchymal transition 
(EMT) [20, 21].

1.2.3 Smad-independent TGFβ signaling pathways

TGFβ non-canonical signaling pathways include the c-Jun N-terminal kinase 
(JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3′-kinase 
(PI3K), and extracellular signal-regulated kinase (Erk) signaling pathways [19].

TGFβ-activated kinase-1 (TAK1) is a serine/threonine kinase and member of 
the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) family. 
TRAF6 associates with a conserved consensus motif in TβRI. Upon TGFβ stimula-
tion, the interaction of TRAF6 and TβRI is important for the autoubiquitination 
of TRAF6 and subsequent Lys63-polyubiquitination and activation of TAK1. 
Once activated, TAK1 phosphorylates protein mitogen-activated kinase kinase 3/6 
(MKK3/6), activating the JNK and p38 signaling pathways to drive apoptosis or 
EMT [22, 23].

1.2.4 TGFβ receptor endocytosis

Endocytosis is a process by which cells internalize extracellular materials and 
portions of their plasma membrane together with cell surface receptors. It has been 
divided into two categories, clathrin-dependent and clathrin-independent endo-
cytosis [24]. TGFβRs can be internalized via both clathrin-dependent and clathrin-
independent caveolae-mediated endocytosis [14, 25].

Both TβRII and TβRI appear to undergo rapid internalization in the presence 
and absence of ligand stimulation. After internalization, TGFβRs are found in the 
phosphatidylinositol-3-phosphate (PI3P)-enriched and early endosome antigen 
(EEA1)-positive endosomes, which recruit Smad anchor for receptor activation 
(SARA) to facilitate phosphorylation of R-Smads. Phosphorylated R-Smads in 
endosomes then dissociate from SARA and the receptors, and translocate to the 
nucleus together with Smad4 to regulate target gene expression [26].

In caveolae-mediated endocytosis, TGFβ signaling is turned off by the inter-
action between TGFβRs and Smad7-Smurf2, which leads to the degradation of 
TGFβRs [27].

1.2.5 TGFβ signaling in cancer

TGFβ signaling in cancer is a double-edged sword, acting as both a tumor sup-
pressor in normal and pre-malignant cells and as a tumor promoter in malignant 
cells. The response to TGFβ is context dependent. TGFβ is produced by cancer cells 
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or stromal cells in large amounts within the cancer microenvironment, influenc-
ing not only on the cancer cells but also non-tumor cells, such as fibroblasts and 
immune cells [15, 28].

In the early malignant stage, TGFβ suppresses tumor progression by inducing 
apoptosis and inhibiting proliferation. However, malignant cells always escape this 
tumor-suppressive response through loss of the core TGFβ pathway or its suppres-
sive arms, thereby turning TGFβ into a stimulator of cancer progression. As a tumor 
promoter, TGFβ is involved in angiogenesis, tumor growth, evasion of immune 
surveillance, migration, invasion, and metastasis [15, 29].

1.3 PI3K/AKT pathway

The PI3K pathway is one of the most commonly activated pathways in human 
cancers, regulating cell proliferation, survival, metabolism, and vesicle trafficking. 
This pathway’s activation is initiated by various molecules, such as insulin, glucose, 
growth factors, and cytokines [30, 31]. PI3Ks are classified into three classes based 
on sequence homology and substrate specificity. Class I PI3Ks have two subfamilies, 
IA and IB, classified according to their different regulatory mechanisms. Class 
IA PI3K, a heterodimer, consists of a p110 catalytic subunit and a p85 regulatory 
subunit. Class I PI3K generates PtdIns [3,4,5]P3 (PIP3) from PtdIns [4,5]P2 (PIP2) 
in vivo. PIP3 acts as a second messenger to activate downstream signaling pathways, 
including AKT/mTOR (mechanistic target of rapamycin kinase) pathways. Class IA 
PI3Ks are the focus of this chapter [31, 32].

The primary structure of p85 includes an N-terminal Src homology 3 (SH3) 
domain, a RhoGap homology region located between two proline-rich domains, 
and two SH2 domains (nSH2 and cSH2 domains) separated by a p110-binding iSH2 
domain [33]. Upon binding to an activated receptor tyrosine kinase (RTK) or G 
protein-coupled receptor (GPCP), p85 interacts with receptors directly or indirectly 
via the SH2 domains, which mediate the translocation of the p85-p110 complex to 
the cell membrane. This induces a conformational change and activates the catalytic 
activity of p110 to phosphorylate PIP2 to generate PIP3 [30, 33].

