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Chapter

New Topology on Symmetrized
Omega Algebra
Mesfer Alqahtani, Cenap Özel and Ibtesam Alshammari

Abstract

The purpose of this paper is to define a new topology called symmetrized omega
algebra topology and discuss some of its topological properties. Two different
examples from an ordered infinite set of symmetrized omega topology are
introduced. Furthermore, we study the relationship between symmetrized omega
topology and weaker kinds of normality.

Keywords: tropical geometry, idempotent semiring, topological space,
topological properties, omega algebra and symmetrized omega algebra

1. Introduction

Tropical geometry is the most recent but fast growing branch of mathematical
sciences, which is analytically based on idempotent analysis and algebraically on
idempotent semirings also known as tropical semirings. These are basically
extended sets of real numbers 

∞
: ∪ ∞f g and �∞ : ∪ �∞f g which are given

monoidal structures by using min and max operations for addition, respectively. In
order to adhere to the semiring structure, the additive operation of  is used as the
multiplication operation. By these choices, both 

∞
and �∞ become idempotent

semirings. The literature, they are also termed as min and max plus algebras,
respectively. In both cases, 0 of  becomes a multiplicative identity and ∞ and �∞
become additive identities of these semirings, respectively. Interestingly, some
authors associate �∞ to tropical geometry, while other authors associate 

∞
to

tropical geometry (see [1–4]). Omega algebra or “ω� algebra” for short, unifies the
different terms and introduces an original structure, which, in fact, is an “abstract
tropical algebra”. The �∞ and 

∞
and their nearby structures, like min � max

and max� times algebras, etc., are all subsumed under omega algebra. All these are
idempotent semirings, which are also called dioids. In previous studies, for the
construction of all such semirings, an ordered infinite abelian group is mandatory.
In ω� algebra, the definition is extended to cyclically ordered abelian groups and
also to finite sets under some suitable ordering. Note that cyclically ordered abelian
groups are more general than that of ordered abelian groups [5]. The aim of this
paper is to define a new topology on symmetrized omega algebra, and discus some
of its topological properties. Two different examples from an ordered infinite sets of
symmetrized omega topology are introduced. Furthermore, we study the relation-
ship between symmetrized omega topology and weaker kinds of normality. Our
paper is organized as follows. In Section 2, we review an abstract definition for
some basic facts about abstract omega algebras. In addition, we give a brief of
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symmetrized omega algebra and rules of calculation in omega. In Section 3, we
define a new topology on symmetrized omega algebra and discuss some of its
topological properties. In Section 4, we provide two different examples of symme-
trized omega topology: the first and second examples are from an ordered infinite
set. Finally, we study the relationship between symmetrized omega topology and
weaker kinds of normality in Section 5. Throughout this paper, we do not assume T2

in the definition of compactness. We also do not assume regularity in the definition
of Lindelöfness.

The ideas from this paper were taken from the PhD thesis of Mr. Mesfer Hayyan
Alqahtani in King Abdulaziz University.

2. Preliminaries

In this section, we provide an abstract definition for review some basic facts
about abstract omega algebra. Furthermore, we also provide a brief of symmetrized
omega algebra and rules of calculation in omega. For more details, see [6].

2.1 Omega algebra

Let G, ∘ , eð Þ be an abelian group. Let A be a closed subset of G and e∈A: Then
A, ∘ , eð Þ is a submonoid of G: Assume that ω is an indeterminate (may belong to A
or G, as we will see in Examples 1 and 2). Obviously, in this case ω is no longer an
indeterminate. Because the terms are generated from tropical geometry, this
indeterminate can be called a tropical indeterminate.

Definition 1. [6]
We say that Aω ¼ A∪ ωf g is an omega algebra (in short ω� algebra) over the

group G in case Aω is closed under two binary operations,

⊕ , ⊗ : Aω � Aω ! Aω, (1)

such that ∀a1, a2, a3 ∈A, the following axioms are satisfied:

i. a1 ⊕ a2 ¼ a1 or a2;

ii: a1 ⊕ω ¼ a1 ¼ ω⊕ a1;

iii: ω⊕ω ¼ ω;

iv: a1 ⊗ a2 ¼ a2 ⊗ a1 ∈A;

v:  a1 ⊗ a2ð Þ⊗ a3 ¼ a1 ⊗ a2 ⊗ a3ð Þ;

vi: a1 ⊗ e ¼ a1;

vii: a1 ⊗ω ¼ ω⊗ a1 ¼
ω if ω 6¼ e

a1 if ω ¼ e

�

;

viii: ω⊗ω ¼ ω;

ix: a1 ⊗ a2 ⊕ a3ð Þ ¼ a1 ⊗ a2ð Þ⊕ a1 ⊗ a3ð Þ:

Remark 2. [6]

1. ⊕ is a pairwise comparison operation such as max, min, inf, sup, up, down,
lexicographic ordering, or anything else that compairs two elements of Aω:

2
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Obviously, it is associative and commutative and the tropical indeterminate ω
plays the role of the identity. Hence Aω, ⊕ ,ωð Þ is a commutative monoid.

2. ⊗ is also associative and commutative on Aω, and e plays the role of the
multiplicative identity of Aω. Hence, Aω, ⊗ , eð Þ is also a commutative monoid.

3.The left distributive law (ix) also gives the right distributive law.

4.Every element of Aω is an idempotent under ⊕ :

5.Altogether, we write both structures as: Aω ¼ Aω, ⊕ , ⊗ ,ω, eð Þ: This is an
idempotent semiring.

Remark 3. [6] A ω� algebra can similarly be defined over a commutative
monoid, ring, or even a semiring. More generally, one may construct analogously
such algebras on other weaker structures. In this note, we confined ourselves to only
ω� algebras over abelian groups and rings.

