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Abstract

Antimicrobial resistance is a worldwide problem. Various pathogenic bacteria 
can be resistant to one or several antibiotics, resulting in a serious public health 
problem. Isolation of pathogenic bacteria resistant to multiple last-generation 
antibiotics from hospital samples have been reported. In that sense, the isolation 
of pathogenic strains resistant to members of the quinolone family, from clini-
cal samples, is an increasing phenomenon. Quinolones are a group of synthetic 
broad-spectrum antimicrobials, whose mechanism of action is the inhibition of 
DNA gyrase and topoisomerase IV, with the consequent DNA breakdown and cell 
death due to genotoxic damage. Three mechanisms have been determined by which 
bacteria can be resistant to quinolones: (1) Chromosomal mutations in coding genes 
(mutations that alter the objectives of the drug). (2) Mutations associated with 
the reduction of the intracytoplasmic concentration of quinolones. (3) Plasmid-
mediated quinolone resistance genes (plasmids that protect cells from the lethal 
effects of quinolones). In this chapter, we analyze each of them and provide the 
most current connections and investigations of these processes.

Keywords: antibiotic resistance, quinolones, fluoroquinolones,  
DNA topoisomerase IV, genotoxic damage

1. Background

Antimicrobial resistance has become a serious public health problem in recent 
years. This problem has been increasing and is currently a truly global crisis 
that offers one of the worst forecasts of catastrophic scenarios in public health 
worldwide.

A sign of the seriousness of the problem is the fact that World Health 
Organization (WHO)'s new Global Antimicrobial Surveillance System (GLASS) 
reported the widespread occurrence of antibiotic resistance among 500,000 people 
with suspected bacterial infections across 22 countries [1].

Likewise, Centers for Disease Control (CDC)‘s Antibiotic Resistance Threats in 
the United States (US), in 2019 (2019 AR Threats Report), reported that more than 
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2.8 million antibiotic-resistant infections occur in the US each year, and more than 
35,000 people die as a result. Besides, 223,900 cases of Clostridium difficile occurred 
in 2017 and at least 12,800 people died [2].

Many bacteria produce important infections in human health, either due to 
community-acquired infections, nosocomial infections, or at intensive care units. 
Among these, many have an important phenotypic profile of antibiotic resistance. 
For example, Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than 
Salmonella and Shigella), Pseudomonas aeruginosa, and Acinetobacter spp. [3, 4].

To classify these microorganisms according to the degree of resistance and 
acquired resistance profiles, a group of experts in the field of antimicrobial resis-
tance in joint work with the European Center for the Prevention of Diseases and 
Control (ECDC) and the CDC established the definitions and characteristics among 
resistant bacteria: multidrug-resistant (MDR), extensively drug-resistant (XDR), 
and pan drug-resistant (PDR) bacteria [3, 4].

To establish objective parameters of the phenotypic resistance profile in each 
of these bacteria, epidemiologically significant antimicrobial categories were 
established. These categories were established based on the documents and cut-
off points of the Clinical Laboratory Standards Institute (CLSI), the European 
Antimicrobial Sensitivity Testing Committee (EUCAST), and the US Food and 
Drug Administration (FDA) [3, 4].

Based on the new limits and definitions: MDR bacteria possess acquired resistance 
to at least one antibiotic of three or more categories; XDR bacteria possess resistance 
to at least one antibiotic of almost all categories, except one or two of them; and PDR 
bacteria are resistant to all agents of all categories of antimicrobials [3, 4].

Antimicrobial resistance has been observed in all families of antibiotics, includ-
ing the latest generation and intrahospital antibiotics such as quinolones.

The wide use of quinolones in clinical practice includes the administration of the 
antibiotic in prophylaxis, in neutropenic patients with cancers, in cirrhotic patients 
at risk for spontaneous bacterial peritonitis, and in urologic surgery, among others. 
In many of these cases, strains with varying degrees of resistance to quinolones have 
been isolated [5, 6].