The serine/threonine protein kinase AKT has three isoforms, AKT1, AKT2, 
and AKT3. PIP3 binding induces a conformational change in AKT that recruits 
phosphoinositide-dependent kinase (PDK1) to phosphorylate AKT on Thr308. The 
mTOR complex 2 (mTORC2) phosphorylates AKT on Ser473, fully activating AKT. 
All three isoforms are activated in the same manner [31, 34]. In addition to phos-
phorylation, other post-translational modifications regulate the activity of AKT. 
These include dephosphorylation, glycosylation, acetylation, ubiquitination, and 
SUMOylation. Lys48-linked polyubiquitination of AKT is mediated by multiple E3 
ligases, such as BRCA1, Chip, MULAN, and TTC, and has been shown to promote 
proteasome-dependent degradation. By contrast, Lys63-linked polyubiquitination, 
which is mediated by TRAF6, Skp2, and NEDD4, is implicated in the membrane 
localization and phosphorylation of AKT [34, 35]. After activation, AKT regulates 
downstream signaling pathways by phosphorylating protein targets, including 
protein kinases, transcription factors, metabolic enzymes, cell cycle proteins, and 
others [34].

It has been reported that TGFβ can activate the PI3K signaling pathway directly 
or indirectly. Of note, upon TGFβ stimulation, the phosphorylation of AKT acts in 
a Smad-independent manner [36–38]. Moreover, p85 constitutively interacts with 
TβRII and binds to TβRI after TGFβ stimulation [39]. The crosstalk between the 
PI3K/AKT and TGFβ signaling pathways attracts a lot of attention, as both of them 
play important roles in cancer.
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1.4 APPL proteins

APPL1 was first identified as an AKT2-binding protein in a yeast two-hybrid 
screen in 1999 [40]. APPL1 was initially called DIP-13α (DCC-interacting protein 
13α), as it interacts with the tumor suppressor protein DCC (deleted in colorectal 
cancer) [41]. APPL proteins, which include APPL1 and APPL2, are named after 
their unique structure, the multifunctional adaptor proteins that contain a pleck-
strin homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine 
zipper motif [40]. APPL1 and APPL2 share 54% sequence identity and many 
identical binding partners. Both are found only in eukaryotes [42]. Briefly, APPL1 
consists of the N-terminal Bin1/amphiphysin/rvs167 BAR domain (originally 
identified as the leucine zipper motif), followed by a pleckstrin homology domain 
(PH domain), a BPP (region “between PH and PTB domains”) domain, a PTB 
domain, and a C-terminal CC domain [42, 43]. The BAR, PH, and PTB domains are 
the key functional domains. The BAR and PH domains usually act as a unit involved 
in sensing and stabilizing membrane curvature and anchor the host proteins to 
membrane compartments. The PTB domain interacts with phospholipids, receptors 
such as DCC, and signaling molecules including AKT2. In summary, APPL proteins 
regulate important physiological processes via their unique domains [44].

APPL1 is a marker of early endosomes that are precursors of classical PI3P-
positive endosomes [45]. Depletion of PI3P by PI3K inhibitors leads to the reversion 
of EEA1-positive endosomes to the APPL1 stage, enlargement of APPL1 endosomes, 
and enhanced growth factor signaling [45]. APPL proteins are implicated in signal-
ing pathways such as the EGF [46], NF-κB [47], and TGFβ signaling pathways [48]. 
Through its roles in endocytosis and signal transduction, APPL1 has been reported 
to mediate proliferation, apoptosis, and migration [44, 49].

2.  TGFβ causes Lys63-linked polyubiquitination of TβRI by TRAF6, 
inducing the formation of the intracellular domain of TβRI (TβRI-
ICD), which promotes tumor invasion by inducing the transcription 
of target genes in the nucleus

We identified the intracellular domain of TβRI by using two different TβRI anti-
bodies: v22, which recognizes the C-terminal part of TβRI; and H100, which was 
raised against the N-terminal part of TβRI. Upon TGFβ stimulation, the C-terminal 
fragment of TβRI accumulates in the nucleus. However, the N-terminal part of TβRI 
still localizes mainly to the cell membrane [50].

