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Chapter

A Review to Massive MIMO
Detection Algorithms: Theory
and Implementation

Bastien Trotobas, Amor Nafkha and Yves Louét

Abstract

Multiple-input multiple-output (MIMO) systems entered most major standards
in the past decades, including IEEE 802.11n (Wi-Fi) and long-term evolution
(LTE). Moreover, MIMO techniques will be used for 5G by increasing the number
of antennas at the base station end. MIMO systems enable spatial multiplexing,
which has the potential of increasing the capacity of the communication channel
linearly with the minimum of the number of antennas installed at both sides
without sacrificing any additional bandwidth or power. To handle the space-
division multiplexing (SDM), receivers have to implement new algorithms to
exploit the spatial information in order to distinguish the transmitted data streams.
This chapter provides an overview of the most well-known and promising MIMO
detectors, as well as some unusual-yet-interesting ones. We focus on the description
of the different paradigms to highlight the different approaches that have been
studied. For each paradigm, we describe the mathematical framework and give the
underlying philosophy. When hardware implementations are available in the
literature, we provide the results reported and give the according references.

Keywords: MIMO systems, MIMO detectors, space-division multiplexing,
SDM-MIMO, linear detection, interference cancelation, tree-search

1. Introduction

In multiple-input multiple-output (MIMO) communication systems, both the
transmitters and receivers are equipped with several antennas which will help in
achieving high gains in spectral, power, and energy efficiency compared to con-
ventional single-input single-output (SISO) systems where both the transmitters
and receivers have only one antenna each. As a matter of fact, the MIMO systems
have the ability to turn multipath propagation and multipath delay spread into a
benefit for the receiver. The key advantage of MIMO systems is the many orders of
magnitude of the signal-to-noise ratio (SNR) at no extra bandwidth. However, a
non-negligible software and hardware processing complexity is added at both sides
(transmitter and receiver). Present wireless communication standards including
Wi-Fi standards like IEEE 802.11n/ac, long-term evolution (LTE), and WiMAX are
considering MIMO technology as a key element. Moreover, in the next generation
of wireless technology systems (i.e., 5G), massive MIMO is emerging as a new
research field in which base stations are equipped with 100 or more antennas. At
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the receiver side, designing reliable and energy-efficient MIMO detectors is a very
challenging task, because of the complexity of the implementation of the signal
detection due to the interfering sub-streams. The signal detection problem refers to
finding the most probable transmitted symbols based on the perfect channel state
information (CSI) available at the receiver and the received signal.

The hardware implementation of massive MIMO detector is of particular inter-
est to deal with 5G wireless technology. Optimal massive detectors such as the
maximum likelihood detector (MLD) or the sphere decoding (SD) are considered
infeasible given their high computational complexity. Hence, low computational
complexity algorithm achieving near-optimal performance is required; many
existing detection algorithms like zero forcing (ZF), minimum mean-square error

Figure 1.
Tree mind map of the detectors described in this chapter and the number or the corresponding section.
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(MMSE), and successive interference cancelation (SIC) are used to deal with mas-
sive MIMO detection. In [1, 2], the authors presented surveys on various MIMO and
massive MIMO detection techniques from algorithmic viewpoints. Although many
classical massive MIMO detectors have been proposed in the literature, herein, new
recent algorithms based on the application of machine learning, geometrical tech-
niques, and bioinspired methods are presented and discussed.

In this chapter, we propose an overview of the SDM detection algorithms. We
specifically stress out the different paradigms that are used to solve the detection
problem and compare all of them. Thus, we describe the most well-known and
promising MIMO detectors, as well as some unusual-yet-interesting ones. Section 2
presents the framework and the assumptions that are used in the remainder section.
Section 3 introduces the maximum likelihood (ML) optimal detector, and then
Section 4 describes the linear ones. Section 5 details algorithms based on the inter-
ference cancelation, and Section 6 discusses the one based on tree-search. Finally,
Section 7 highlights unusual-yet-interesting detectors before Section 8 concludes
the chapter. Figure 1 provides an overview of all the detectors described in this
chapter as a tree mind map.

2. Introduction to MIMO detection algorithms

In the SDM framework, data streams are transmitted at the same time and at the
same frequency, and the receiver relies on spatial consideration to distinguish the
streams. Herein, we assume that the MIMO transmitter does not use any spatial
coding and that all data streams are independent. To give the reader a unified
mathematical description through this chapter, we adopt the following notation:
scalars, vectors, and matrices are denoted by lower-case, bold-face lower-case, and
bold-face higher-case letters, respectively. We call v(i) the ith coefficient of the
vector v, and H(i,j) is the element of the ith row and jth column in the H matrix.

