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Chapter

Kinematics of Serial Manipulators
Ivan Virgala, Michal Kelemen and Erik Prada

Abstract

This book chapter deals with kinematic modeling of serial robot manipulators
(open-chain multibody systems) with focus on forward as well as inverse kinematic
model. At first, the chapter describes basic important definitions in the area of
manipulators kinematics. Subsequently, the rigid body motion is presented and
basic mathematical apparatus is introduced. Based on rigid body conventions, the
forward kinematic model is established including one of the most used approaches
in robot kinematics, namely the Denavit-Hartenberg convention. The last section of
the chapter analyzes inverse kinematic modeling including analytical, geometrical,
and numerical solutions. The chapter offers several examples of serial manipulators
with its mathematical solution.

Keywords: algorithm, inverse kinematics, Jacobian, manipulator, optimization,
redundant, robot

1. Introduction and basic definitions

In the following sections, this chapter will deal with direct and inverse
kinematics of open-chain multibody systems consisting of rigid bodies. The
whole problematics is analyzed from the view of robotics. Each manipulator or
mechanism investigated in this chapter will be of serial kinematic structure
(open chain).

Open-chain multibody systems are mechanically constructed by connecting a set
of bodies, called links, by means of various types of joints. In general, the joints can
be passive or active. The joints, which are moved by actuators, are active joints.

In general, from the view of robotics, there are two tasks in kinematics:

• Forward kinematics—the forward kinematics problem represents relationship
between individual joints of investigated robot and end-effector.

• Inverse kinematics—the problem of inverse kinematics is as follows: given a
desired configuration of end-effector of robot, find the joint angles that
achieve that configuration.

Before these terms are explained and demonstrated by some study cases, we
have to mention the basic definitions, necessary for the further analyses.

Degrees of freedom (DOF): is the smallest number of coordinates needed to
represent the robot configuration. Thus, the number of DOF equals to the dimen-
sion of configuration space.
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Joint space: Let us define all the joint variables in a vector q ¼ q1, q2, … , qn
� �T

∈

⊂N . The set  we call the so-called joint space and it contains all the possible
values, which joint variables may acquire.

Workspace: Workspace is a subset of the Euclidean space , in which the robot
executes its tasks. From the view of robotics, workspace is the set of all the points
that mechanism may reach in Euclidean space  by end-effector. The workspace
can be categorized as follows [1, 2]:

Maximal workspace—it is defined as locations that can be reached by end-
effector at least with one orientation.

Inclusive-orientation workspace—it is defined as locations that can be reached by
end-effector with at least one orientation among a range of orientations (maximal
workspace is particular case).

Constant-orientation workspace—it is defined as location that can be reached by
the end-effector with fixed orientation of joints.

Total-orientation workspace—it is defined as location that can be reached by the
end-effector with any orientation.

Dexterity workspace—it is defined as location that can be reached by the end-
effector with any orientation and without kinematic singularities.

Task space–space of positions and orientations of the end-effector frame. The
workspace is a subset of task space that the end-effector frame can reach [3].

2. Rigid body motion

Rigid motion of an object is a motion that preserves distance between points [4].
Rigid body is a set of particles such that the distance between any two particles
remains constant in time, regardless of any motions of the body or forces exerted on
the body. If we consider p and q as two points on rigid body, while rigid body
moves, p and qmust satisfy p tð Þ � q tð Þk k ¼ p 0ð Þ � q 0ð Þk k ¼ constant, see Figure 1.

Let us consider an object, described as a subset O of 3. Then a motion of object

(rigid body) is represented by mapping f tð Þ : O! 3. This mapping describes
how the points of this object move as a function of time, relative to some fixed
coordinate system.

Let the inertial reference frame be O ¼ xr, yr, zr
� �

and ir, jr,kr represent unit
vectors of the reference frame. The vector p can be expressed with respect to

inertial reference frame O ¼ xr, yr, zr
� �

by the following equation

Figure 1.
Rigid body.
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p ¼ pxrir þ pyrjr þ pzrkr (1)

where p ¼ px, py, pz

h iT
∈3. Coordinates of vector p can be also expressed as its

projections in directions of individual unit vectors as scalar product. In order to find
the relation, the vector p needs to be expressed in coordinates O1 ¼ x1, y1, z1