We have previously shown that TRAF6 interacts with a consensus binding site 
in TβRI [22]. Interestingly, TRAF6 is known to cause Lys63-linked polyubiquiti-
nation of TβRI, as well as the generation of TβRI-ICD. It has been reported that 
TNFα-converting enzyme (TACE) induces the cleavage of TβRI through the ERK 
MAP-kinase pathway [51]. We confirmed that TACE cleaves TβRI by using both 
an activator of protein kinase C (PKC), which can activate TACE, and an inhibitor 
of TACE. The TACE cleavage site in TβRI is the Gly-Leu bond at position 120–121, 
which is close to the transmembrane domain. The G120I mutant has intact kinase 
activity but does not accumulate in the nucleus in response to TGFβ [50]. PKCζ, 
which interacts with TRAF6 [52], is required for the formation and nuclear translo-
cation of TβRI-ICD [50].

By immunofluorescence and co-immunoprecipitation, TβRI-ICD has been 
shown to associate with p300 in the nucleus in a PKCζ-dependent manner. 
Moreover, p300 mediates the acetylation of TβRI-ICD [50]. In the nucleus, 
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TβRI-ICD regulates the transcription of target genes, such as SNAI1 and MMP2, 
promoting the invasiveness of cancer cells. Interestingly, the cleavage of TβRI 
occurs only in malignant prostate cancer cells (PC-3 U), but not in normal primary 
human prostate epithelial cells. Nuclear accumulation of TβRI-ICD is also observed 
in prostate cancer, breast cancer, and bladder cancer, suggesting that preventing 
nuclear translocation of TβRI-ICD could be a new target in cancer treatment [50] 
(Figure 1).

3.  TRAF6 induces Lys63-linked polyubiquitination and activation of 
PS1, leading to the cleavage of TβRI and promoting tumor invasion

Presenilin 1 (PS1) is the catalytic core of the γ-secretase complex, which medi-
ates the cleavage of many cell surface type I transmembrane receptors, such as APP, 
Notch, and CD44 [53]. TRAF6 is reported to interact with PS1, which enhances the 

Figure 1. 
Proposed model for canonical and TRAF6-mediated non-canonical TGFβ signaling pathways. Upon TGFβ 
stimulation, constitutively TβRII activates TβRI, leading to the phosphorylation of Smad2 and Smad3. 
R-Smads, which form a trimeric complex with Smad4, translocate to the nucleus for target genes expression, 
such as PAI1 and Smad7. In response to TGFβ, TRAF6 induces the formation of TβRI-ICD, which is generated 
by the proteolytic enzymes TACE and PS1. APPL proteins are necessary for the nuclear translocation of 
TβRI-ICD. In the nucleus, TβRI-ICD interacts with p300 and promotes tumor invasion indirectly or directly 
by inducing the transcription of target genes, such as SNAI1, MMP2, and TβRI. TRAF6 also causes the 
polyubiquitination of p85α, leading to the activation of the PI3K-AKT signaling pathway.
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autoubiquitination of TRAF6 [54]. To further investigate the molecular mechanism 
of TβRI cleavage, we examined the possible involvement of PS1.

TGFβ stimulation enhances the abundance and activity of PS1. PS1 interacts 
with TβRI in a TRAF6-dependent manner. TRAF6 causes Lys63-linked polyubiq-
uitination of PS1 in response to TGFβ, leading to the activation of PS1. After the 
initial cleavage of TβRI by TACE, activated PS1 mediates a second cleavage between 
Val129 and Ile 130 in the transmembrane domain of TβRI, leading to the generation 
and nuclear translocation of TβRI-ICD [55].

In the nucleus, TβRI-ICD induces its own gene expression to promote cell 
invasion (Figure 1). Experiments using γ-secretase inhibitors showed that PS1 is 
required for TGFβ-induced cell invasion in vitro. Furthermore, γ-secretase inhibi-
tors also reduce the generation of TβRI-ICD and tumor growth in a prostate cancer 
xenograft model in vivo, suggesting a novel therapeutic strategy for cancers [55].