In the linear input—output MIMO model where data are transmitted as the

symbols of a constellation @, the received vector y € CM is the result of the emitted

symbols x € ®" propagated through the channel H and added to an additive noise w.
This model leads to the following equation:

y=Hx+w (1)

and the MIMO detection problem then refers to the combinatorial optimization
problem:

arg min |ly — Hx||*. (2)

xedN

Assuming a circularly symmetric Gaussian noise, solving Eq. (2) is equivalent to
searching the most probable emitted symbol vector based on the signal on each
receive antennas and the channel state. Even if ||y — Hx||? is a convex function with
respect to x, the detection problem is not a convex optimization problem due to the
discrete feasible solution set ®V. As a result, a special algorithm has to be used, and
this chapter will describe the most common ones.

Let us start by outlining the traditional assumptions that we will use in the
present chapter. Although many constellation types could be used in MIMO sys-
tems, we limit the discussion to the square quadrature amplitude modulations
(QAMs) that are most commonly investigated. Besides, the channel is considered
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memoryless, linear, and flat and with a block fadingl. In this chapter, we assume
that channel state information (CSI) is correctly estimated at the receiver side but
not at the transmitter side. The impact of imperfect CSI at the receiver on the
performance of detection algorithms is not addressed in the present chapter. Some
known training symbols are sent from the transmitter, based on which the receiver
estimates the channel before proceeding to the detection of the transmitted data
symbols.

The channel matrix is modeled as a complex matrix He C™)_ In that case, the
element H(i, ) refers to the complex channel gain between the jth transmit antenna
to the ith receive antenna. Many channel models can fit in this framework, and we
stick to the most popular one: the uncorrelated Rayleigh fading channel [3, 4]. The
uncorrelated channel model provides a good approximation of propagating envi-
ronments with rich scattering where the signals between the transmitter and the
receiver experience many different paths and no strong line of sight between the
transmitter and the receiver. This situation occurs, for instance, in urban and indoor
conditions. In these conditions, each receiver antenna receives a sum of a large
number of signal paths, and the channel transfer functions can be modeled as the
realization of a circularly symmetric normal distribution.

3. Maximum likelihood detector

Obtaining the optimal result requires, in the most straightforward approach, the
use of the ML detector that solves Eq. (2) using an exhaustive search. Even if this
method gives the best result since all x € ®" are evaluated, it is not suitable for real
implementation. Indeed, the number of vectors to be tested grows exponentially
with the number of transmit antenna and the constellation size. Thus, the compu-
tational cost of evaluating Eq. (2) requires an unrealistic quantity of resources to
detect the transmitted vector x. That is why a variety of detection algorithm has
been developed throughout the past year to achieve the same detection perfor-
mance of ML detectors while having a tractable complexity.

From a computational theory perspective, the detection problem is an instance of
the closest lattice-point search (CLPS) problem with a specified lattice [5]. It has been
proved that regardless of the preprocessing on the lattice (i.e., the channel matrix),
the problem is always NP-hard [5]. The NP-hardness implies that it is not possible, at
the moment, to find any detector that is sure to have both an optimal performance
and a polynomial complexity”. For that reason, all the following detectors have
suboptimal performance (which can be very close to optimal) or a non-polynomial
worst-case complexity (which can be polynomial is the average case).

4. Linear detectors
4.1 Zero forcing (ZF) detector

Linear detectors are the most simple algorithms to solve the detection problem.
The most basic one is the ZF algorithm that follows a two-step process. First, the ZF

! The nomenclature section provides definitions.
% It is widely believed that it does not exist any solution to solve NP-hard problems in polynomial time.
Yet, this assumption is not proven so that there is still a possibility that such an algorithm exists and is

just not discovered nowadays.
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detector solves Eq. (2) transforming the constraint from x & @V to x e CN such that
the problem become an easy-to-solve convex optimization with a known mathe-
matical solution:

xo =H'y (3)

with H* = (H"H) “"HY being the left Moore-Penrose pseudoinverse. Then, the
constraint on x is reintroduced by quantizing the vector accordingly to the constel-
lation in use. This quantization should lead to a good estimation as after the appli-
cation of the detection matrix Tzr = H', Eq. (1) becomes

TZF-Y =X+ H+W (4)

highlighting that all the interference are canceled. The previous equation is also
the proof that the ZF detector is the optimal linear one regarding the signal-to-
interference ratio (SIR) criteria. Indeed, one can see that the vector Tzg.y contains
each stream independently plus some noise but without any interference.