� �

pxr ¼ irp ¼ irpx1i1 þ irpy1j1 þ irpz1k1

pyr ¼ jrp ¼ jrpx1i1 þ jrpy1j1 þ jrpz1k1

pzr ¼ krp ¼ krpx1i1 þ krpy1j1 þ krpz1k1

(2)

which can be rewritten in matrix form

pxr
pyr
pzr

2

6

4

3

7

5
¼

iri1 irj1 irk1

jri1 jrj1 jrk1

kri1 krj1 krk1

2

6

4

3

7

5

px1
py1
pz1

2

6

4

3

7

5
(3)

that is pb ¼ Rr1p1. The meaning of this term is as follows. Coordinates of the

vector p expressed in O1 ¼ x1, y1, z1
� �

are computed to O ¼ xr, yr, zr
� �

so that they

are left multiplied by transformation matrix Rr1.
As can be seen in Figure 2, coordinate system x0, y0, z0 is rotated with respect to

coordinate system xr, yr, zr by angle q around the axis zr. By consideration of
previous equations; and by consideration of the facts that scalar product of two
perpendicular vectors equals zero, scalar product of two parallel unit vectors is one,
and scalar product of concurrent unit vectors is cos α; and by assuming that
cos π

2 � α
� �

¼ ∓ sin α, that is

Figure 2.
Rotation of coordinate system.
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iTi ¼ 1, jTj ¼ 1,kTk ¼ 1

iTj ¼ 0, jTk ¼ 0,kTi ¼ 0

one can obtain the following rotation matrix

Rx ¼

1 0 0

0 cos α � sin α

0 sin α cos α

2

6

4

3

7

5
(4)

whereRx is a rotationmatrix for rotation around the x-axis by angle α. Subse-
quently, rotationmatrices can be also be expressed for rotation around y-axis and z-axis

Ry ¼

cos β 0 sin β

0 1 0

� sin β 0 cos β

2

6

4

3

7

5
(5)

Rz ¼

cos γ � sin γ 0

sin γ cos γ 0

0 0 1

2

6

4

3

7

5
(6)

Since rotation matrix R is an orthogonal matrix, for this reason

RTR ¼ I3 (7)

where I3 is a 3� 3 identity matrix. Considering the case when there is displace-
ment of local coordinate system and at the same time also its rotation, it would be
expressed as

xr

yr
zr

2

6

4

3

7

5
¼ Raxis,angle

x1

y1
z1

2

6

4

3

7

5
þ

px
py
pz

2

6

4

3

7

5
(8)

Eq. (8) represents a system of three equations, which will be extended by fourth
equation 1 = 0 + 0 + 0 + 1, which is

xr

yr
zr

1

2

6

6

6

4

3

7

7

7

5

¼

⋮ px
Raxis,angle ⋮ py

⋯ … ⋮ pz
0 0 0 1

2

6

6

6

4

3

7

7

7

5

x1

y1
z1

1

2

6

6

6

4

3

7

7

7

5

(9)

3. Forward kinematics

The forward kinematic model determines the position and orientation of the end-
effector relating to base frame of the mechanism or to global coordinate system (GCS).

3.1 Open kinematic chain

We will focus on robots, which contain a set of links connected together by
joints. The joints are usually revolute or prismatic or they can be more complex,
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such as socket joint or ball joint [5]. Within this chapter will be considered only
revolute and prismatic joints, which have only a single degree-of-freedom motion.
Let us consider a mechanism with N links connected together by N � 1 joints. The i-
th joint connects link i� 1 to link i. The number of the joints starts with 1 and ends
with N � 1. The next consideration for the following mathematical model is that the
first link is connected to the base fixed to inertial reference frame, while the last link
is free and able to move.

The i-th joint is associated with joint variable qi, while qi may contain θi and di
for revolute and prismatic joints, respectively. The local coordinate frame is
attached to each link, so to i-th link is attached to Ii frame, Ii ¼ Oi, xi, yi, zi

� �

. When
a mechanism performs any motion in its workspace, the coordinates of each point
on i-th link are constant with respect to their coordinate frame

Ii ¼ Oi, xi, yi, zi
� �

.
Let Ai be a homogeneous transformation matrix, which holds position and

orientation of frame Ii ¼ Oi, xi, yi, zi
� �

with respect to Ii�1 ¼ Oi�1, xi�1, yi�1, zi�1
� �

.

It should be noticed that values of matrix Ai are not constant, but they change with
changing configuration of the mechanism. In general, a homogeneous transforma-

tion matrix expressing the position and orientation of I j ¼ O j, x j, y j, z j

n o

with

respect to Ii ¼ Oi, xi, yi, zi
� �

is called a transformation matrix iT j. We can also

define the following matrix

H ¼
0Rn

0on

0 1

" #

(10)

where 0Rn is a 3� 3 rotation matrix with and 0on is a 3� 1 vector expressing
position and orientation of end-effector (the last point of mechanism) with respect
to inertial reference frame (base of mechanism). Eq. (10) can then be written as

H ¼ 0Tn ¼
Y

N

i¼1

Ai (11)

while Ai equals

Ai ¼
i�1Ri

i�1oi

0 1

" #

(12)

3.2 Denavit–Hartenberg convention

For the computation of forward kinematics for open-chain robot according to
Eq. (11), a general approach was derived in order to determine the relative position
and orientation of two consecutive links. This approach determines two frames
attached to two links (rigid bodies) and computes the coordinate transformations
between them [6].