Example 4. [6] Max-plus algebra, min-plus algebra and all such “so called”
algebras are particular cases of the ω� algebra over the ring  or its associated
subrings. A simpler example is the following. In the abelian group ,þð Þ, for any
integer m, we haveW mð Þ ¼ 0,m, 2m,⋯f g: This is an additive submonoid of ð ,þÞ:
Let ω ¼ �∞, a1 ⊕ a2 ¼ max a1, a2ð Þ and a1 ⊗ a2 ¼ a1 þ a2, ∀a1, a2 ∈W mð Þ: Then,

W mð Þ�∞ ¼ W mð Þ�∞, ⊕ , ⊗ ,�∞, 0
� �

(2)

is �∞ � algebra over the abelian group of integers . Hence, we have a
sequence of ω� subalgebras

W mð Þ≥W 2mð Þ≥⋯:

Example 5. [6] Cartesian products of omega algebras. In this example, we
explain a construction of an omega algebra from other given omega algebras. Let
Gi, ∘ i, eið Þ : i ¼ 1,⋯, nf g be abelian groups and Aωi , ⊕ i, ⊗ i,ωi, eið Þ : i ¼ 1,⋯, nf g

be a respective family of omega algebras, where ωi are tropical indeterminate. As
usual, we define the Cartesian product as

Xω ¼ Aω1 �⋯� Aωn ¼ a1,⋯anð Þ : ai ∈Aωi ; i ¼ 1,⋯, nf g: (3)

In order to provide a convenient technique to give an additive structure to Xω,
we assume that the n� tuples a ¼ a1,⋯anð Þ, b ¼ b1,⋯bnð Þ∈Xω are in lexico-
graphic ordering. Then, to define the sum

a⊕b ¼ a or b (4)

by using the following rules:

If a1 ⊕ 1b1 ¼ a1 thena⊕b ¼ a: (5)

If ai ¼ bi for1≤ i≤ k≤ n, andakþ1 ⊕ kþ1bkþ1 ¼ akþ1, then, a⊕b ¼ a: (6)

Similarly, rules for a⊕b ¼ b can be determined. Multiplication can be to define
component wise. Thus,

a⊗b ¼ a1 ⊗ 1b1,⋯, an ⊗ nbnð Þ: (7)
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The other rules of the Definition 1 can straightforwardly be verified. Hence,
Xω, ⊕ , ⊗ ,ω, eð Þ, where ω ¼ ω1,⋯,ωnð Þ is the additive identity and e ¼ e1,⋯, enð Þ
is the multiplicative identity of Xω, is an omega algebra over the Cartesian product
of abelian groups G1 �⋯� Gn:.

2.2 The symmetrized omega algebra

Let G, ∘ , eð Þ be an abelian group and Aω, ⊕ , ⊗ ,ω, eð Þ an ω�algebra over the
group G. Following the method used in constructing integers from the natural
numbers, we consider the set of ordered pairs Pω ¼ A2

ω with component wise
addition ⊕ , for all a, bð Þ, c, dð Þ∈Pω,

a, bð Þ⊕ c, dð Þ ¼ a⊕ c, b⊕ dð Þ (8)

Because of the four possibilities a, bð Þ, a, dð Þ, c, dð Þ or c, bð Þ for the result, the
addition in (8), is ambiguous. As our goal from constructing the algebra of pairs is
the construction of the symmetrized omega algebra of Aω, we are in front of two
possibilities: One is to use –for n ¼ 2, and define an equivalence relation � on the
ω�algebra of pairs which is compatible with relevant operations, and the other is to
define an equivalence relation on the set Pω that allows the component wise
addition to be defined in the quotient set.

First Construction, let ≤ be the ordering defined on Aω by the relation

a≤ b⇔ a⊕ b ¼ b (9)

which gives a total order on Aω and for all a∈Aω, we have ω≤ a. For a 6¼ b, such
that a⊕ b ¼ b, we denote by a< b. Under the ordering ≤ , rules (5) and (6) defined
in Example 5, are satisfied on Pω ¼ A2

ω and so Pω is an ω�algebra under the
addition defined in 1 and the component wise multiplication. Let ∇ be the relation
defined on Pω as follows: for all a, bð Þ, c, dð Þ∈ Pω

a, bð Þ∇ c, dð Þ⇔ a⊕ d ¼ b⊕ c: (10)

Then ∇ is reflexive and symmetric but not transitive for Aω contains more than
4 elements. In fact, let a, b, c, d∈Aω such that a< b< c< d, then we have

a⊕ d ¼ d ¼ b⊕ d ¼ c⊕ d and a⊕ c ¼ c 6¼ b ¼ b⊕ b

which give a, bð Þ∇ d, dð Þ and d, dð Þ∇ b, cð Þ, but there is no relation between a, bð Þ
and b, cð Þ. As ∇ is not an equivalence relation, we cannot use it to obtain the
quotient ω�algebra Pω

∇
(like the one to obtain integers from the natural numbers).

Definition 6. [6] Let � be the equivalence relation close to ∇ defined as follows:
for all a, bð Þ, c, dð Þ∈ Pω,

a, bð Þ � c, dð Þ⇔
a, bð Þ∇ c, dð Þ if a 6¼ band c 6¼ d

a, bð Þ ¼ c, dð Þ otherwise

(

(11)

In addition to the class element ω ¼ ω,ωð Þ; for all a∈Aω, with a 6¼ ω, we have
three kinds of equivalence classes:

1. a,ωð Þ ¼ a, bð Þ∈Pω, b< af g, called positive ω�element.
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2. ω, að Þ ¼ b, að Þ∈Pω, b< af g, called negative ω�element.

3. a, að Þ called balanced ω�element.

Unfortunately, the addition defined by (7) and rules (8) and (9) in Example 5 is
not compatible with the equivalence relation in Pω, because for a,ωð Þ, a, bð Þ, ω, cð Þ,
d, cð Þ∈Pω, such that

a,ωð Þ � a, bð Þ

ω, cð Þ � d, cð Þ,

�

(12)

we have

a,ωð Þ⊕ ω, cð Þ � a, bð Þ⊕ d, cð Þ iff a, bð Þ⊕ d, cð Þ ¼ a, bð Þ (13)

and if a, bð Þ⊕ d, cð Þ ¼ d, cð Þ, (14)

then there is no compatibility. So the omega algebra of pairs cannot produce the
symmetrized omega algebra.