4.2 Minimum mean-square error (MMSE) detector

By only focusing on the interference, the ZF detector performance suffers from
not taking the noise into account. Indeed, if the noise level is known to the receiver,
a Bayesian estimator including this information can provide a better detection. A
linear Bayesian estimator minimizing the mean-square error can be derived using
the orthogonality principle [6] leading to

Tyumse = (HPH + 2621) 'HY (5)

with o2 being the noise variance per real direction. The detector based on this
detection matrix, followed by the quantization, is called the minimum mean-square
error (MMSE), and it is known to maximize the signal-to-noise-plus-interference
ratio (SINR). When the signal-to-noise ratio (SNR) is low (i.e., ¢? is high), the
MMSE detector provides better results, jointly minimizing the interference and the
noise. Otherwise, when ¢? is very low, the corrective term becomes negligible, and
the ZF and MMSE detectors overlap.

5. Interference cancellation detectors

To improve further the performance, it is necessary to drop the linear detector
approach and look for more elaborate decoding algorithms. Historically, the first
nonlinear detector type is still based on the principle of canceling signal interfer-
ence. This concept leads to two approaches: an iterative one named successive
interference cancelation (SIC) and a simultaneous version named parallel
interference cancelation (PIC).

5.1 Successive interference cancellation (SIC) detector

The SIC detectors opt for a two-step iterative process: first, a decision is taken on
the first position x;, and then assuming that the decision was right, the detector
corrects y by removing the interference that would have been generated by x;.
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Then, SIC detectors repeat this process on the next x’s entry until the whole vector
is received.

Even if the performance is better than with the linear detectors, the SIC process
is very prone to error, given that the assumption at an iteration has an impact on all
the following ones. For this reason, the simple SIC detector has quickly been
replaced by a variant seeking for an optimal iteration order [7]. This variant called
ordered successive interference cancelation (OSIC) aims to make the first assump-
tion on the position that leads to the better SNR or SINR.

To select the best symbol to detect at each iteration, the OSIC detector computes
the post-SNR or post-SINR for each symbol, assuming that the kth element is
canceled using the detection matrix T. Most of the time, the detection matrix is
chosen to be Tzr or Tmumse optionally updated after each iteration. When using the
SNR criterion, the value of the kth post-SNR is computed as in [7, 8].

<x(k)* > o|Trhy|?
o[ T I?

SNR;, = (6)

with T}, being the kth row of T, h,, the k™ column of H, and < x,ﬁ > ¢ the expected
value over the constellation set. The latter term is the average signal power of the kth
data stream that can be computed, assuming that each symbol is equiprobable, as

<X >¢ ZEZX(k)2 @

xed

with ¢ the number of symbols in constellation ®.
When using the SINR criterion, the post-SINR expression becomes slightly more
complex as the post-processed power of each other channel appears in the expression

<x(k)’ > ¢|Tihy |
> ik <x(1)*> o| Tihy|* + 2| T, >

SINR,, = (8)

For clarity sake, Figure 2 sums up the OSIC detection algorithm introducing a
processt : H—T to build a detection matrix from a channel one. This process is most
of the time the Moore-Penrose pseudoinverse or the process described in Eq. (5).
We also denote by D the set of the symbol index to be decoded and by « the
affectation. One must note that an instruction is optional and may be skipped. If this
instruction is applied, performance is increased by canceling the interference in the
post-criterion computation and so is the complexity.

5.2 Parallel interference cancellation (PIC) detector

The main drawback of the OSIC algorithm is that the number of iterations grows
linearly with the number of antennas. The number of stage becomes an issue for large
MIMO system since each stage adds a reception delay. For that reason, a detector
capable of canceling the interference for all antennas at once was developed.