For utilization of the Denavit-Hartenberg convention, some rules need to be
observed. Let us consider Figure 3. Let axis i represent the axis connecting link i� 1
and link iþ 1. In order to define link frame i, the procedure is as follows. First of all,
the axis zi and axis zi�1 are chosen. Next, origin Oi is located at the intersection of
axis zi with the common normal to axes zi and zi�1. By this step be get points Oi and
O0i. The common normal of these two axes is a minimum distance between them.
Subsequently, the axis xi is chosen along the common normal to axes zi�1 and zi in
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the direction from joint i to the joint iþ 1. In the last step, axis yi is chosen so as to
complete a right-handed frame.

After these steps, the link frames have been established and now the position
and orientation of frame i with respect to frame i� 1 can be determined by
following DH parameters [7]:

• ai: distance between the points Oi and O0i

• di: distance between Oi�1 and O0i along the axis zi�1

• αi: angle between the axes zi�1 and zi about axis xi (positive direction—
counter-clockwise rotation)

• ϑi: angle between axes xi and xi�1 (positive direction—counter-clockwise
rotation)

It should be also noted that parameters ai and αi are always constant, because
they depend on the geometric aspect of mechanism. Considering the two other
parameters di and ϑi, depending on the joint type, one is constant and other one
may change as follows:

• Revolute joint: ϑi is the joint variable and di is constant

• Prismatic joint: di is the joint variable and ϑi is constant

In general, six parameters are necessary in order to describe the position and
orientation of a rigid body in the 3D space. Based on previously mentioned facts, we
can say about DH convention that only four parameters are required by assuming
that the axis xi intersects zi�1, and that axis xi is perpendicular to zi�1.

3.2.1 Example of forward kinematics using the Denavit-Hartenberg convention

Let us consider some kind of industrial robot, namely SCARA (Selective Com-
pliance Assembly Robot Arm) robot, which has RRP structure. Its kinematic struc-
ture is shown in Figure 4.

Figure 3.
Denavit-Hartenberg approach.
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Considering the basic principles of the Denavit-Hartenberg convention intro-
duced in the previous section, we are able to introduce D-H parameters, see Table 1.

Based on DH parameters, which are obvious from Figure 4, particular homoge-
neous transformation matrices can be established.

0A1 ¼

1 0 0 0

0 1 0 0

0 0 1 d1

0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

cos q1
� �

� sin q1
� �

0 0

sin q1
� �

cos q1
� �

0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

1 0 0 L1

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(13)

0A1 ¼

cos q1
� �

� sin q1
� �

0 L1 cos q1
� �

sin q1
� �

cos q1
� �

0 L1 sin q1
� �

0 0 1 d1

0 0 0 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

1A2 ¼

cos q2
� �

� sin q2
� �

0 0

sin q2
� �

cos q2
� �

0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

1 0 0 L2

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(14)

Figure 4.
SCARA robot.

Link ai αi di ϑi

1 L1 0 d1 q1

2 L2 0 0 q2

3 0 π d2 + q3 0

4 0 0 0 q4

Table 1.
Denavit-Hartenberg parameters.
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1A2 ¼

cos q2
� �

� sin q2
� �

0 L2 cos q2
� �

sin q2
� �

cos q2
� �

0 L2 sin q2
� �

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

2A3 ¼

1 0 0 0

0 cos πð Þ � sin πð Þ 0

0 sin πð Þ cos πð Þ d2 þ q3

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(15)

3A4 ¼

cos q4
� �

� sin q4
� �

0 0

sin q4
� �

cos q4
� �

0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(16)

So, the final transformation matrix is

0T4 ¼
0A2

1A2
2A3

3A4 (17)

0T4 ¼

px
R py

pz
0 0 0 1

2

6

6

6

4

3

7

7

7

5

(18)

By vector 0o4 ¼ pxpypz

h iT
is defined position of end-effector of SCARA

manipulator with respect to its base inertial reference frame.

4. Inverse kinematics

The solution exists only if the given end-effector position and orientation are in
dexterous workspace of the solved mechanism. While the forward kinematic model
is expressed as

x ¼ f qð Þ (19)

where f is a function defined between joint space n and workspace m, which
maps the joint position variables q∈n to the position/orientation of the end-
effector of mechanism, the inverse kinematic model is based on

q ¼ f�1 xð Þ (20)

where q∈n and x∈m. In the case of the forward kinematic model, end-
effector position and orientation are computed for various kinds of mechanisms like
manipulators, in a unique manner, for example, by above-mentioned transforma-
tion matrices. The inverse kinematic problem is more complex and finding the
solution could be in many cases very complicated. While forward kinematics has a
closed-form solution, an inverse kinematics in most cases does not have a closed-
form solution. A forward kinematic model has a unique solution, while an inverse
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kinematic model may have multiple solutions or infinite number of solutions,
especially for kinematically redundant mechanisms. In order to obtain a closed-
form solution, there are two main approaches, namely algebraic approach and
geometric approach.