Second Construction
Proposition 7. [6]
The addition operation ⊕ defined by

a, bð Þ⊕ c, dð Þ ¼ a⊕ c, b⊕ dð Þ

on the quotient set Pω

� is well defined and satisfies the axioms ið Þ, iið Þ and iiið Þ of

Definition 1, with the zero class element w ¼ ω,ωð Þ, except this case
a,ωð Þ⊕ ω, að Þ ¼ ω, að Þ⊕ a,ωð Þ ¼ a, að Þ, where a∈Aωn ωf g does not satisfy the
axiom ið Þ:

Proposition 8. [6]

i. The set Pω

� is closed under the binary multiplication operation ⊗ defined as

follows: for all a, bð Þ, c, dð Þ∈ Pω

� ;

a, bð Þ⊗ c, dð Þ ¼ a⊗ cð Þ⊕ b⊗ dð Þ, a⊗ dð Þ⊕ b⊗ cð Þð Þ (15)

and satisfies axioms from ivð Þ to ixð Þ of Definition 1, with the unit class
element e ¼ e,ωð Þ.

ii. In addition, we have for all a, b∈Aω

a. a,ωð Þ⊗ b,ωð Þ ¼ a⊗ b,ωð Þ;

b. a,ωð Þ⊗ ω, bð Þ ¼ ω, a⊗ bð Þ;

c. a,ωð Þ⊗ b, bð Þ ¼ a⊗ b, a⊗ bð Þ;

d. ω, að Þ⊗ b, bð Þ ¼ a⊗ b, a⊗ bð Þ:

Definition 9. [6] The structure Pω

� , ⊕ , ⊗ ,ω, e
� �

is called the symmetrized
ω�algebra over the abelian group G� G and we denote it by ω.
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In the coming sections just for simplicity we will only use ⊕ and ⊗ instead the
operations ⊕ and ⊗ , respectively.

Remark 10. [6]

1.Despite the nature of the positive and the negative ω�elements, they are not
the inverses of each other for the additive operation ⊕ ,

2.We have three symmetrized ω�subalgebras of ω,


þð Þ
ω ¼ a,ωð Þ, a∈Aω

n o

,


�ð Þ
ω ¼ ω, að Þ, a∈Aω

n o

,


0ð Þ
ω ¼ a, að Þ, a∈Aω

n o

:

3.The three symmetrized ω�subalgebras of ω are connected by the zero class
element ω.

4.The positive ω�elements, the negative ω�elements and the balanced elements
are called signed and denoted by 

∨
ω ¼ 

þð Þ
ω ∪ 

�ð Þ
ω , where the zero class ω,ωð Þ

corresponds to ω.

2.3 Rules of calculation in omega

Notation 11. [6] Let a∈ω. Then we admit the following notations:

þa ¼ a,ωð Þ, � a ¼ ω, að Þ, � a ¼ a, að Þ: (16)

By results in Proposition 7 and Proposition 8 and the above notation, it is easy to
verify the rules of calculation in the following proposition:

Proposition 12. [6] For all a, b∈Aω, we have

i. það Þ⊕ þbð Þ ¼ þ a⊕ bð Þ;

ii. það Þ⊕ �bð Þ ¼

þa if b< a

�b if b> a;

�a if b� a

8

>

>

<

>

>

:

iii. �að Þ⊕ �bð Þ ¼
�a if b< a

�b if b> a
:

(

iv. �að Þ⊕ �bð Þ ¼ � a⊕ bð Þ;

v. það Þ⊗ þbð Þ ¼ þ a⊗ bð Þ;

vi. það Þ⊗ �bð Þ ¼ � a⊗ bð Þ;

vii. �að Þ⊗ �bð Þ ¼ � a⊗ bð Þ;

viii. �að Þ⊗ �bð Þ ¼ þ a⊗ bð Þ:

6
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From the previous rules, we can notice that the sign of the result in the addition
operation follows the greater element in Aω. While in the multiplication operation,
the balance sign is the strong one (has priority).

3. Symmetrized omega topology

In this section, we define a new topology on symmetrized omega algebra and
discuss some of its topological properties.

Throughout this paper, we assume that ⊗ ∣A ¼ ∘ :

Proposition 13. Let ω ¼ Pω

� , ⊕ , ⊗ ,ω, e
� �

be a symmetrized ω�algebra over the
abelian group G�G, where Pω ¼ Aω � Aω and ⊗ ∣A ¼ ∘ . We define a new topol-
ogy on ω called a symmetrized omega topology, denoted by τω as follow:

τω ¼ ∅,ωf g∪ fU ⊆ω : 
0ð Þ
ω ⊆U and for any þa, � a∈U, their multiplicative

inverses exists in U, where a∈Aωn ωf gg.
Proof.Condition∅,ω ∈ τω is satisfied from the definition of τω:Now letV1,V2 ∈ τω

be arbitrary. If eitherV1 orV2 is equal∅, thenV1 ∩V2 ¼ ∅∈ τω. Assume now,V1 6¼
∅ 6¼ V2. If eitherV1 orV2 is equal ω, thenV1 ∩V2 ¼ V1 orV2 ∈ τω. So assume that,
V1 6¼ ω 6¼ V2, thenV1 ∩V2 ∈ τω, because 0ð Þ

ω ⊆V1 and  0ð Þ
ω ⊆V2, hence  0ð Þ

ω ⊆V1 ∩V2,
also for any elementþa, � a∈V1 ∩V2, where a 6¼ ω, thenwe haveþa, � a∈V1 and
þa, � a∈V2, then themultiplicative inverse ofþa, � amust belong toV1 andV2.
Hence, themultiplicative inverse ofþa, � a belong toV1 ∩V2, thenV1 ∩V2 ∈ τω. For
the third condition let Sγ ∈ τω for any γ ∈Λ. If Sγ ¼ ∅ for all γ ∈Λ, then ∪ γ ∈ΛSγ ¼
∅∈ τω. So, assume that somemember is nonempty, but since the empty set does not
affect any union, wemay assume, without loss of generality, that Sγ 6¼ ∅ for all γ ∈Λ. If
there exist γ1 ∈Λ such that Sγ1 ¼ ω, then ∪ γ ∈ΛSγ ¼ ω ∈ τω. So, assume now that

Sγ 6¼ ω for all γ ∈Λ. Then ∪ γ ∈ΛSγ ∈ τω, because  0ð Þ
ω ⊆ Sγ for all γ ∈Λ. Hence


0ð Þ
ω ⊆ ∪ γ ∈ΛSγ . Also for anyþa, � a∈ ∪ γ ∈ΛSγ, where a 6¼ ω, there exists γ1, γ2 ∈Λ

such thatþa∈ Sγ1 and�a∈ Sγ2 . Hence the multiplicative inverse ofþa, � a belong
to Sγ1 and Sγ2 respectively, then the multiplicative inverse ofþa, � a belong to
∪ γ ∈ΛSγ . Hence ∪ γ ∈ΛSγ ∈ τω.