2. History

In 1962, quinolones were discovered as an important treatment for various 
pathological manifestations. The first one was nalidixic acid, which was syntheti-
cally produced by George Lesher at the Sterling-Winthrop Research Institute. It was 
synthesized from the isolation of chloro-1-ethyl-1,4-dihydro-4-oxo-3-quinoline 
carboxylic acid years before, as a product derived from the synthesis of chloroquine 
[7]. Its origin dates back to the use of chloroquine as an antimalarial agent. It was 
until years after its development that nalidixic acid was approved for the treatment 
of urinary tract infections by Gram-negative bacteria. This compound does not have 
an important effect on Gram-positive bacteria, in addition to having a certain cyto-
toxic effect on the gastrointestinal tract and the central nervous system. Its effect on 
Gram-negative bacteria is characteristic of the first generation of quinolones [8].

3. Epidemiology

The indiscriminate prescription of quinolones worldwide has led to a rapid increase 
in bacterial resistance. Acinetobacter spp., Campylobacter spp., Capnocytophaga spp., 
Clostridium spp., Escherichia coli, Klebsiella pneumoniae, Mycobacterium tuberculosis, 
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Neisseria gonorrhea, Proteus mirabilis, P. aeruginosa, Salmonella spp., S. aureus, and 
Streptococcus pneumoniae, among others, have been reported as resistant [7, 9, 10].

The ECDC collects and reports through the European Antimicrobial Resistance 
Surveillance Network (EARS-Net) information of seven bacterial pathogens that com-
monly cause infections in humans: Acinetobacter spp., Enterococcus faecalis, Enterococcus 
faecium, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus 
pneumoniae, and Pseudomonas aeruginosa. Information comparing their profile of resis-
tance to quinolones in Europe between 2015 and 2018 can be found in Table 1 [11, 12].

4. The structure of quinolones

The structure of quinolones derives from two types of rings, a naphthyridine 
core with a nitrogen molecule in positions 1 and 8. Through this structure, the 
compound is limited to being used as a therapy against Gram-negative bacteria. 
However, it has been shown that by inserting a cyclopropyl group in the first posi-
tion of the nitrogen ring, an effect is achieved not only on Gram-negative bacteria 
but also on Gram-positive ones (Figure 1) [13, 14].

The second generation was developed in 1980, from the addition of a fluorine 
atom at position six, resulting in fluoroquinolones. These have higher activity in 
Gram-negative bacteria, as well as Gram-positive bacteria. Some fluoroquinolones 
can inhibit all Gram-negative organisms. Quinolones with piperazine on carbon 7 
are effective in Gram-negative bacteria and the signaling of topoisomerase 4 
(Figure 1) [13, 15–17].

Later, the third generation arises by adding certain molecules in the rings, such 
as the cyclopropyl ring in the first position of nitrogen, improving the activity in 
Gram-positive bacteria. Some of these modifications achieved sensitivity in organ-
ism resistant to different antibiotics, including Streptococcus pneumoniae. Other 
benefits of this generation are a longer life in serum and activity against anaerobic 
organisms (Figure 1) [7, 18, 19].

The fourth generation was later developed by incorporating nitrogen in the 
eighth position, resulting in a broad-spectrum antibiotic. Its action in some Gram-
positive organisms is more effective compared to the other generations; however, 
its activity in anaerobic organisms is limited. It has a superior bacterial selectivity 
to avoid a high level of resistance and its toxic effects are less unfavorable than in 
the other generations [7, 8]. Thanks to the modifications made to the quinolones, 

Bacteria Mean resistance 

percentage

Country with the lowest 

resistance percentage

Country with the highest 

resistance percentage

2015 2018 2015 2018 2015 2018

Acinetobacter spp. 43.7% 36.2% Belgium 
(0%)

Norway 
(0%)

Greece 
(94.9%)

Croatia 
(96.1%)

Escherichia coli 22.8% 25.3% Iceland 
(6.8%)

Finland 
(11.4%)

Cyprus 
(45.5%)

Cyprus 
(42.4%)

Klebsiella 
pneumoniae

29.7% 31.6% Iceland 
(2.9%)

Iceland 
(0%)

Slovakia 
(70%)

Poland 
(68.2%)

Pseudomonas 
aeruginosa

19.3% 19.7% Estonia 
(0%)

Malta 
(0%)

Romania 
(59%)

Slovakia 
(52.4%)

*The EARS-Net report does not contain information about quinolone resistance to other bacteria. Adapted from: 
EARS-Net 2015 and Ecdc. SURVEILLANCE REPORT. 2018 [11, 12].