4.  Lys178 in TβRI is the acceptor lysine of Lys63-linked 
polyubiquitination by TRAF6, which is involved in TGFβ-induced 
invasion and cell cycle regulation

In in vitro and in vivo ubiquitination assays, TβRI Lys178, the only lysine close 
to the TRAF6 consensus binding site, has been identified as the acceptor lysine 
in polyubiquitination by TRAF6. Overexpression of HA-TβRI-K178R inhibits 
the formation and nuclear translocation of TβRI-ICD in response to TGFβ. The 
HA-TβRI-K178R mutant has no effect on the kinase activity of TβRI, indicating that 
it does not interfere with the phosphorylation of Smad2. However, transfection of 
cells with HA-TβRI-K178R does alter p38 activation [56].

We identified additional genes targeted by nuclear TβRI-ICD by using qRT-PCR. 
Overexpression of HA-TβRI-K178R changes the expression of genes implicated 
in invasiveness and cell cycle regulation, such as Vimentin, Twist1, N-cadherin, 
CCND1, and p73. As expected, the expression of PAI1 is unchanged, due to the 
intact kinase activity of HA-TβRI-K178R. Fewer cells enter G1 from G0 in HA-TβRI-
K178R-transfected cells compared with HA-TβRI-transfected cells after incubation 
with TGFβ for 48 hours, as CCND1 is poorly regulated in the mutant-transfected 
cells. PC-3 U cells expressing HA-TβRI-K178R were less invasive than cells express-
ing HA-TβRI. In summary, the polyubiquitination of TβRI on Lys178 influences 
both cell cycle regulation and invasion [56].

5.  APPL proteins are required for the nuclear translocation of the TGFβ 
type I receptor intracellular domain

Next, we started to investigate the mechanism of nuclear translocation of 
TβRI-ICD. As APPL proteins are involved in cargo trafficking from the endosomal 
membranes to the nucleus after EGF stimulation [46], we considered the possibility 
that APPL proteins play the same role in the translocation of TβRI-ICD.

The nuclear accumulation of TβRI-ICD in response to TGFβ decreased after 
APPL1/2 expression was silenced. Moreover, APPL1 overexpression increased the 
nuclear translocation of TβRI-ICD, indicating that APPL proteins are necessary for 
the transport of TβRI-ICD into the nucleus. Interestingly, APPL proteins also affect 
the activation of Smad2 and p38, suggesting that APPL1/2 may play a role in both 
canonical and non-canonical TGFβ signaling [48].

Using co-immunoprecipitation and an in vitro binding assay, we confirmed that 
APPL1, through its C-terminus, interacts directly with TβRI. TGFβ stimulation 
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enhances the formation of the APPL1-TβRI complex. Moreover, treatment 
with PI3K inhibitors such as LY294002 and wortmannin enlarges APPL1 early 
endosomes and prevents the maturation of APPL1 endosomes to EEA1-positive 
endosomes, and causes increased association of APPL1 with TβRI. In contrast, 
TβRI kinase activity is not necessary for the interaction between APPL1 and TβRI. 
Furthermore, endogenous APPL1 has been shown in a nuclear fractionation assay to 
interact with TβRI-ICD in the nucleus after TGFβ stimulation [48].

It has been reported that APPL1 undergoes Lys63-linked polyubiquitination 
mediated by TRAF6 in response to insulin in primary mouse hepatocytes [57]. 
We found that TRAF6 also causes Lys63-linked polyubiquitination of APPL1 after 
TGFβ stimulation of human prostate (PC-3 U) cells. Of note, TRAF6 is required 
for both the formation of the APPL1-TβRI complex and the interaction between 
APPL1 and β-tubulin. In summary, we conclude that APPL proteins are required 
for the nuclear translocation of TβRI-ICD, possibly via the microtubule system [48] 
(Figure 1).

Nuclear TβRI-ICD promotes the invasion of various cancer cells by inducing the 
transcription of pro-invasion genes, such as MMP2 and MMP9 [50]. After silenc-
ing the expression of APPL1/2, TGFβ-induced invasion is reduced, probably due 
to a decline in the nuclear accumulation of TβRI-ICD, in both a prostate cancer cell 
line (PC-3 U) and a breast cancer cell line (MDA-MB-231). MMP2 and MMP9 gene 
expression also decreases after APPL1/2 knock-down. We also found that APPL1 
staining is correlated with a high Gleason Score (indicating the tumor invasiveness 
and bad prognosis), consistent with previous reports [48, 58]. Interestingly, using 
an in situ proximity ligation assay, we found more APPL1–TβRI-ICD complexes in 
high-Gleason Score patients. In summary, APPL1–TβRI-ICD is a potential prognos-
tic marker for prostate cancer patients [48].