4.1 Closed-form solution of inverse kinematics

Let us consider a two-link mechanism moving in the 2D plane, see Figure 5.
Considering the forward kinematic model, while the angles of joints ϑ1 and ϑ2

are given, the aim is to find the position of end-effector xE ¼ x y½ �T ∈m. The
forward kinematic model can be easily determined by the following equations

x ¼ l1 cos ϑ1 þ l2 cos ϑ1 þ ϑ2ð Þ (21)

y ¼ l1 sin ϑ1 þ l2 sin ϑ1 þ ϑ2ð Þ (22)

Now, the inverse kinematic problem is to find angles ϑ1 and ϑ2, while the end-

effector position x and y are given by vector xE ¼ x y½ �T ∈m.

c ¼ x2 þ y2 (23)

α ¼ atan2 y, xð Þ (24)

ϑ2 ¼ � arccos
x2 þ y2 � L2

1 � L2
2

2L1L2

� 	

(25)

β ¼ arccos
L2
1 � L2

2 þ c2

2L1c

� 	

(26)

ϑ1 ¼ α� β (27)

Figure 5.
Inverse kinematics solution for two-link mechanism.
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As can be seen in Figure 5, the presented configuration of the mechanism has
two solutions in inverse kinematics. These two solutions are based on signum in
Eqs. (25) and (27).

5. Differential kinematics

5.1 Analytical Jacobian

In order to describe the relation between joint angles and end-effector configu-
ration, often the relation between the joint and end-effector velocities is used. Let us
consider a set of coordinates x∈m, their velocity is _x ¼ dx=dt∈m. Then, we can
apply Eq. (19). Then, one obtains

_x ¼
∂f qð Þ

∂q

dq

dt
¼ J qð Þ _q (28)

J qð Þ ¼

∂x1
∂q1

⋯
∂x1
∂qn

⋮ ⋱ ⋮

∂xm
∂q1

⋯
∂xm
∂qn

2

6

6

6

6

4

3

7

7

7

7

5

(29)

where J qð Þ∈m�n is the analytical Jacobian matrix, which is very often used in
kinematics and dynamics of robotic systems. Jacobian reflects differences between
joint and configurations space of the investigated mechanism. In robotics, Jacobian
is often used for several purposes such as for the definition of the relation between
joint and configuration space, definition of the relation between forces/torques
between spaces, the study of kinematic singularities, the definition of numerical
solution for inverse kinematic problem, and the study of manipulability properties.
We can look at Jacobian from a different perspective. Particular Jacobian columns
represent the influence of i-th joint on the end-effector velocity.

The following example will demonstrate the derivation of analytical Jacobian for
a three-link mechanism (Figure 6).

Figure 6.
Three-link mechanism.
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In order to utilize Eq. (29), we need to define position of point E ¼ xEyE
� �T

∈2.

xE ¼ L1 cos q1 þ L2 cos q1 þ q2
� �

þ L3 cos q1 þ q2 þ q3
� �

(30)

yE ¼ L1 sin q1 þ L2 sin q1 þ q2
� �

þ L3 sin q1 þ q2 þ q3
� �

(31)

Assuming Eqs. (30) and (31), Jacobian according to Eq. (29) will be matrix

J qð Þ∈2�3

J qð Þ ¼

∂xE
∂q1

∂xE
∂q2

∂xE
∂q3

∂yE
∂q1

∂yE
∂q2

∂yE
∂q3

2

6

6

6

4

3

7

7

7

5

(32)

where the elements of the Jacobian matrix are

∂xE
∂q1
¼ �L1 sin q1

� �

� L2 sin q1 þ q2
� �

� L3 sin q1 þ q2 þ q3
� �

∂xE
∂q2
¼ �L2 sin q1 þ q2

� �

� L3 sin q1 þ q2 þ q3
� �

∂xE
∂q3
¼ �L3 sin q1 þ q2 þ q3

� �

∂yE
∂q1
¼ L1 cos q1

� �

þ L2 cos q1 þ q2
� �

þ L3 cos q1 þ q2 þ q3
� �

∂yE
∂q2
¼ L2 cos q1 þ q2

� �

þ L3 cos q1 þ q2 þ q3
� �

∂yE
∂q3
¼ L3 cos q1 þ q2 þ q3

� �

5.2 Geometric Jacobian

Besides analytically expressing the Jacobian, we can express it by a geometric
approach. To establish function f qð Þ in closed-form, a symbolic formalism is neces-
sary, which could be difficult from the view of implementation. For this reason, a
different way of Jacobian expression, the so-called geometric Jacobian, was devel-
oped. The geometric Jacobian can be obtained by consideration of rotational velocity
vectorω. Let us consider link according to Figure 6. The Jacobian can be expressed as