Table 1. 
Profile of resistance to quinolones of European countries (2015 vs. 2018).
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an improvement in its pharmacokinetics and pharmacodynamics has been obtained, 
thus optimizing absorption, metabolism, and elimination, achieving lower toxicity 
and superiority in the mechanisms of action. It has also been possible to modify the 
half-life of the drug making only one dose per day necessary (Figure 1) [20].

Currently, nine fluoroquinolones have been approved in the US while oth-
ers continue to be used in clinical trials. Information regarding the generations, 
compounds, and spectrum of activity can be found in Table 2.

Figure 1. 
Molecular structure of representative members of each quinolone generation. Based on PubChem public 
archive https://www.ncbi.nlm.nih.gov/pcsubstance [14, 17, 19, 20].

Generation Compounds Activity spectrum

1 Nalidixic acid Gram-negative bacteria (not Pseudomonas spp.)

2 2a Ciprofloxacin, enoxacin, 
norfloxacin

Gram-negative bacteria and atypical pathogens 
(Mycoplasma pneumoniae and Chlamydia pneumoniae)

2b Levofloxacin, lomefloxacin, 
ofloxacin

Gram-negative bacteria, Gram-positive bacteria (not 
Streptococcus pneumoniae), and atypical pathogens

3 Clinafloxacin, gatifloxacin, 
grepafloxacin, sparfloxacin.

Gram-negative bacteria, Gram-positive bacteria 
(Streptococcus pneumoniae) and improved activity 
against atypical pathogens

4 Gatifloxacin, gemifloxacin, 
moxifloxacin, trovafloxacinin

Gram-negative bacteria, Gram-positive bacteria 
(Streptococcus pneumoniae) and improved activity 
against atypical and anaerobic pathogens

Adapted from: Pham TDM, Ziora ZM, Blaskovich MAT [7].

Table 2. 
Classification of quinolones.
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It has been reported that several agents such as Escherichia coli, Klebsiella pneu-
moniae, Neisseria gonorrhoeae, or Staphylococcus aureus have presented significant 
resistance to quinolones [21]. Plasmid-mediated quinolone resistance (PMQR) was 
a completely unexpected event since it was thought that the only mutation would 
occur in genes encoding topoisomerase II identification. Currently, the resistance 
mechanism is multifactorial. However, the most common quinolone resistance 
mechanism is topoisomerase mutations [15, 22].

The excessive use of this type of drug has caused the incidence rates of hyper-
sensitivity to increase more and more, taking the second place of antibiotics with 
a greater number of hypersensitivity reactions in in-hospital patients. The main 
agents that cause hypersensitivity are ciprofloxacin, levofloxacin, and moxifloxacin. 
This has positioned quinolones as the non-beta-lactam antibiotics with the highest 
incidence of hypersensitivity reactions [23, 24].

5. Mechanism of action

The mechanism of action of quinolones is based on the inhibition of bacterial 
topoisomerases II and IV. Topoisomerases are enzymes responsible for maintaining 
the tertiary structure of DNA during various cellular processes, such as synthesis, 
replication, condensation, and decondensation of DNA, among others [25–29].

Topoisomerase II, also known as DNA gyrase, is considered a negative  
supercoiling enzyme, which means that it cuts the two strands of DNA and propitiates 
that the DNA is twisted to the left producing a twist in a way contrary to the direction 
of the double helix. This enzyme participates in the DNA winding and relaxation 
during various processes, mainly in the synthesis and replication of DNA [30, 31].

The DNA gyrase consists of a heterotetramer, which is formed by two GyrA 
subunits and two GyrB subunits. The GyrA subunits participate in the union with 
the DNA and are responsible for making the double helix cuts. The GyrB subunits 
possess ATPase activity [30].

Topoisomerase IV is responsible for preventing the chromatids from being 
chained, meaning it participates in the separation of daughter chromatids after 
DNA replication [32].

Like DNA gyrase, topoisomerase IV is made up of a tetramer. It has two ParC 
subunits and two ParE subunits. These subunits possess homologous activity of 
GyrA and GyrB, respectively [32].

When quinolones interact and inhibit topoisomerase II and IV, it induces DNA 
breakdown and cell death due to genotoxic damage [27–29].