The first application of such an algorithm to SDM systems dates from the early
2000s, and it is based on a few basic steps summed up in Figure 3 as published in
[9]. The main point of the PIC algorithm is to start by using a simple detector with
poor performance, most of the time a linear one, and cancel the interference on all
antennas at once based on the assumption. If better performance is required, it is
possible to iterate the last three instructions as many times as needed by using the
new detected symbol as the new assumption.
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Inputs
— Channel matrix H — Received vector y — Noise variance o
— Process to build a detection matrix from a channel matrixt: H— T
Y
All symbols are searched: D « {1...N}
Compute T « t(H) if required
\J
Select best index k € D based on the criterion from (Eq. (6)) or (Eq. (8))
\J
Make the assumption x; = Tyy
\J
Cancel the interference based on the assumption: y « y — hyx;
|
\/
Optional Fill k" column of H with 0s
N
Y
Remove k from »  No )
Is O empty?

Yes i

[Output: Decoded symbol vector xJ

Figure 2.
OSIC algorithm outline.

Simultaneously, the iterative reception techniques developed for turbo codes
and single-input single-output channels are adapted to MIMO systems. The goal is
to receive a coded message by alternating between soft-input soft-output detector
and decoder. Each algorithm uses a priori information from the other to improve its
performance [10]. This method leads to one of the current most accomplished
version of the PIC family: a soft-input soft-output detector to be used in iterative
decoding with any message coding [11].

This version adds several improvements to the basic algorithm described in
Figure 3. First, it uses the soft symbols from [12] that are defined as the expected
value of the symbols knowing the a priori. The reliability of a soft symbol is
computed as its variance. Then, the parallel cancelation (see the third instruction in
Figure 3) is performed using the soft symbols in place of the rough estimation.
Finally, a last MMSE filtering is performed before the computation of the log-
likelihood ratios (LLRs). Further reductions in complexity are also used, such as the
max-log approximation [10, 13, 14] or the channel Gram matrix [15]. Thanks to all
of these improvements, an application-specific integrated circuit (ASIC) is reported
to achieve a throughput greater than 750 Mb/s with good BER performance [11].

5.3 Selecting between SIC and PIC detectors
The key idea to select between SIC and PIC detectors is to compare the relative

quality of data streams. As stated earlier, SIC algorithms guess the best data stream
and then process the other one based on this assumption. This process makes the
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Inputs
— Channel matrix H — Received vector y
— Noise variance o2 — Simple detector d : (y, H) — x
Y
Obtain a rough estimation x = d(y, H)
e ‘
\J
Build a set of symbol vectors {X;}r equal to X except that the kth value is O
\J
Cancel interference on all channels Vk, , = y — HX,
\J
Update the detected symbol vector with x «<— d(y, H)
\ Yes: X < x
More iterations? o

Noi

[Output: Decoded symbol vector x]

Figure 3.
PIC algorithm outline as published in [9].

SIC algorithms very prone to error propagation. Indeed, if an assumption is wrong,
the error has consequences on all the data streams to be detected. Hence, SIC
detectors should be used when there is a net ranking in the quality of each data
stream. A basic scenario for this would be a MIMO system receiving data from
several users with different channel qualities.

On the contrary, PIC detectors process all the data streams at once so that they
are more resilient to interstream error propagation. However, the parallel compu-
tations assume that every data stream is as reliable as the other. Due to this
assumption, a poor-quality data stream propagates its error to the whole system.
For that reason, PIC detectors are well suited when all data streams have the same
quality level.

6. Tree-search-based detectors

Tree-search-based detectors are the current most investigated algorithms. They
use a different framework than the linear and the interference cancelation detector.
As the name suggests, the tree-search detector interprets the detection problem
from Eq. (2) as the search for the best path in a tree. Tree-search-based detectors
can either be optimal with a non-polynomial yet small complexity or quasi-optimal
yet not optimal with a polynomial convexity.

Figure 4 gives an example of the tree interpretation for a constellation with four
symbols and two data streams. In this configuration, solving the detection problem
is equivalent to find two symbols in the set ® = {s1,52,53,54} that minimize the
objective function. This process can be seen as finding the path in the tree that leads
to the best objective function. The first tree level corresponds to the first symbol
and so on for each level.

In this paradigm, the exhaustive search detector described in Section 3 computes
the objective function for each leaf node and then selects the best path. Tree-search-
based detectors search for the best leaf without trying every path. This leads to
three enumeration paradigms: depth-first, breadth-first, and best-first. These
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51 Sp S3 S4 51 Sp S3 S4 51 Sy S3 S4 51 S2 S3 S84

First symbol

Second symbol
Leaf node

Figure 4.
Tree view of the detection problem: Example for ® = {si,sz, 535 54} and two data streams.

paradigms will be detailed after the description of the preprocessing used by all the
variants.