J ¼
Jv
Jω


 �

¼
Jv1 … Jvn
Jω1 … Jωn


 �

(33)

The first term expresses the effect of _q1 on linear velocity v and the second term
expresses the effect on the rotational velocity ω. Thus,

v ¼ Jv1 _q1 þ … þ Jvn _qn

ω ¼ Jω1 _q1 þ … þ Jωn _qn
(34)

That is, the analytical Jacobian differs from the geometrical Jacobian for the
rotational part. Considering the revolute joint, the i-th column of Jacobian can be
computed as
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Jvi
Jωi


 �

¼
0zi�1 � 0pn �

0pi�1

� �

0zi�1

" #

(35)

For prismatic joint, the i-th column of Jacobian can be computed as

Jvi
Jωi


 �

¼
0zi�1

0


 �

(36)

where 0pn is the end-effector position defined in transformation matrix 0Tn

defined in the previous section. Next, 0pi�1 is the position of frame Ii�1 ¼

Oi�1, xi�1, yi�1, zi�1
� �

, defined in transformation matrix 0Ti�1. Finally, 0zi�1 is the

third column of rotation matrix 0Ri�1, while 0Ri�1 ¼
0R1 q1
� �

1R2 q2
� �

… i�2Ri�1 qi�1
� �

.
The following example will demonstrate the derivation of geometric Jacobian for

a two-link mechanism (Figure 7).

J qð Þ ¼
z0 � p2 � p0

� �

z1 � p2 � p1

� �

z0 z1


 �

(37)

where p0 ¼

0

0

0

2

6

4

3

7

5
, p1 ¼

L1 cos q1
L1 sin q1

0

2

6

4

3

7

5
, p2 ¼

L1 cos q1 þ L2 cos q1 þ q2
� �

L1 sin q1 þ L2 sin q1 þ q2
� �

0

2

6

4

3

7

5
and

rotational axes are z0 ¼ z1 ¼

0

0

1

2

6

4

3

7

5
. By solving Eq. (37), we get

J qð Þ ¼

�L1 sin q1 � L2 sin q1 þ q2
� �

�L2 sin q1 þ q2
� �

L1 cos q1 þ L2 cos q1 þ q2
� �

L2 cos q1 þ q2
� �

0 0

0 0

0 0

1 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(38)

Figure 7.
Two-link mechanism.

12

Automation and Control



Now, the Jacobian is a 6� 2 matrix and its maximum rank is 2. That is, at most two
components of angular/linear end-effector velocity can be independently assigned. In
this case, when orientation is not required, only first two rows are considered.

5.3 Kinematically redundant manipulators

The next approach to inverse kinematic solution we want to focus on is numer-
ical solutions. Nevertheless, many times, it is hard to find a closed-form solution for
inverse kinematics; the basic kinematics of industrial robots have developed an
approach to solve it. The problems arise with nonconventional kinematic structures,
especially with kinematically redundant manipulators. A kinematically redundant
manipulator has more number of DOFs than is absolutely necessary to perform the
desired task. For example, conventional industrial robot has usually six DOFs, by
which it is able to reach any point in its workspace. By adding an additional DOF,
this robot becomes kinematically redundant due to this additional DOF.

A numerical solution is usually used when a closed-form solution for q does not
exist or is difficult to find. In this section, we will focus on kinematically redundant
mechanisms. Considering the dimension of joint space n and dimension of task
space m, for kinematically redundant mechanisms n>m. The level of redundancy
can be expressed by r ¼ n�m. Kinematic redundancy is used for many tasks such
as kinematic singularities avoidance, obstacle avoidance, joint limits avoidance,
increasing the manipulability in specified directions, minimizing the energy con-
sumption, minimum of motion torques, optimizing execution time, etc. As can be
seen, kinematic redundancy allows many optimization tasks to be solved. On the
other hand, kinematic redundancy brings some disadvantages as well; for example,
a greater structural complexity of construction caused by many of DOFs (mechan-
ical, actuators, sensors), which have an influence on final cost of this kind of
mechanism. Next field of potential disadvantages is the field of control, due to
complicated algorithms for inverse kinematic computation or motion control. From
this reason redundant manipulators could be difficult in real-time control.

There are many approaches within numerical solution of inverse kinematics,
which are still in focus of research. Most approaches deal with Jacobian matrix in
order to find a linear approximation to the inverse kinematic problem. Among the
most used of them are damped least squares (DLSs), Jacobian transpose, and
damped least squares with singular value decomposition (SVD) [8, 9].

Another kind of approach is the approach based on Newton methods [6]. The
aim of these algorithms is to find the final configuration of joints with focus on
minimization problem. For this reason, the final motion of robot is smooth. This
family of methods includes methods such as Powell’s method [10] or Broyden,
Fletcher, Goldfarb and Shanno (BFGS).