6. Resistance mechanisms

To counteract the effect of quinolones, bacteria have developed various resis-
tance mechanisms to these antibiotics. Bacterial resistance to quinolones is mainly 
based on three points (Table 3, Figure 2):

1. Chromosomal mutations in coding genes (mutations that alter the objectives 
of the drug).

2. Mutations associated with the reduction of the intracytoplasmic concentration 
of quinolones.

3. PMQR genes (plasmids that protect cells from the lethal effects of  
quinolones) [33].
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6.1  Chromosomal mutations in coding genes (mutations that alter the objectives 
of the drug)

The quinolone resistance associated with chromosomal mutations occurs due 
to errors in the replication of the genes encoding the GyrA subunits of DNA gyrase 
and ParC of topoisomerase IV [33, 35].

In the amino acid sequences of the GyrA and ParC subunits, there are specific 
regions that interact with the DNA. In these regions, there are conserved domains 
called quinolone resistance determining region (QRDR) [31, 35–39].

It is precisely in the sequences that code for each of the QRDR domains of the 
GyrA and ParC subunit genes, where such mutations occur [31, 35–39].

It has been reported that quinolone resistance may also occur due to mutations 
in the genes encoding the GyrB and ParE subunits; however, they do not occur so 
frequently and their clinical value appears to be very limited [35, 40, 41].

There is evidence that in Gram-negative bacteria, DNA gyrase turns out to be 
more susceptible to inhibition than topoisomerase IV. On the other hand, in Gram-
positive bacteria, the opposite phenomenon occurs; that is, that topoisomerase IV 
is more susceptible to inhibition than gyrase. However, certain bacteria show the 
opposite effect, being the exception to the rule [31, 42, 43].

Therefore, we can affirm that the phenomenon of resistance in the majority 
of Gram-negative bacteria occurs mainly in GyrA, while in most Gram-positive 
bacteria the inhibition of ParC is the most important [31, 42, 43].

Summarizing, mutations that occur in the sequences encoding the QRDR 
domains in both GyrA-ParC and GyrB-ParE favor a decrease in the binding  
affinity of quinolones with the DNA–DNA gyrase and DNA-topoisomerase  
IV complex [33, 35].

Mechanism Description

Chromosomal  
mutations in coding 
genes

Occurs due to errors in the replication of the genes encoding the GyrA subunits 
of DNA gyrase and ParC of topoisomerase IV

Mutations associated 
with the reduction of 
the intracytoplasmic 
concentration of 
quinolones

Occurs due to mutations that lead to a decrease in the intracytoplasmic 
concentration of the antibiotic. It may happen through:

Overexpression of 
efflux pumps from the 
resistance-nodulation-cell 
division

Both Reduction of the 
membrane permeability 
by downregulation 
of extra-membrane 
proteins

Plasmid-mediated 
quinolone resistance 
genes

Occurs due to the activation of plasmid-mediated quinolone resistance genes. 
Among them are:

Qnr’s encode proteins that 
protect DNA gyrase and 
topoisomerase IV

AAC(6′)-lb-cr 
acetylates 
quinolones with 
an appropriate 
amino nitrogen 
target

QepA and OqxAB, 
which increase the 
outflow of quinolones 
through efflux pumps

Adapted from: Álvarez-Hernández DA, Garza-Mayén GS, Vázquez-López R. Quinolones. Nowadays perspectives 
and mechanisms of resistance [34].

Table 3. 
Mechanisms of resistance to quinolones.
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6.2  Mutations associated with the reduction of the intracytoplasmic 
concentration of quinolones

Another important quinolone resistance mechanism consists in the ability of 
the bacteria to decrease the intracytoplasmic concentration of the antibiotic; this 
decrease in concentration is determined by certain mutations.

This phenomenon is achieved through three mechanisms:

1. Efflux pumps that promote the active transport of quinolones to the outside of 
the bacterial cell.

2. Decreased membrane permeability toward the antibiotic.

3. A combination of both mechanisms.

It has been described that only efflux pumps participate in Gram-positive 
bacteria as mechanisms to reduce the intracytoplasmic concentration of quinolones 
since there is no evidence that the decrease in cytoplasmic membrane permeability 
participates in this type of bacteria [44].

On the other hand, Gram-negative bacteria do have both mechanisms and 
participate in a complementary way with one another, the decrease in permeability 
in the cytoplasmic membrane being the most important for these bacteria [45].

These two mechanisms involved in the decrease of the intracytoplasmic concen-
tration of quinolones are not induced by the drugs themselves. There is evidence 
that these two mechanisms occur because of mutations in genes that encode regula-
tory proteins that control transcription of the outflow pump or genes that code for 
porin synthesis [35, 46].