6.1 Preprocessing using QR decomposition

All tree-search-based detectors use the same preprocessing. Let be H = QR the
QR decomposition of the channel matrix with Q a unitary matrix and R an upper
triangular one. The decomposition is computed only once per coherence block
leading to a negligible overhead of the complexity per received symbol. Using the
QR decomposition, we have

ly — Hx|| = |ly — QRx|| = |Q"y — Q”QRx|| 9)

as unitary matrices act as isometries. Thus, by exploiting the property of unitary
matrices Q = Q 71, this norm can be rewritten as

ly — Hx|| = |ly — Rx]| (10)

with y2Q*y. Computing ¥ is the only overhead in complexity that is required
on a symbol basis as it cannot be preprocessed for the whole coherence block.

The point of this QR preprocessing is that the triangularity of R allows to
compute the objective function iteratively. Indeed, we can introduce for all

ke{1,..,N},d(k)2y(k) — (Rx)(k) with (Rx)(k) being the kth coefficient of the
product Rx. Given this definition, the objective function is written as

Iy —Rx[> = d(k)*. (11)
k=1

Moreover, the triangularity of R gives

n

Vke (1, .,N}, Rx)(k) = > Rlk,j)x(j) = 3 Riksj)x(j) (12)
—1 =k

that leads to

vke {1, ..,N},d(k) = §(k) - n R(k,j)x( j). (13)
j=k

With this expression, it is clear that we can compute partial estimations of the
objective function and d(k) coefficients while the symbol vector is built. Indeed,
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starting from the last component, Eq. (13) is fully evaluated for the jth position as
soon as a hypothesis is made on x( j). Thus, it is possible to add a new operand in
Eq. (11) and to have an idea of how promising the partial symbol vector is. The
partial objective function from Eq. (11) is traditionally called the partial Euclidean
distance (PED).

6.2 Depth-first tree-search detection: sphere decoding

The depth-first paradigm is the oldest one, and it is commonly known in the
communication field as the sphere decoding (SD). SD is the transposition of the
mathematical Fincke-Pohst algorithm in the telecommunication field [16]. The
basic principle of this algorithm is to define an upper-bound for the objective
function named the radius »* and then to use it to prune paths as early as possible.
Reintroducing x( from Eq. (3), the upper-bound constraint gives

ly — Hx||* = |[H(xo — x)|| <7, (14)

This inequality highlights that constraining the objective function may be
interpreted as looking for solution no so far from x(. As stated in Eq. (4), the only
deviation from x is due to the noise so that the choice of » must be adapted to the
SNR. Thus, if the SNR is high, the radius can be small, while in the contrary
scenario, the radius should be increased so that there is at least one vector x
satisfying the constraint from Eq. (14).

In the remainder of this section, we assume that 7 is adequately chosen and that
there is at least a solution. As stated in Section 6.1, the QR decomposition allows us
to compute a PED at each level. As the PED is a sum of squares, it can only increase
during the decoding process. Thus, if at some point, a PED violates the constraint
from Eq. (14), then all the vectors build upon this partial solution are bound to be
infeasible. From a tree-search perspective, this means that if a node already breaks
the constraint, all its children will do the same. Thus, all paths starting from this
node can be pruned without performance loss.

The SD is referred to as a depth-first detector as starting from the root node, it
goes as depth as possible until it reaches a leaf or violates Eq. (14). If a leaf is
reached, it is compared to the best leaf so far and saved if it is the new best leaf. If
Eq. (14) is violated, the SD algorithm backtracks and explores a new path. When all
paths are either completed or pruned, the result is the best leaf reached.

The Schnorr-Euchner (SE) enumeration is another depth-first enumeration
known to perform better by using a lattice reduction method [17, 18]. The basic idea
is to explore the node’s children by the increasing order of their PED. This is
particularly useful when using the radius reduction technique that sets an infinite r*
at the beginning and then updates it to the best objective function for a leaf
encounter so far.

The SD algorithm and its SE version are optimal as they ensure to find the exact
solution of the detection problem. Indeed, the best leaf is obviously the best leaf
among all the completed paths, and the pruned paths cannot lead to a better point
due to their already worst PED. The NP-hardness argument detailed in Section 3
implies that SD has a non-polynomial worst-case complexity. Moreover, SD
expected complexity is also non-polynomial even if the exponential growth is slow
enough to compete with polynomial detectors under certain circumstances [19].