A very well-known and used method for inverse kinematics of kinematically
redundant mechanisms is the so-called cyclic coordinate descent (CCD) algorithm
[11]. The CCD method is a very simple and at the same time a very strong method.
It is a heuristic iterative method with low computational cost per iteration. Next
very know heuristic iterative method is FABRIK (Forward And Backward Reaching
Inverse Kinematics) [12, 13]. The FABRIK method minimizes the system error by
adjusting each joint angle one at a time.

Most of inverse kinematics numerical methods could be divided into two classes:
linearization algorithms and minimization algorithms. Concerning the linearization
algorithms, the idea is piecewise linearization of nonlinear inverse kinematic prob-
lem, which is based on the Jacobian matrix. An example of this kind of method is
the Jacobian transpose method. In minimization algorithms, the idea is to formulate
some cost function, which will be minimized, for example cyclic coordinate descent
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algorithm. Besides the mentioned methods, there are many other such as
pseudoinverse methods, such as the Levenberg–Marquardt damped least squares
methods, quasi-Newton and conjugate gradient methods, neural network and arti-
ficial intelligence methods.

The basic technique is based on Eq. (39)

_x ¼ J qð Þ _q (39)

The above relation can be inverted to so-called Jacobian control method

_q ¼ J† qð Þ _x (40)

which leads to joint velocity vector qwith minimum norm. The term J† represents

the Moore-Penrose pseudoinverse given by J† ¼ JT JJT
� ��1

for kinematically redun-

dant mechanisms where m< n JJ† ¼ I
� �

or by J† ¼ JTJ
� ��1

JT form > n J†J ¼ I
� �

.
A very common method on which the solution is based is the Newton-Rhaphson

method. The Newton-Rhaphson method is a root-finding algorithm that produces
approximations of the roots of a real-valued function. The method starts with

differentiable function f defined for a real variable x, derivative of function f 0, and
initial guess x0 for a root of function f . If these assumptions are satisfied and initial
guess is close, then

x1 ¼ x0 �
f x0ð Þ

f 0 x0ð Þ
(41)

Talking about numerical motion optimization of kinematically redundant
mechanisms, there are two approaches. The first approach deals with local methods,
which are solved typically online, and the second one with global methods, which
require quantity of computation. For this reason, the global methods are computed
usually offline.

One of the commonly used local methods is the family of null-space methods.
This method uses the extension of Eq. (40) and gives

_q ¼ J† qð Þ _xþ I� J†J
� �

_q0 (42)

where _q0 ∈n is an arbitrary joint space velocity vector, chosen according to
desired behavior; so it is chosen for optimization purposes. Next, I∈n�n is the

identity matrix. The term I� J†J
� �

represents the orthogonal projection matrix in

the null space of J, J† qð Þ _x is orthogonal to I� J†J
� �

_q0. For this reason, q ¼ 0.
Physically, this term corresponds to self-motion, where the combined joints motion
generates no motion in the task space (no motion of end-effector). So, the term

I� J†J
� �

is symmetric and idempotent ( I� J†J
� �2

¼ I� J†J
� �

). Also, it ensures

I� J†J
� �†

¼ I� J†J
� �

. The inverse kinematic solution expressed by Eq. (42) is

equivalent to solving a quadratic programming (QP) problem based on

H _qð Þ ¼min _q
1
2

_q� _q0

� �T
W _q� _q0

� �

subjected to _x ¼ J qð Þ _q.
Now the question is, how the vector _q0 can be chosen. One of the basic ways to

choose it is the so-called projected gradient method _q0 ¼ ∇qH qð Þ. Supposing that

_x ¼ 0, that is, the mechanism performs only self-motion, it can be written _q ¼

I� J†J
� �

∇qH; so, I� J†J
� �

∇qH ¼ 0 is a necessary condition of constrained optimal-
ity. Based on these facts, an objective function can be chosen for some optimization
of motion:
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• Manipulability—maximize the distance from kinematic singularities

H qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det J qð ÞJT qð Þ
� �

q

(43)

• Joint limit avoidance—minimize the distance from the middle of joints range

H qð Þ ¼
1

2

X

n

i¼1

qi � q�i
qM,i � qm,i

 !2

(44)

where qi ∈ qm,i, qM,i

h i

and q�i ¼
qM,i�qm,i

2 .

• Obstacle avoidance—maximize the minimum distance to obstacle

H qð Þ ¼ min a∈ robot

b∈ obstacle

a qð Þ � bk k2 (45)

where a qð Þ represents points on investigated mechanism and b represents points
on the obstacle.