Figure 2. 
Schematic representation of the mechanisms of bacterial resistance to quinolones. Based on Susana Correia 
et al. [22].
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6.2.1  Mutations associated with the reduction of the intracytoplasmic 
concentration of quinolones in Gram-positive bacteria

This resistance mechanism in Gram-positive bacteria is associated with the pres-
ence of chromosomally encoded efflux pumps that decrease the intracytoplasmic 
concentration of the antibiotic, giving the bacteria the characteristic of being MDR.

Efflux pumps are classified into two groups: primary active transporters and 
secondary active transporters [47].

The primary active transporter proteins are pumps that use ATP as a source of 
energy. This type of primary active transporter integrates the members of the ATP-
binding cassette (ABC) superfamily [48–50].

On the other hand, the secondary active transporter proteins use the energy 
obtained by the difference of chemical gradients formed by either protons or ions, 
for example, sodium ions [48, 49].

Four types of secondary active transporter proteins have been identified: 
[47–49].

1. The small multidrug-resistance (SMR) family

2. The major facilitator superfamily (MFS)

3. Multidrug and toxic compound extrusion (MATE) family

4. The resistance-nodulation-cell division (RND) superfamily.

6.2.1.1 SMR (the small multidrug-resistance family)

Members of this family are proteins made up of an antiparallel dimer. Each 
monomer of this dimer has four transmembrane helices (TM1, TM2, TM3, and 
TM4). The TM 1 to M3 helices comprise the substrate binding pocket, while each 
TM4 helix is responsible for SMR TM4-TM4 dimerization [51–53].

The members of the SMR family are associated with resistance to various toxic 
compounds and some antibiotics; however, they do not appear to play a relevant 
role in resistance to quinolones.

6.2.1.2 MFS (the major facilitator superfamily)

Concerning efflux pumps related to the intracytoplasmic decrease in quinolone 
and consequently linked to resistance to this drug, they are efflux pumps that are 
part of the MFS. Three members of this family associated with quinolone resistance 
have been identified: NorA, NorB [50], and NorC [54]. Overexpression of each of 
three efflux pumps increases resistance to quinolones four to eight times [33].

6.2.1.2.1 NorA

The chromosomal gene that codes for NorA could be identified in 1986 from the 
isolation of Staphylococcus aureus obtained from a urine sample from a patient who 
had received treatment with norfloxacin at Teikyo University Hospital Japan [55]. 
It has been observed that NorA participates in the pumping of various quinolones, 
mainly ciprofloxacin and norfloxacin [56, 57].

Subsequent studies of genetic diversity described three alleles for the 
NorA gene [58]: NorAI (Yoshida), NorAII (Noguchi), and NorAIII (Kaatz). 
A correlation has been observed between the different types of NorA alleles 
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and specific lineages of S. aureus. This fact suggests that there is a correlation 
between the NorA variants and the population structure (lineages) of this 
bacterium [58].

6.2.1.2.2 NorB

It has been described that the expression of the efflux pump NorB gives certain 
bacteria (e.g., Staphylococcus aureus) the adaptability in tissue infection condi-
tions, even in the absence of antibiotics. This fact occurs because NorB gives 
Staphylococcus aureus the ability to eliminate antibacterial substances present in the 
abscess and produced as a defense mechanism by the host. In this way, NorB not 
only participates in the quinolone resistance mechanism but also contributes to the 
pathophysiology of certain infections [59].

6.2.1.2.3 NorC

The efflux pump Norc enhances the exit of quinolones such as ciprofloxacin, 
garenoxacin moxifloxacin, and sparfloxacin out of the bacterial cell. Its expression 
is regulated negatively by MgrA [54].

Many regulatory proteins participate in a complex regulatory process in the 
gene expression of NorA, NorB, and NorC. One of these regulatory proteins 
is MgrA, which shows the ability to bind to the NorA promoter region. The 
overexpression of MgrA causes the inhibition of the expression of NorA, NorB, 
and NorC, in the opposite, resistance to quinolones is associated with a low 
activity of MgrA and the consequent overproduction of NorA, NorB, and NorC 
that will promote a decrease in the intracytoplasmic concentration of the drug 
[54, 60–62].