A very efficient soft-input soft-output depth-first algorithm is the single
tree-search sphere decoding (STS-SD) [20]. To produce its soft-output, it uses the
max-log approximation [10, 13, 14] and makes some changes on the pruning

10
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criterion. The max-log approximation avoids the computation of the exact LLRs by
claiming that

Liv s (g& Iy ~ Hxl” — min ly - Hx||2> (15)

where y¥ = {x edV :p; = k} is the set of all symbols with the ith bit set to k.
Thus, to compute the max-log approximation, one must know the objective func-
tion of the best leaf (i.e., one of the minimum in Eq. (15)) but also the objective
function of each best counter-hypotheses (the other minimum). A path should then
be pruned only if its PED is greater than the current radius 7 and if this path cannot
lead to a better counter-hypothesis. This can be implemented by adding another
radius called the hypothetical radius constraint.

One of the most advanced ASIC-implemented depth-first reported so far uses a
two-dimensional Schnorr-Euchner enumeration. This implementation reaches a
throughput higher than 600 Mb/s for the soft-output version and exceeds 1.2 Gb/s
for the hard-output one while keeping an excellent energy efficiency [21]. The high
throughput is achieved by using several SD cores in parallel to decode several
vectors simultaneously.

6.3 Breadth-first tree-search detectors: K-best and M-algorithm

Breadth-first detectors drop out of optimality for better implementability.
Indeed, they address the two main issues of the depth-first paradigm: the
unpredictable complexity that depends on the SNR through 7* and the depth-and-
backtrack enumeration that prevents the use of hardware pipelines. Breadth-first
detectors achieve this goal by removing the pruning criterion and always keep the
same number of paths instead. At each level, the detector compares all the current
paths’ PED and keeps only the best ones. This number is traditionally called K for
the K-best algorithm [22] or M for the M-algorithm [23]. A recent work mixed this
approach with the upper-bound radius from death-first to prune even more path
per level and reduce the complexity further [24]. This method converges to the
breadth-first if all PED are always under the upper-bound, but if some PEDs
overgrow, it can reduce the number of surviving paths.

The restricted number of surviving paths induces that the right one can be
pruned early if its PED has grown too quickly in the early levels. This is the reason
for the optimality loss. Then, some detectors implement a post-detection SNR
criterion to reorder the tree levels such that the most certain one is at the top. Thus,
the right path is less likely to be pruned by mistake in the early stages. Thanks to
this reordering, the K-best algorithm performs very well yet, not optimally in a
mathematical sense.

From a hardware implementation perspective, breadth-first tree-search detec-
tors are very efficient. They do not require any backtrack so that an expanded node
can be safely deleted as it will never be revisited. Moreover, the number of visited
nodes per level is fixed. Thus, ASIC can embed the exact amount of resources
required. These two characteristics allow the construction of efficient hardware
pipelines that substantially increase the throughput. K-best can achieve at least the
same throughput as depth-first without the need for parallel cores. Hard-output
implementations exceeding 2.5 Gb/s are reported using the breadth-first paradigm
[25]. Another study focused on energy efficiency designed a breadth-first variant
that can handle both the channel noise and the hardware noise generated by the
voltage over the scaling method in memories [26].

11
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Breadth-first detectors can provide soft-output using the max-log approxima-
tion and a list. This list approach is used by several detectors, including some other
tree-search algorithm and detectors from other families. The point of this approach
is to produce a list I' of point associated with their objective function and to
approximate Eq. (15) as

1
L~ — | min — Hx||> — min — Hx|? |. 16
— (xewuy I? ~ min lly — x| ) (16)

For most breadth-first algorithms, I is the list of all completed paths [22, 25].

6.4 Best-first tree-search detector: fast descent tree-search and parallel
tree-search

Best-first detectors are also sometimes called metric-first. The basic idea besides
this enumeration is to not favor depth or breadth over each other. Instead, the node
with the best PED is expanded, regardless of its level. The best-first algorithm keeps
a node pool with nodes to be expanded. First, the pool is initialized with the root
node. Then, at each iteration, the node with the lower PED is popped out from the
pool, and all its children are computed and pushed in the pool unless they are leaves.
If they are, a comparison with the best leaf so far allows us to keep track of the best
result. When a leaf is reached, its objective function may be used as an upper-bound
to prune the pool for each node with a PED higher than the new reference. The
detection ends when the pool is empty.