Therefore, ω, τωð Þ is topological space.
Proposition14. Ifω ¼ Pω

� , ⊕ , ⊗ ,ω, e
� �

be a symmetrizedω�algebra over the abelian
groupG� G,wherePω ¼ Aω � Aω, and ⊗∣A ¼ ∘ . Then an element a has amultiplicative
inverse in Aω if and only if the elementsþa, � a have amultiplicative inverses in ω:

Proof. Let a∈Aω be arbitrary, which has a multiplicative inverse, denoted by a�1,
then

það Þ⊗ þa�1� �

¼ a,ωð Þ⊗ a�1,ωð Þ ¼ a⊗ a�1ð Þ⊕ ω⊗ωð Þ, a⊗ωð Þ⊕ ω⊗ a�1ð Þð Þ

¼ a⊗ a�1,ωð Þ

¼ a ∘ a�1,ωð Þ ¼ e,ωð Þ ¼ e,

then þa�1 is a multiplicative inverse of þa in ω: Also,

�að Þ⊗ �a�1� �

¼ ω, að Þ⊗ ω, a�1ð Þ ¼ ω⊗ωð Þ⊕ a⊗ a�1ð Þ, ω⊗ a�1ð Þ⊕ a⊗ωð Þð Þ

¼ a⊗ a�1,ωð Þ

¼ a ∘ a�1,ωð Þ ¼ e,ωð Þ ¼ e,

then �a�1 is a multiplicative inverse of �a in ω.
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Conversely, let þa∈ ω be arbitrary, which has a multiplicative inverse x, yð Þ,
where x, y∈Aω, then we have:

það Þ⊗ x, yð Þ ¼ a,ωð Þ⊗ x, yð Þ¼ a⊗ xð Þ⊕ ω⊗ yð Þ, a⊗ yð Þ⊕ ω⊗ xð Þð Þ

¼ a⊗ x, a⊗ yð Þ

¼ a ∘ x, a ∘ yð Þ ¼ e,ωð Þ ¼ e,

(17)

then a ∘ x ¼ e and a ∘ y ¼ ω. Hence, x ¼ a�1 is the multiplicative of a in Aω.
Let �a∈ ω be arbitrary, which has a multiplicative inverse x, yð Þ, where

x, y∈Aω, then we have:

�að Þ⊗ x, yð Þ ¼ ω, að Þ⊗ x, yð Þ¼ ω⊗ xð Þ⊕ a⊗ yð Þ, ω⊗ yð Þ⊕ a⊗ xð Þð Þ

¼ a⊗ y, a⊗ xð Þ

¼ a ∘ y, a ∘ xð Þ ¼ e,ωð Þ ¼ e,

(18)

then a ∘ y ¼ e and a ∘ x ¼ ω. Hence, y ¼ a�1 is the multiplicative inverse of a in Aω.
Proposition 15. For any �a∈ 

0ð Þ
ω , where ω 6¼ e, then �a has no multiplicative

inverse.
Proof. Suppose that, �a∈

0ð Þ
ω has a multiplicative inverse x, yð Þ, where x, y∈Aω,

then

�að Þ⊗ x, yð Þ ¼ a, að Þ⊗ x, yð Þ ¼ a⊗ xð Þ⊕ a⊗ yð Þ, a⊗ yð Þ⊕ a⊗ xð Þð Þ

¼ a ∘ xð Þ⊕ a ∘ yð Þ, a ∘ yð Þ⊕ a ∘ xð Þð Þ ¼ e,ωð Þ:
(19)

Hence, a ∘ xð Þ⊕ a ∘ yð Þ ¼ e and a ∘ yð Þ⊕ a ∘ xð Þ ¼ ω, thus a contradiction.
Corollary 16. If a∈Aωn ωf g has no multiplicative inverse, then ω is the only open

set in ω, τωð Þ containing þa and �a:.
Remark 17.

1.We denote for any element a∈ ω, by sign :ð Þa or sign að Þa, where
sign :ð Þ, sign að Þ∈ þ, � , �f g;

2. If a ¼ ω, then �a ¼ þa ¼ �a;

3. If a�1 is the multiplicative inverse of a in Aω, then þa�1 and �a�1 are the
multiplicative inverses of þa and �a, respectively in ω (vice versa);

4.If a has no multiplicative inverse in Aω, then þa and �a have no multiplicative
inverses in ω (vice versa).