There is evidence that MgrA activity could be determined by environmental 
conditions in which the bacterium is found. Acid conditions, oxidative, as well as 
the presence of iron, could alter the activity of MgrA and consequently the expres-
sion of NorA, NorB, and NorC and its effect on the pumping of quinolone and its 
concentration in the bacterial cytoplasm [35, 59, 63–65].

On the other hand, another transcriptional regulator, called NorG, which 
activates the expression of NorA and NorB but suppresses the expression of NorC, 
has been described. It is important to understand that the regulation of the gene 
expression of NorA, NorB, and NorC results from a complex molecular framework 
where both activators and inhibitors participate and the balance between them, as 
well as the environmental and nutritional conditions in which the bacteria devel-
ops, will give as a result the resistance or the lack of it to quinolones [35, 61, 62, 66].

6.2.1.3 Other members of the MFS (major facilitator superfamily)

6.2.1.3.1 MdeA

MdeA gen was identified in an open reading frame (ORF) expression library of 
the S. aureus genome. The efflux pump protein MdeA belongs to the MFS using the 
proton motive force to energize the transport of its substrates [67, 68].

MdeA confers resistance to the biocides benzalkonium chloride, dequalinium, 
tetraphenylphosphonium, and to the dye ethidium bromide [67]. MdeA also 
confers resistance to multiple antibiotics among which are fusidic acid, mupirocin, 
novobiocin, and virginiamycin, and to some extent toward ciprofloxacin and 
norfloxacin [67, 68].
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6.2.1.3.2 SdrM

In 2006 Yamada et al. cloned a new gene called SA1972 isolated from 
Staphylococcus aureus. The product obtained was called SdrM and it was proven that 
it conferred resistance to the bacteria against, acriflavine, ethidium bromide, and 
norfloxacin. SdrM was classified as an efflux pump belonging to the MFS [69].

6.2.1.3.3 QacB (III)

The qacA and qacB genes that code for efflux pump proteins (QacA and QacB, 
respectively) are present in methicillin-resistant Staphylococcus aureus (MRSA). 
The efflux pump QacA has two isoforms, while the pump QacB has four known as 
QacBI, QacBII, QacBIII, and QacBIV. It has been observed that the QacBIII variant 
confers resistance to S. aureus to fluoroquinolones [70].

6.2.1.4 MATE (multidrug and toxic compound extrusion family)

6.2.1.4.1 MepA

The efflux pump MepA belongs to the multidrug and toxic compound extrusion 
(MATE) family. MepA gives the bacterium a phenotypic MDR profile associated 
with low-level resistance to some quaternary ammonium compounds. It also confers 
resistance to certain antibiotics, mainly toward glycylcyclines and to a lesser extent 
resistance to ciprofloxacin and norfloxacin [71–73].

In addition to the efflux pump described above, there are other transporters in 
Gram-positive bacteria that participate in the decrease in the intracytoplasmic con-
centration of quinolones in the bacterial cell, participating in resistance to this drug. 
Some of these transporters are LmrS, Bmr, Bmr3 and Blt, PmrA66, LmrP67, PatAB69, 
SatAB70, LmrA71, FepA, FepR, and TetR [35].

6.2.2  Mutations associated with the reduction of concentration in Gram-negative 
bacteria

6.2.2.1 RND (resistance-nodulation-cell division superfamily)

Gram-negative bacteria use efflux pumps belonging to the RND superfamily as 
the main mechanism of resistance to quinolones. The efflux pump RND pumps are 
a molecular complex consisting of three elements (Figure 3) [49, 74–77]:

1. In the inner membrane is RND pump protein.

2. An adapter protein from the MFP (membrane fusion protein) family located in 
the periplasmic space.

3. In the outer membrane is an outer membrane channel protein (OMP) belong-
ing to the outer membrane factor (OMF) family.

The adapter protein MFP links the pump RND and the OMF protein [49, 74–77].
In E. coli, the presence of five RND efflux transporters has been reported:

1. AcrAB [78, 79]

2. AcrAD [80, 81]

3. AcrEF [82]
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4. MdtABC [83, 84]

5. MdtEF [85, 86]

6.2.2.2 AcrAB-TolC [acriflavine (Acr) efflux system]

The AcrAB-TolC or acriflavine (Acr) efflux system consists of three  
elements [75, 87]:

1. The outer-membrane channel TolC

2. In the periplasmic space is the AcrA protein, which bridges these two integral 
membrane proteins

3. In the inner membrane is the secondary transporter AcrB.

There is evidence that the ratio between the proteins that make up this complex 
is 3: 6: 3, comprising an AcrB trimer, an AcrA hexamer, and a TolC trimer [75, 87].