Example: Let us consider a planar six-link robot connected by six revolute joints.
All links have the same length L ¼ 100 mm. The purpose of the simulation is path

tracking (circle form) described by matrix Xpath ¼
xd

yd


 �

∈m�p, where p is the

number of geometric points of the desired path, while xd ¼ �2:5Lþ L cosφ,
yd ¼ L sinφ, φ∈ 0, … , 2πf g assuming the step of φ increase to be 0.2. That is,

xd ¼ x1, … , xp
� �

∈p and yd ¼ y1, … , yp

h i

∈p. From the matrix Xpath will be in

each path point determined the desired point ep ¼ xpyp

h iT
∈m. Since, there is

consideration of planar task with focus on end-effector position, the task space is
m ¼ 2. The expected solution assumes only primary solution without any secondary
tasks. For inverse kinematic solution, damped least squares method, which avoids
many of pseudoinverse method’s problems, will be used. This method is also known
as the Levenberg–Marquardt method, which arises from cost function

J∆q� ∆xk k2 þ λ2 ∆qk k2 where λ∈ is a non-zero scalar constant. By minimizing
this term, one obtains

∆q ¼ JT JJT þ λ2I
� ��1

∆x (46)

where I ∈m�m is the identity matrix. The simulation will work according to the
following algorithm.

Algorithm: Inverse kinematic model for 6-link manipulator.

1: Set desired path for end-effector by matrix Xpath and parameters such as L, λ.

2: FOR step = 1! p:

3: Set the desired position of end-effector from Xpath¼)ep ¼ xpyp

h iT
∈m

4: WHILE xactual 6¼ ep
5: Compute Jacobian

6: Compute xactual ¼ xactyact
� �T

∈m

7: Compute ∆q ¼ qþ JT JJT þ λ2I
� ��1

∆x
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8: q ¼ ∆q
9: END WHILE
10: END FOR

The results of the simulation can be seen in Figures 8 and 9. Figure 8 presents
the motion of planar robot. The aim is to tracking of path with circle shape (green
color) by end-effector of the robot. The robot has a fixed frame in point [0,0]. The

initial position of all joints is q ¼ 0 0 0 0 0 0½ �T.
During the simulation, no restriction such as joint limit was considered. The

simulation was done with a tolerance �5 mm. Figure 9 presents the variation of
individual robot joints during the path tracking.

Example: Let us consider a planar 20-link robot connected with revolute joints.
The links have the same length L ¼ 16:75 mm. The aim is to move the end-effector
from its initial position to the end position by tracking the desired path. We will
consider two cases. The first one considers free robot environment, the second one
considers obstacles in the robot environment. The second solution will also consider
kinematic singularities avoidance task and joint limit avoidance task.

Now, let us consider the cost function dealing with all mentioned secondary
tasks [10].

H ¼ J _q� _xk k2 þ Jc _q� xck k2 þ JL _q� xLk k2 þ ρ _qk k2 (47)

After mathematical adjustment, we get the final formula for kinematic control

_q ¼ JTWJþ JTc WcJc þ JTLWLJL þWs

� ��1
JTW _x
� �

(48)

Figure 8.
Simulation of inverse kinematics for six-link manipulator.
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where W, Wc, WL, and Ws are in our case 20 � 20 weight matrices of primary
task, obstacle avoidance task, joint limit avoidance task, and kinematic singularities
avoidance task, respectively. The setting of weight matrices is subjective. For
example, if obstacle avoidance task should have higher priority above primary
task by 100 times, the matrix Wc would consist of values 100 while W consist of
values 1.

Let us consider individual secondary tasks. The joint limit avoidance task deals
with the range of motion of individual manipulator links. How many joints will
have their limit range is up to us. Of course, in real robots, usually all joints are
limited in their motion. There are several ways on how to model the range of joint
motion. In this case, an approach with changing of value of weight variable W li

based on joint position will be used. If the joint is in admissible range, the value of
the weight variable is set to be zero. When the joint reaches the boundary of its
range motion, the value of the weight variable increases. When the joint reaches a
value outside its admissible range, the value of the weight variable increases to its
maximum. This approach can be expressed by Eq. (49)

Wli ¼

Ww  qi < qimin

Ww

2
1þ cos π

qi � qimin

ρi

� 	
 �
 �

 qimin ≤ qi ≤ qimin þ ρi

0 qimin þ ρi < qi < qimax � ρi

Ww

2
1þ cos π

qimax � qi
ρi

� 	
 �
 �

 qimax � ρi ≤ qi ≤ qimax

Ww  qi > qimax

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>
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>
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>
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>

>

>

>

>

>

>

>

>

>

:

(49)

The value of the weight variable has to be set for every joint of the manipulator
that needs to be limited in the range of motion. Individual weight variables W li

where i∈ 0, … ,Nf g are parts of the final weight matrix of the joint limit avoidance
task W l ∈n�n. The final weight matrix Wl is the diagonal matrix [14]:

Figure 9.
Variations of joint angles.
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Wl ¼

Wl1

Wl2

Wl3

…

Wln

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(50)

The weight matrix Wl is used with the corresponding Jacobian matrix JL ∈n�n.
The Jacobian matrix for the joint limit avoidance task is JL ¼ ∂e=∂q. If a particular
joint does not consider the joint limit avoidance task, the value of JL is set to be zero;
otherwise it is set to be one. The limit of all joints in motion of the manipulator
investigated in this study is set to be �100°. Different way of joint limit control is
according to above mentioned Eq. (44).