Proposition 18. A symmetrized omega topological space ω, τωð Þ has a base

B ¼ ω,  0ð Þ
ω , 0ð Þ

ω ∪ þa,þa�1� �

,  0ð Þ
ω ∪ �a,�a�1� �

: a∈Aωn ωf g
n

has a multiplicative inverseg:

(20)

Proof. For the first condition, let B∈B be arbitrary. If B ¼ 
0ð Þ
ω or ω then

B∈ τω (satisfied by the definition of τω). Assuming that,

8

Structure Topology and Symplectic Geometry



B ¼ 
0ð Þ
ω ∪ þa,þa�1

� �

or  0ð Þ
ω ∪ �a,�a�1

� �

for any a∈Aωn ωf g, which has a multi-

plicative inverse in Aω, then B∈ τω, because  0ð Þ
ω ⊂B, and the elements þaand� a in

B its multiplicative inverse þa�1 and� a�1 respectively, exists in B. Thus B⊆ τω.
For the second condition, let sign að Þa∈ω be arbitrary. Let U be any open neigh-
borhood of sign að Þa in ω. Then we have three cases:

Case 1: If sign að Þ ¼ �, then there exists B ¼ 
0ð Þ
ω ∈B, such that �a∈B⊆U, because

the smallest open neighborhood in ω containing �a is  0ð Þ
ω :

Case 2: If sign að Þ ¼ þ, where a 6¼ ω (If a ¼ ω, then we have þω ¼ �ω ¼ �ω, this
is Case 1),

Subcase 2.1: If a has a multiplicative inverse in Aω, then there exists B ¼


0ð Þ
ω ∪ þa,þa�1

� �

∈B, such that þa∈B⊆U, because the smallest open neighbor-

hood in ω containing þa is  0ð Þ
ω ∪ þa,þa�1

� �

:

Subcase 2.2: If a has no multiplicative inverse in Aω, then there exists B ¼ ω,
such that þa∈B⊆U, because the smallest open neighborhood in ω containing þa
is ω:

Case 3: If sign að Þ ¼ �, where a 6¼ ω.
Subcase 3.1: If a has a multiplicative inverse in Aω, then there exists B ¼


0ð Þ
ω ∪ �a,�a�1

� �

∈B, such that �a∈B⊆U, because the smallest open neighbor-

hood in ω containing �a is  0ð Þ
ω ∪ �a,�a�1

� �

:

Subcase 3.2: If a has no multiplicative inverse in Aω, then there exists B ¼ ω,
such that �a∈B⊆U, because the smallest open neighborhood in ω containing
�a is ω:

Therefore, B is a base for the symmetrized omega topological space ω, τωð Þ.
Corollary 19. If Aωn ωf g, ⊗ð Þ be a group, then the symmetrized omega topological

space ω, τωð Þ has a base,

B ¼ 
0ð Þ
ω ,  0ð Þ

ω ∪ þa,þa�1� �

, 0ð Þ
ω ∪ �a,�a�1� �

: a∈Aωn ωf g
n o

: (21)

Corollary 20. Let ∅ 6¼ U ⊆Aω, then U ∈ τω if and only if for each sign að Þa∈U,
there exists basic open set B∈B, such that sign að Þa∈B⊆U.

Proposition 21. If Aω has a finite number of elements, which have a multiplicative
inverses, then the symmetrized omega topological space ω, τωð Þ is second countable.

Proof. Suppose that a1, a2,⋯, am, where m∈
þ are the finite number of ele-

ments in Aω, which have a multiplicative inverses. Then.

B ¼ ω,  0ð Þ
ω ,  0ð Þ

ω ∪

n

þa1,þa�1
1

� �

, 0ð Þ
ω ∪ �a1,�a�1

1

� �

,⋯,  0ð Þ
ω ∪ þam,þa�1

m

� �

,


0ð Þ
ω ∪ �am,�a�1

m

� �

g is a countable base for ω, τωð Þ:

Proposition 22. The symmetrized omega topological space ω, τωð Þ is first countable.
Proof. Let sign að Þa∈ ω be arbitrary. Then we have three cases:

Case 1: If sign að Þ ¼ �, then B �að Þ ¼ 
0ð Þ
ω

n o

is a countable local base at �a.

Case 2: If sign að Þ ¼ þ, where a 6¼ ω (If a ¼ ω, thenþω ¼ �ω ¼ �ω, this is Case 1),

Subcase 2.1: If a has a multiplicative inverse in Aω, then B það Þ ¼


0ð Þ
ω ∪ þa,þa�1

� �

n o

is a countable local base at þa.

Subcase 2.2: If a has no multiplicative inverse in Aω, then B það Þ ¼ ωf g is a
countable local base at þa.

Case 3: If sign að Þ ¼ �, where a 6¼ ω,
Subcase 3.1: If a has a multiplicative inverse in Aω, then B �að Þ ¼ 

0ð Þ
ω ∪ �a,�a�1

� �

n o

is a countable local base at �a.
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Subcase 3.2: If a has no multiplicative inverse in Aω, then B �að Þ ¼ ωf g is a
countable local base at �a. Hence, for any sign að Þa∈ω, there exists a countable
local base at sign að Þa.

Therefore, ω, τωð Þ is first countable.
Proposition 23. The symmetrized omega topological space ω, τωð Þ is separable.

Proof. There exists �ωf g ¼ ω,ωð Þ
n o

⊆ω, such that for any U ∈ τω, we have

U ∩ �ωf g 6¼ ∅, because any open set in ω, τωð Þ must be containing 
0ð Þ
ω , and

�ω∈
0ð Þ
ω . Then �ωf g is countable dense subset of ω: Therefore, ω, τωð Þ is separable.

Let us recall this definition.
Definition 24. A topological space X is said to be hyperconnected space if every

non-empty open set of X is dense in X or there exists no disjoint non-empty open
sets in X.

Proposition 25. The symmetrized omega topological space ω, τωð Þ is
hyperconnected.

Proof. If ω is singleton, then it is hyperconnected. Suppose that ω, which has
more than one element. Since any nonempty open set in ω is containing 

0ð Þ
ω , then

ω has no disjoint nonempty open sets. Hence, ω, τωð Þ is hyperconnected.
Since any hyperconnected space is connected and locally connected, then we

conclude the following corollaries.
Corollary 26. The symmetrized omega topological space ω, τωð Þ is connected.
Corollary 27. The symmetrized omega topological space ω, τωð Þ is locally connected.
Proposition 28. Let Aωn ωf g, ⊗ð Þ be a group, has more than one element. Then the

symmetrized omega topological space ω, τωð Þ is not T0.
Proof. If Aω ¼ ω ¼ ef g, then ω ¼ �ωf g is singleton, we are done (because some

of omega algebra, has ω ¼ e). Suppose that Aω has more than one element. Let a 6¼ ω,
then there exist �a 6¼ �ω in ω: Let U be any open set in ω, containing either �a or �ω,
by the definition of τω we have  0ð Þ

ω ⊆U, but �ω, � a∈ 
0ð Þ
ω : Then there is no open set

containing only �ω or �a: Hence, ω, τωð Þ is not T0.
Proposition 29. If Aωn ωf g, ⊗ð Þ be a group, has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not regular.
Proof. There exists K ¼ ωn

0ð Þ
ω is a closed subset of ω and there exists a 6¼ ω,

such that �a ∉ K. We cannot separate �a, and K by any open sets (because any open
sets in ω is containing 

0ð Þ
ω , where �a∈

0ð Þ
ω ). Therefore, ω, τωð Þ is not regular.