It has been shown that various dyes can be accommodated in the transmembrane 
domain of the Acr efflux system, as well as doxorubicin, minocycline, and quino-
lone molecules [88, 89].

6.2.2.2.1 AcrAD

AcrAD is an antibiotic efflux pump complex of the RND type. It provides 
resistance to aminoglycosides such as amikacin, gentamicin, and tobramycin. There 
is no known effect on quinolone resistance [80, 90].

6.2.2.2.2 AcrEF

AcrEF is an antibiotic efflux pump complex of the resistance-nodulation-cell 
division (RND) type. It provides resistance to cephalosporins, cephamycins, fluoro-
quinolones, and penams [91, 92].

Figure 3. 
Schematic representation of molecular structure of RND (resistance-nodulation-cell division superfamily). 
Based on Eun-Hae Kim et al. [77].
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6.2.2.2.3 MdtABC

MdtABC is an antibiotic efflux pump complex of the resistance-nodulation-
cell division (RND) type. It provides resistance to aminocoumarins, which have a 
mechanism of action similar to quinolones [93, 94].

6.2.2.2.4 MdtEF

MdtEF is an antibiotic efflux pump complex of the RND type. It provides 
resistance to fluoroquinolones, macrolides, and penams [82].

6.2.2.3  Other members of the RND (resistance-nodulation-cell division 
superfamily)

6.2.2.3.1 MexAB-OprM efflux system

MexAB-OprM efflux system is an antibiotic efflux pump complex of the RND 
type. It provides resistance to multiple antibiotics, including aminocoumarins, 
carbapenems, cephalosporins, cephamycins, diaminopyrimidines, fluoroquino-
lones, macrolides, monobactams, penams, phenicols, peptides, sulfonamides, and 
tetracyclines [95, 96].

6.2.2.3.2 MexCD-OprJ with type A NfxB mutation

MexCD-OprJ with type A NfxB mutation is an antibiotic efflux pump complex 
of the RND type. It provides resistance to the aminocoumarins, cephalosporins, 
diaminopyrimidines, fluoroquinolones, macrolides, penams, phenicols, and 
tetracyclines [97].

6.2.2.3.3 MexCD-OprJ with type B NfxB mutation

MexCD-OprJ with type B NfxB mutation is an antibiotic efflux pump complex 
of the RND type. It provides resistance to the aminocoumarins, aminoglycosides, 
cephalosporins, diaminopyrimidines, fluoroquinolones, macrolides, penams, 
phenicols, and tetracyclines [97].

6.2.2.3.4 MexEF-OprN

MexEF-OprN is an antibiotic efflux pump complex RND. It provides resistance 
to diaminopyrimidines, fluoroquinolones, and phenicols [98].

6.2.2.3.5 MexXY-OprM

MexXY-OprM is an antibiotic efflux pump complex RND. It provides resis-
tance to the acridine dye, aminoglycosides, carbapenems, cephalosporins, 
cephamycins, fluoroquinolones, macrolides, penams, phenicols, and tetracyclines 
[96, 99, 100].

6.2.2.3.6 CmeABC

CmeABC is an antibiotic efflux pump complex RND. It provides resistance to 
cephalosporins, fluoroquinolones, fusidic acid, and macrolides [101, 102].
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6.2.2.3.7 AdeIJK

AdeIJK is an antibiotic efflux pump complex RND. It provides resistance to car-
bapenems, cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamides, 
macrolides, penems, phenicols, rifamycins, and tetracyclines [103].

6.2.2.3.8 AdeABC

AdeABC is an antibiotic efflux pump complex RND. It provides resistance to 
glycylcyclines and tetracyclines [104, 105].

6.2.2.3.9 AdeL

AdeL is an antibiotic efflux pump complex RND. It provides resistance to fluoro-
quinolones and tetracyclines [106].

6.2.2.3.10 SmeDEF

SmeDEF is an antibiotic efflux pump complex RND. It provides resistance to 
fluoroquinolones, macrolides, phenicols, and tetracyclines [107].