This simple method quickly overfills the pool as several nodes are added when
only one is popped out. Rather than providing a huge pool to contain all the nodes,
improvement is to convert the ¢-ary tree (with ¢ the constellation size) to a first-child
next-sibling binary tree [27]. This method is called the modified best-first algorithm
(MBF). With this variant, the only nodes added in the pool after an expansion are the
best child and the best yet-to-visit siblings. Then, the growth rate of the pool size is
controlled. However, this method struggles to provide a full path solution quickly as
the popped out node is the one with the lower PED that is often close to the root. To
solve this issue, a variant implementation called MBF fast descent (MBF-FD) changes
the expansion rule. When a node is expanded, the process goes through the best child
until reaching a leaf, pushing in all best siblings along the way [28].

Recently, a best-first algorithm ASIC is reported to reach 800 Mb/s in a soft-
input soft-output framework [29]. The modified algorithm, called cross-level par-
allel tree-search, splits the pool node into several pools, one per level. At each
iteration, a node from each pool in popped out expanded using the best-child/best-
sibling framework, and the new nodes are pushed in the according pool. Moreover,
the presented detector prune nodes in each pool using the upper-bound to keep
only the one that can improve the result or the counter-hypothesis (see Section 6.2
for details). The slit pool helps the parallelization process so that this algorithm
variant is very suitable for hardware implementation.

7. Other unusual detectors: bioinspired and geometrical detectors
7.1 Deep neural MIMO detection: learning to detect

The rise of deep learning leads to the search for an efficient neural network to
solve the detection problem such as DetNet [30]. This network is inspired by the
projected gradient descent algorithm that is a major option to solve convex
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optimization. It is trained for both static channel (H is fixed) and on a time-varying
channel (the same condition as previously). As the errors are sometimes unavoid-
able due to a bad channel realization, the loss function should not be the objective
function. Thus, the DetNet designers opt for a

L
S log () X Xell 17)
k=1

lx — xzr||

with xzp the result of ZF detection and x;, the detected symbol of the kth layer.
Then, the normalization with the ZF result avoids over-penalizing the situation
with bad H realization. Moreover, the logarithm weights the result from each layer
to give more credit to the final ones.

7.2 Bioinspired detectors

The most studied bioinspired decoders fall into two categories: ant colony opti-
mizations (ACO) and particle swarm optimizations (PSO) that include the firefly
algorithm (FA). These techniques are often very complex compared to the previ-
ously described algorithms, but they claim to be resilient to challenging conditions.
Bioinspired algorithms should be able to decode messages with imperfect CSI, or
the data streams are correlated.

ACO-based detectors simulate several ants that choose a path randomly to follow
with a nonuniform probability function [31]. Each antenna is processed indepen-
dently. At each iteration, an ant selects the symbol s € ® with the probability

4 (18)
po=——tl 1
' ZSE@Tg’/I—Vﬁ

with 7, the pheromone level on the path, 7, an image of the objective function,
most of the time through a log-sigmoid function, and (a, f) the two parameters that
balance the relative importance of each term. After each iteration, the pheromone
level is updated according to the following principle: the better the objective func-
tion the ant achieves, the more pheromone it dropped off. Thus, the ant selects
more often the path that seems more promising regarding the objective function
and the previous runs while preserving some chance of exploring a new path.

FA-based detectors simulate several fireflies that try to find the best mating
partner. The objective function determines the attractiveness of a firefly. Then a
tirefly goes toward more attractive congeners biased with a random influence to
promote exploration [32]. Some FA variant implements a memory effect that makes
it even closer to a PSO-based algorithm [33]. This framework is applied to MIMO
detection using the QR decomposition described in Section 6.1. The FA represents
each symbol to decode as a nest containing as many fireflies as the constellation size.
Thus, the fireflies have to select a partner in each nest from the last symbol to the
first based on the biased attractiveness. When the firefly population searched all the
nests, the best path represents the decoded symbol vector. FA-based detectors can
be related to tree-search-based algorithm with a randomness exploration and a
fixed number of path allowed.