Proposition 30. If Aωn ωf g, ⊗ð Þ be a group, has more than one element, then the
symmetrized omega topological space ω, τωð Þ is not normal.

Proof. If Aω ¼ ωf g, then ω ¼ �ωf g is singleton, we are done (because some of
omega algebra, we have ω ¼ e). Suppose that Aω has more than one element. Let
a∈Aωn ωf g. Then we have two cases:

Case 1: If a ¼ e, then we have K ¼ þef g, and H ¼ �ef g are two disjoint closed
subsets of ω, such that we cannot separate them by any open sets (because any
nonempty open sets in ω is containing 

0ð Þ
ω ).

Case 2: If a 6¼ e, then we have K ¼ þa,þa�1
� �

, and H ¼ �a,�a�1
� �

are two
disjoint closed subsets of ω, such that we cannot separate them by any open sets
(because any nonempty open sets in ω is containing 

0ð Þ
ω ). Therefore, ω, τωð Þ is not

normal.
Proposition 31. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized

omega topological space ω, τωð Þ is normal.
Proof. Suppose that, V be any non-empty closed subset of ω: Then þa∈V:

Suppose not, þa ∉ V, then þa∈ωnV: By the definition of τω, ωnV is not open,
thus a contradiction. Hence, þa belong to any non-empty closed subsets of ω:
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Let K and H be any two disjoint closed subsets of ω. Then K or H is equal ∅. If
K ¼ ∅, then there exists U ¼ ∅ and V ¼ ω are two disjoint open sets in ω

containing K and H, respectively. If H ¼ ∅, then there exists U ¼ ∅ and V ¼ ω are
two disjoint open sets in ω containing H and K, respectively. Therefore, ω, τωð Þ is
normal.

Proposition 32. If Aωn ωf g, ⊗ð Þ be a group and A is uncountable infinite set, then
the symmetrized omega topological space ω, τωð Þ is not compact (Lindelöf).

Proof. There exists 
0ð Þ
ω , 0ð Þ

ω ∪ þa,þa�1
� �

,  0ð Þ
ω ∪ �a,�a�1

� �

: a∈Aωn ωf g
n o

,

which is an open cover of ω, and has no finite (countable) subcover of ω.
Proposition 33. Let a∈Aωn ωf g has no multiplicative inverse. Then the symme-

trized omega topological space ω, τωð Þ is compact.
Proof. Let Cα : α∈Λf g be any open cover of ω. Since þa∈ω, then for some

β∈Λ, there exists Cβ containing þa. But Cβ ¼ ω, because ω is the only open set
containing þa. Hence, Cβ

� �

is a finite subcover of Cα : α∈Λf g, which cover ω.
Therefore ω, τωð Þ is a compact space.

Since any compact space is Lindel€of and countably compact, then we conclude
the following corollaries.

Corollary 34. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is Lindel€of.

Corollary 35. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is countably compact.

Remark 36. Since every nonempty open sets in ω, τωð Þ contains  0ð Þ
ω . Then the

closure of any nonempty open sets is equal ω.

4. Some of the fundamental properties for different examples on
symmetrized omega topology

In this section, we give two different examples of symmetrized omega
topologies. The examples are from an ordered infinite set.

Example 37. By Example 4, we set W ¼ 0, 1, 2, 3,⋯f g: Then �∞, τ�∞ð Þ,
which is topological space, where �∞ ¼ P�∞

� , ⊕ , ⊗ ,�∞, 0
� �

be a symmetrized
�∞�algebra over the abelian group �  and P�∞ ¼ W�∞ �W�∞. Let a∈Wn 0f g

be arbitrary. Then þa�1 and �a�1 are not exists in �∞, where þa�1 and �a�1 are
the multiplicative inverses of þa and �a in �∞ respectively (because a inW�∞ has
no multiplicative inverse). If a ¼ 0, then þ0�1 ¼ þ0 and �0�1 ¼ �0 (because the
multiplicative inverse of 0 in W�∞ is 0, that is 0�1 ¼ 0). Hence,

τ�∞ ¼ �∞,∅,  0ð Þ
�∞, 

0ð Þ
�∞ ∪ þ0f g,  0ð Þ

�∞ ∪ �0f g,  0ð Þ
�∞ ∪ þ0,�0f g

n o

: (22)

A direct check shows that �∞, τ�∞ð Þ is a topological space.
Proposition 38. The symmetrized omega topological space �∞, τ�∞ð Þ is Second

countable.
Proof. There exists only one element 0∈W�∞, which has a multiplicative

inverse, then by Proposition 21, �∞, τ�∞ð Þ is second countable.
Since any second countable space is first countable and separable, then we

conclude the following corollaries.
Corollary 39. The symmetrized omega topological space �∞, τ�∞ð Þ is first countable.
Corollary 40. The symmetrized omega topological space �∞, τ�∞ð Þ is separable.
Proposition 41. The symmetrized omega topological space �∞, τ�∞ð Þ is not T0.
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Proof. There exists þ2 6¼ þ3 in �∞. Let U be any open set, which either
containing þ2 or þ3: However, there exists only one open set U ¼ �∞ containing
þ2, þ 3. Hence, �∞, τ�∞ð Þ is not T0.

Proposition 42. The symmetrized omega topological space �∞, τ�∞ð Þ is not regular.

Proof. There exists a closed set K ¼ �∞n 
0ð Þ
�∞ ∪ þ0f g

� �

and þ0 ∉ K, such that

þ0 and K cannot separate by any two disjoint open sets. Hence, �∞, τ�∞ð Þ is not
regular.