Other molecular complexes associated with decreasing the intracytoplasmic 
concentration of antibiotics in Gram-negative bacteria include:

6.2.2.4  Members of the MFS (major facilitator superfamily) in Gram-negative 
bacteria

6.2.2.4.1 EmrAB-TolC

EmrAB-TolC is an antibiotic efflux pump belonging to MFS. It provides resis-
tance to fluoroquinolones [108].

6.2.2.4.2 MdfA

MdfA is an antibiotic efflux pump belonging to MFS. It provides resistance to 
benzalkonium chloride, fluoroquinolones, rhodamine, and tetracyclines [109, 110].

6.2.2.5 Other Gram-negative mechanisms

Other molecular complexes associated with decreasing the intracytoplasmic 
concentration of antibiotics in Gram-negative bacteria include:

6.2.2.5.1 Porin OprF

The OprF porin channel is permeable to quinolones and other antibiotics, 
promoting its outflow and decreasing intracytoplasmic concentration and conse-
quently is a mechanism of antibiotic resistance for the bacteria [111, 112].

6.3  Plasmid-mediated quinolone resistance genes (plasmids that protect cells 
from the lethal effects of quinolones)

In 1998 at the University of Alabama, from the isolation of Klebsiella pneumoniae 
from a urine sample, Martinez et al. managed to identify a plasmid they named 
pMG252. They demonstrated that this plasmid induced bacterial resistance to 
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fluoroquinines and nalidixic acid. This resistance phenomenon could be induced in a 
variety of bacteria deficient in outer-membrane porins. They also described that this 
plasmid promoted the acceleration of resistance development and its propagation. 
The gene responsible for this resistance was called qnr, later it became qnrA [113, 114].

In 2002, Tran and Jacoby, working with the qnr plasmid, managed to identify an 
integron-like environment upstream from qacEΔ1 and sulI. The product obtained 
from this gene was a 218-aa protein called QnrA. This protein belonging to the 
pentapeptide repeat family shared sequence homology with the immunity protein 
McbG. Previous studies suggested that McbG protects DNA gyrase from the action 
of various genotoxic chemicals [115].

Based on the mechanism of action of quinolones (the inhibition of topoisomerases 
I and IV) and the similarity of QnrA to McbG, Tran and Jacoby determined the ability 
of QnrA to induce resistance against quinolones by topoisomerase protection [115].

In 2005, two independent teams managed to determine the same activity as 
QnrA for two other proteins identified as QnrB [116] and QnrS [117].

Subsequent studies of the qnrA plasmid found that this plasmid was able to promote 
greater resistance than expected and that is how, in 2006, Ari Robicsek et al. discovered 
another mechanism of action of resistance to quinolones mediated by the enzymatic 
action of aminoglycoside acetyltransferase, AAC(6′)-Ib-cr. They also reported that the 
quinolone resistance mechanism was determined by reduction of the activity of cipro-
floxacin by N-acetylation at the amino nitrogen on its piperazinyl substituent [118].

In 2007, three groups of researchers separately demonstrated another resistance 
mechanism encoded by plasmids. These works, in correlation with Martinez’s 
works, involve quinolone efflux pumps mediated by plasmids QepA [119, 120] and 
OqxAB [121].

In summary, there are three mechanisms for PMQR:

1. The plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC encode proteins 
from the pentapeptide repeat family that protects DNA gyrase and topoisom-
erase IV from quinolone inhibition. The qnr genes are generally associated with 
mobilizing or transposable elements in plasmids and are often incorporated 
into sul1-type integrons.

2. The second mechanism mediated by plasmids involves acetylation of quino-
lones with an appropriate amino nitrogen target by a variant of the common 
aminoglycoside acetyltransferase AAC(6′)-Ib-cr.

3. Improved outflow produced by plasmid genes for QepAB and  
OqxAB pumps.

7. Concluding remarks

Bacterial resistance to antibiotics is a serious problem worldwide and offers the 
bleakest outlook and prognosis. The number of reports of isolation of multiresistant 
strains is increasing, including antibiotics of the latest generation or exclusive intra-
hospital use. In this sense, isolates of strains resistant to practically all members of 
the quinolone family have been reported.

The implementation of appropriate practices in the use of antibiotics plays an 
important role in the fight against this serious global problem. The proper manage-
ment of antibiotics must include limiting their use in the livestock, agricultural, and 
food industries; as well as the correct medical prescription, avoiding self-medica-
tion, and always seeking adherence to the full antibiotical treatment scheme.
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