7.3 Geometrical detectors

Geometrical detectors are based on a two-step process: an exploration to find a
small set of promising solutions and an exploitation to improve this set at a small
cost. It follows the traditional approach in nonconvex optimization to perform
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simple descents that can be stuck in local optimums from several starting points.
Geometrical detectors use a real-valued model and the singular value decomposition
(SVD) rather than the QR one [34]. Let us rewrite the objective function by intro-
ducing the SVD of H = UDV” with U and V two orthogonal matrices and D the
diagonal matrix containing the singular values {4; : 1<i <n} in ascending order.
Consequently, the objective function can be rewritten as

ly — Hx||> = (VT(x — %)) DUTUD (V" (x — x0)) (19)

using x¢ from Eq. (3). As the vectors of V, named {v; : 1<i <n}, constitute a

basis, we can define {; : 1<i <n} the coordinates of x — x( on this basis. Using the
orthogonality of U and V and the diagonality of D, Eq. (19) leads to

ly — Hx||> =) ol (20)
=1

Let A; be the straight line passing through x¢ and directed by v;. One can note
that Eq. (20) highlights that the objective function grows more slowly along the first
A; rather than along the last ones so that promising points must be around these
first straight lines. Then the solution is most likely to be found along this line. The
geometrical exploration step is then performed, selecting some points near the first
A;. Then a straightforward descent algorithm is performed by looking for the best
point in the close neighborhood until convergence.

A soft-output version of this algorithm is possible using the max-log approxi-
mation and the list approach detailed in [35], Section 5.2. A field-programmable
gate array (FPGA) implementation has recently been proposed. This groundwork
points out that geometrical detectors may achieve good performance in the future
yet being far from mature at that point [36].

Detector BER Complexity Comment
ML Optimal Dramatically
complex

ZF Very poor  Very simple Best linear detector regarding SNR criterion

MMSE Poor Simple Best linear detector regarding SINR criterion

SIC/OSIC Good Rather complex  Best when there is a clear ranking in the quality of
each data stream

PIC Good Rather complex  Best when all data streams have the same quality
level

Depth-first Optimal Very complex

Breadth-first Good Rather complex Possible trade-off between BER and complexity via
the number of surviving paths

Best-first Good Less complex

Deep neural ~ Good Rather complex Possible trade-off between BER and complexity via
the number of layers

Bioinspired Good Very complex Resilient to imperfect CSI and channel correlation

Geometrical ~ Rather good Rather complex Possible trade-off between BER and complexity via
the number of descents

Table 1.

Summary of all detectors described in this chapter.
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8. Conclusions and summary

MIMO detection is a well-studied problem that has been tackled from several
perspectives. The mathematical interpretation, as a combinatorial optimization
problem, leads to the optimal and linear detectors. From the signal processing
perspective, detecting a signal means improving the SNR or SINR so that the direct
answer is to cancel the interference and to remove the noise. From an algorithmic
perspective, the detection problem is the search for the best path in a weighted tree
that relies on some well-known algorithms. Other sources of inspiration, such as
nature or geometry, provide some interesting perspectives. These paradigms and
the associated detectors are summed up in Table 1, and we compare all of them
according to the BER-complexity trade-off.

All these perspectives shed a different light on the problem, leading to fruitful
experimentation. Indeed, some methods take inspiration from others to keep on
improving. Therefore, some improvement axes remain open, for instance, the per-
manent decrease of complexity with equal performance, the development for effi-
cient hardware implementations, or the optimization of the interaction with
decoders to exploit channel codings better.
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Nomenclature

Memoryless the channel outputs only depend on its state and its inputs.
Linear the channel outputs are linear combinations of the inputs.

Flat the channel coherence bandwidth is large enough to consider that

all frequencies experience the same transfer function.
Block fading  the channel states vary slow enough to be considered constant
over many symbols named coherence block.

Abbreviations

ACO ant colony optimization

ASIC application-specific integrated circuit
CDMA code-division multiple access

CLPS closest lattice-point search

CSI channel state information

FA tirefly algorithm

FPGA field-programmable gate array

LLR log-likelihood ratio

MBF modified best-first

MBF-FD modified best-first fast descent

ML maximum likelihood

MMSE minimum mean-square error

OSIC ordered successive interference cancelation
PED partial Euclidean distance

PIC parallel interference cancelation
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PSO particle swarm optimization

QAM quadrature amplitude modulation
SD sphere decoding

SE Schnorr-Euchner

SDM space-division multiplexing

SIC successive interference cancelation
SIR signal-to-interference ratio

SINR signal-to-noise-plus-interference ratio
SNR signal-to-noise ratio

SVD singular value decomposition

ZF zero forcing
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