Proposition 43. The symmetrized omega topological space �∞, τ�∞ð Þ is normal.
Proof. There exists an element 2∈W�∞n �∞f g, which has no multiplicative

inverse, then by Proposition 31, �∞, τ�∞ð Þ is a normal space.
Proposition 44. The symmetrized omega topological space �∞, τ�∞ð Þ is

hyperconnected.
Proof. Since any nonempty open set in �∞ is containing 

0ð Þ
�∞, then �∞ has no

disjoint nonempty open sets. Hence, �∞, τ�∞ð Þ is hyperconnected.
Since any hyperconnected space is connected and locally connected, then we

conclude the following corollaries.
Corollary 45. The symmetrized omega topological space �∞, τ�∞ð Þ is connected.
Corollary 46. The symmetrized omega topological space �∞, τ�∞ð Þ is locally connected.
Proposition 47. The symmetrized omega topological space �∞, τ�∞ð Þ is compact.
Proof. There exists an element 2∈W�∞n �∞f g, which has no multiplicative

inverse. Hence by Proposition 33, �∞, τ�∞ð Þ is compact.
Since any compact space is Lindel€of and countably compact, then we conclude

the following corollaries.
Corollary 48. The symmetrized omega topological space �∞, τ�∞ð Þ is countably

compact.
Corollary 49. The symmetrized omega topological space �∞, τ�∞ð Þ is Lindelöf.
Example 50. In the ring , þ , �ð Þ, we have ,þð Þ is an additive submonoid of

an abelian group ,þð Þ: Let ω ¼ �∞, a⊕ b ¼ max a, bð Þ and a⊗ b ¼ aþ
b,∀a, b∈. Then �∞ ¼ �∞, ⊕ , ⊗ ,�∞, 0ð Þ is �∞� algebra over the ring
, þ , �ð Þ. We have �∞ ¼ P�∞

� , ⊕ , ⊗ ,�∞, 0
� �

be a symmetrized �∞�algebra over
the abelian group �  and P�∞ ¼ �∞ � �∞. Then, using the same proof as that
Proposition 13. Therefore, �∞, τ�∞ð Þ is a topological space.

Remark 51. The symmetrized omega topological space �∞, τ�∞ð Þ is first count-
able, separable, hyperconnected, connected and locally connected and does not
satisfy any of these T0, regular, normal, Lindel€of and compact.

Example 52. In the ring , þ , �ð Þ, we have ,þð Þ is an additive submonoid of an
abelian group ,þð Þ: Let ω ¼ þ∞, a⊕ b ¼ min a, bð Þ and a⊗ b ¼ aþ b,∀a, b∈.
Then, þ∞ ¼ þ∞, ⊕ , ⊗ ,þ∞, 0ð Þ isþ∞� algebra over the ring , þ , �ð Þ. We have
þ∞ ¼ Pþ∞

� , ⊕ , ⊗ ,þ∞, 0
� �

be a symmetrized þ∞�algebra over the abelian group
�  and Pþ∞ ¼ þ∞ � þ∞. Then, using the same proof as that Proposition 13.
Therefore, þ∞, τþ∞ð Þ is a topological space.

Proposition 53. The symmetrized omega topological spaces �∞, τ�∞ð Þ and
þ∞, τþ∞ð Þ are homeomorphic.

Proof. There exists a map h : �∞, τ�∞ð Þ ! þ∞, τþ∞ð Þ is defined by:

h sign að Það Þ ¼
sign að Þa if a∈

sign �∞ð Þ þ∞ð Þ if sign að Þa ¼ sign �∞ð Þ �∞ð Þ

(

; (23)

Let sign að Þa, sign bð Þb∈ �∞ be arbitrary. Let h sign að Það Þ ¼ h sign bð Þbð Þ, then
sign að Þa ¼ sign bð Þb. Hence, h is an injective. Let sign að Þa∈ þ∞ is arbitrary, then
there exists a sign að Þa∈�∞, such that h sign að Það Þ ¼ sign að Þa. Hence, h is surjective.
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Let B∈ τþ∞ be any basic open set. By Proposition 18, we have

B ¼ 
0ð Þ
�∞,

0ð Þ
�∞ ∪ þa,þa�1

� �

,  0ð Þ
�∞ ∪ �a,�a�1

� �

: a∈

n o

and

B ¼ 
0ð Þ
þ∞,

0ð Þ
þ∞ ∪ þa,þa�1

� �

,  0ð Þ
þ∞ ∪ �a,�a�1

� �

: a∈

n o

are a base for �∞ and

þ∞, respectively.
To prove that h is continuous, we have three cases:

Case 1: If B ¼ 
0ð Þ
þ∞, then h�1 Bð Þ ¼ h�1


0ð Þ
þ∞

� �

¼ 
0ð Þ
�∞ ∈ τ�∞.

Case 2: If B ¼ 
0ð Þ
þ∞ ∪ þa,þa�1

� �

, then h�1 Bð Þ ¼ h�1


0ð Þ
þ∞ ∪ þa,þa�1

� �

� �

¼


0ð Þ
�∞ ∪ þa,þa�1

� �

∈ τ�∞.

Case 3: If B ¼ 
0ð Þ
þ∞ ∪ �a,�a�1

� �

, then h�1 Bð Þ ¼ h�1


0ð Þ
þ∞ ∪ �a,�a�1

� �

� �

¼


0ð Þ
�∞ ∪ �a,�a�1

� �

∈ τ�∞. Hence, h is continuous.

To prove that h�1 is continuous, we have three cases: (since h is one to one and

onto, then h�1� ��1
Bð Þ ¼ h Bð Þ).

Case 1: If B ¼ 
0ð Þ
�∞, then h�1� ��1

Bð Þ ¼ h Bð Þ ¼ h 
0ð Þ
�∞

� �

¼ 
0ð Þ
þ∞ ∈ τþ∞.