6.  TGFβ activates the PI3K/AKT signaling pathway by TRAF6-mediated 
polyubiquitination of p85α

It has been reported that TGFβ can activate AKT. However, the detailed 
mechanism is still unclear. We found that, upon TGFβ stimulation, TβRI forms a 
complex with AKT and the phosphorylation of AKT correlates with its interac-
tion with TβRI and TRAF6 [59]. As TRAF6 causes Lys63-linked polyubiquitina-
tion and activation of AKT upon IGF-1, LPS, and IL-1β stimulation [60], we 
investigated whether TRAF6 plays the same role in the TGFβ signaling pathway. 
Using an in vivo ubiquitination assay in PC-3 U cells, we demonstrated that TGFβ 
induces Lys63-linked polyubiquitination of AKT, which is mediated by TRAF6. 
TGFβ stimulation induces recruitment of the activated-AKT–TRAF6–TβRI 
complex to cell membrane ruffles. The interaction between TβRI and AKT does 
not require TβRI kinase activity, but depends on the regulatory subunit of PI3K, 
p85α. Furthermore, p85α is also involved in the activation and ubiquitination of 
AKT [59].

The interaction between TRAF6 and p85α is enhanced after TGFβ stimulation. 
TGFβ induces the Lys63-linked polyubiquitination of p85α in a TRAF6-dependent 
manner (Figure 1). The kinase activities of TβRI and TβRII are not involved in p85α 
ubiquitination. p85α was found to associate with TβRI upon TGFβ stimulation, 
but not with TβRII, and TβRI kinase activity is not necessary for the interaction 
between p85α and TβRI. We found that TGFβ induces PI3K activity in a TRAF6-
dependent manner, but independently of TβRI kinase activity, and that TGFβ 
promotes cell migration and invasion via the PI3K pathway and TRAF6 [59]. Using 
mass spectrometry and an in vivo ubiquitination assay, we identified Lys513 and/or 
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Lys519 in the iSH2 domain as the major residue(s) of Lys63-linked polyubiquitina-
tion of p85α. Overexpression of a K513/K519 double mutant not only suppresses 
PI3K activity and AKT phosphorylation, but also inhibits cell migration and 
invasion. Finally, using an in situ proximity ligation assay performed in prostate 
cancer tissue samples, we found that polyubiquitination of p85α is correlated with 
the aggressiveness of the prostate cancer, suggesting that the polyubiquitination of 
p85α could be a prognostic marker for this disease [59]. As both the TGFβ and PI3K 
pathways are deregulated in cancers, finding the link between these two pathways 
will be important for future cancer research [61].

7. Conclusions

Ubiquitination regulates a broad spectrum of physiological processes, including 
cell proliferation, apoptosis, differentiation, and others [1, 2]. We have shown that, 
upon TGFβ stimulation, TRAF6 causes Lys63-linked polyubiquitination of p85α, 
leading to the activation of the AKT signaling pathway [59]. Moreover, TGFβ, via 
TRAF6, causes Lys63-linked polyubiquitination of TβRI and its PKCζ-dependent 
cleavage by TACE [50]. After this initial cleavage by TACE, PS1 is activated by 
TRAF6-mediated polyubiquitination, which results in a second cleavage of TβRI, by 
PS1 [55]. APPL proteins are involved in the nuclear translocation of TβRI-ICD [48]. 
In the nucleus, TβRI-ICD promotes the transcription of pro-invasion genes, such as 
SNAI1, MMP2, and TβRI itself [50, 55]. TβRI-ICD can be found in cancer cell lines, 
but not in normal prostate epithelial cell lines or in the normal prostate epithelium 
[50]. Inhibitors of γ-secretase, which prevent the generation of TβRI-ICD, suppress 
cell invasion in vitro and tumor growth in vivo, indicating a possible novel therapeu-
tic target in cancer [55].
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