During the obstacle avoidance task, the control system investigates the relation
betweenmanipulator links and obstacles in their environment. In general, this task can
be solved from two views. At first, one group of obstacles can represent static obstacles
or other robots in an investigated environment. The second group of obstacles can be
represented by dynamic obstacles, which means that these obstacles change their
position relating to global reference system in the time. Of course, the second group of
obstacles is more difficult from the view of control in comparison with static obstacles.
It is more difficult especially in the cases of requirements for real-time control [15].

The aim of obstacle avoidance is to prevent the collision between any part of the
manipulator and potential obstacles, other robots, or collision with itself. Again, there
are many methods on how to control robot motion at a safe distance from other
objects, regardless of whether the obstacles have regular or irregular shape. For
simplification, the irregular shapes are usually replaced by appropriate regular shape.
This simplification can also significantly simplify the mathematical model and
obtaining the numerical solution can be faster and the solution more stable. One of
the methods on how to simplify irregular shapes is to replace all irregular shapes by a
cylinder, with the obstacle being situated in the center of the cylinder, see Figure 10.
The diameter of the cylinder determines the distance of influence of this obstacle.

At first, we set the coordinate of an obstacle in the task space as so. The
projection of the line from the i-th joint of the manipulator link to the center of a
cylinder (obstacle) on the i-th link is:

pi ¼ eTi s0 � sið Þ (51)

The coordinate of the link point with potential to get into collision is:

sci ¼ si þ piei (52)

The distance between the potential point of collision and the center of the
cylinder is:

dci ¼ ∥sci � s0∥ (53)

Subsequently, the unit vector of the potential point of collision can be given by:

ui ¼
sai � s0
dci

(54)

Now, the Jacobian matrix for the obstacle avoidance task can be given. The i-th
row of the Jacobian matrix can be expressed as
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Jci ¼ �u
T
i Jsci (55)

where matrix Jsci is:

Jsci ¼
∂sci
∂q

(56)

The Jacobian matrix Jc consists of submatrices Jci. The dimension of the Jacobian
matrix is Jc ∈Rc�c, where c represents the number of manipulator links that could
collide with the obstacles.

For numerical simulation, we will use following algorithm: Inverse kinematic
model for 20-link manipulator [14].

Algorithm: Inverse kinematic model for 20-link manipulator

1: CYCLE WHILE 1
2: Determination of new required vector xd ∈Rm from the matrix of planned

path P∈Rr�2

3: CYCLE WHILE 2
4: Computation of Jacobian matrix J (damped least squares method)
5: Determination of actual end-effector position in the task space x∈Rm

with actual generalized variables q∈Rn

6: Computation of general equation

_q ¼ J�1WJþ Jc
�1WcJc þ Jl

�1WlJl þWs

� ��1
JTW _x
� �

7: q ¼ qprevious þ _qdt

8: qprevious ¼ q

9: IF xd ¼ x THEN
END CYCLE WHILE 2

ELSE
CYCLE WHILE 2 continues
END IF

10: END CYCLE WHILE 2
11: END CYCLE WHILE 1

Figure 10.
Relation between manipulator link and obstacle.
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Figure 11.
Simulation of 20-link manipulator in free environment.

Figure 12.
Simulation of 20-link manipulator in constrained environment.
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In Figure 11 can be seen the simulation of motion of a 20-link manipulator,
which moves in free environment without any obstacles. This case also does not
consider any joint limit avoidance task. The aim is to move the end-effector of
manipulator by predefined path (green color).

Figure 12 depicts a different situation. A 20-link manipulator moves according
to predefined path between four obstacles. The solver also assumes joint limit
avoidance task for all 20 joints. From this figure can be seen the difference in “self-
motion” in joint space, while it does not affect the motion of end-effector in task
space. The end-effector always tracks the same path (by neglecting end-effector
orientation).

The second case is significantly difficult from the view of computational com-
plexity in comparison with the case without any constraints in motion.

6. Conclusion

This chapter was focused on forward and inverse kinematics of open-chain
mechanisms, namely manipulators with serial kinematic structures. We have intro-
duced rigid motion and subsequently we have focused on forward kinematics. The
chapter presents a kinematic model of SCARA by the well-known Denavit-
Hartenberg convention. Within inverse kinematics was introduces several methods,
including analytical, geometrical, and numerical. The last section dealt with model-
ing of kinematically redundant planar robots. At first, we introduced a six-link
planar robot with focus on numerical solution using DLS. The last example
presented a 20-link redundant manipulator moving between the obstacles. The
solution includes, besides the primary solution, secondary tasks such as singularity
avoidance, joint limit avoidance, and obstacle avoidance.
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