Case 2: If B ¼ 
0ð Þ
�∞ ∪ þa,þa�1

� �

, then h�1� ��1
Bð Þ ¼ h Bð Þ ¼

h 
0ð Þ
�∞ ∪ þa,þa�1

� �

� �

¼ 
0ð Þ
þ∞ ∪ þa,þa�1

� �

∈ τþ∞.

Case 3: If B ¼ 
0ð Þ
�∞ ∪ �a,�a�1

� �

, then h�1� ��1
Bð Þ ¼ h Bð Þ ¼

h 
0ð Þ
�∞ ∪ �a,�a�1

� �

� �

¼ 
0ð Þ
þ∞ ∪ �a,�a�1

� �

∈ τþ∞. Hence h�1 is continuous (which

means h is open).
Therefore, h is homeomorphism, then �∞, τ�∞ð Þ and þ∞, τþ∞ð Þ are

homeomorphic.

5. Symmetrized omega topology and other properties

Recall that a subset A of a space X is said to be regularly-open or an open domain if
it is the interior of its own closure (see [7]). A set A is said to be a regularly-closed or
a closed domain if its complement is an open domain. A subset A of a space X is
called a π-closed if it is a finite intersection of closed domain sets (see [8]). A subset
A is called a π-open if its complement is a π-closed. If T and T 0 are two topologies on
a set X such that T 0 ⊆ T , then T 0 is called the coarser topology than T , and T is
called the finer. A space X is π-normal [9] if any pair of disjoint closed subsets A and
B of X, one of which is π-closed, can be separated by two disjoint open subsets. A
space X is almost-normal [9] if any pair of disjoint closed subsets A and B of X, one
of which is a closed domain, can be separated by two disjoint open subsets. A space
X ismildly normal [10] if any pair of disjoint closed domain subsets A and B of X can
be separated by two disjoint open subsets. A space X, Tð Þ is epi-mildly normal [11] if
there exists a coarser topology T 0 on X such that X, T 0ð Þ is T2 and mildly normal
space. A space X, Tð Þ is epi-almost normal [12] if there exists a coarser topology T 0

on X such that X, T 0ð Þ is T2 and almost normal space.
Theorem 54. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is π-normal.
Proof. Since the only π-closed sets are the ground set Sω and the empty set, then

Sω, τωð Þ is a π-normal.
It is clear from the definitions that

normal ) π � normal ) almost normal ) mildly normal: (24)
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By (24) and Theorem 54, we conclude the following Corollaries.
Corollary 55. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is almost normal.
Corollary 56. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is mildly normal.
If Aωn ωf g, ⊗ð Þ be a group has more than one element, then Sω, τωð Þ is not

T0(see Proposition 28), we have the following Propositions:
Proposition 57. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not Epi-mildly Normal.
Proof. Suppose that, ω, τωð Þ is Epi-mildly Normal. Then there exists a coarser

topology T 0 on ω such that ω, T
0ð Þ is T2 and mildly normal space. Hence ω, τωð Þ is

T2, thus a contradiction. Then ω, τωð Þ is not Epi-mildly Normal.
Proposition 58. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not Epi-almost Normal.
Proof. Using the same proof of Proposition 57.
Definition 59. Let X be a space. Then:

1.A space X is called a C-normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each compact subspace A⊆X, [13].

2.A space X is called a CC-normal if there exists a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each countably compact subspace A⊆X. [14].

3.A space X is called an L-normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each lindelöf subspace A⊆X, [15].

4.A space X is called an S- normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each separable subspace A⊆X, [16].

5.A space X is called a C-paracompact if there exist a paracompact space Y and a
bijective function f : X ! Y such that the restriction function f jA : A ! f Að Þ

is a homeomorphism for each compact subspace A⊆X, [17].

6.A space X is called a C2-paracompact if there exist a Hausdorff paracompact
space Y and a bijective function f : X ! Y such that the restriction
function f jA : A ! f Að Þ is a homeomorphism for each compact subspace
A⊆X, [17].

Proposition 60. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is C-normal.

Proof. By Proposition 31, ω is a normal space. Then there exist Y ¼ ω is a
normal space and the identity function id : ω ! ω is bijective. Let C be any
compact subset of ω, τωð Þ: Then the restriction function id↾C : C ! f Cð Þ is a
homeomorphism. Therefore, ω, τωð Þ is a C�normal.

Since any normal space is CC-normal, L-normal and S-normal, just by taking X ¼
Y and f to be the identity function. Hence, we conclude the following Propositions.

Proposition 61. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is CC-normal.

Proof. Using the same proof of Proposition 60.
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Proposition 62. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is L-normal.

Proof. Using the same proof of Proposition 60.
Proposition 63. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized

omega topological space ω, τωð Þ is S-normal.
Proof. Using the same proof of Proposition 60.
Example 64. By Example 37, �∞, τ�∞ð Þ is C-normal, CC-normal, L-normal and

S-normal.
Theorem 65. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not S-normal.
Proof. From the proposition any separable S-normal must be normal (see [16])

and since ω, τωð Þ is separable and not normal (see Propositions 30, 23, respec-
tively), then ω, τωð Þ is not S-normal.

Example 66. By Example 50, �∞, τ�∞ð Þ is not a S-normal.
Theorem 67. The symmetrized omega topological space ω, τωð Þ is not

C2-paracompact.
Proof. Since any C2-paracompact Fre0chet space is Hausdorff (see [17]) and

ω, τωð Þ is First countable and not a Hausdorff space, ω, τωð Þ cannot be
C2-paracompact.

Theorem 68. Let a∈Aωn ωf g has no multiplicative inverse. Then the symmetrized
omega topological space ω, τωð Þ is not C-paracompact.

Proof. Assume that ω, τωð Þ is C-paracompact. Let Y be a paracompact space and
f : ω ! Y be bijective such that the restriction f↾C : C ! f Cð Þ is a homeomorphism
for all compact subspace C of ω, τωð Þ. Hence, ω � Y, since ω is compact (see
Proposition 33). However, ω is paracompact, thus a contradiction. Because any
paracompact space is Hausdorff space and ω is not a Hausdorff space. Therefore,
ω, τωð Þ is not a C-paracompact.
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