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Chapter

Lead-Free Perovskite 
Nanocomposites: An Aspect for 
Environmental Application
Manojit De

Abstract

Perovskites possess an interesting crystal structure and its structural properties 
allow us to achieve various applications. Beside its ferroelectric, piezoelectric, 
magnetic, multiferroic, etc., properties, these branches of materials are also useful 
to develop materials for various environmental applications. As the population is 
increasing nowadays, different type of environmental pollution is one of the grow-
ing worries for society. The effort of researchers and scientists focuses on develop-
ing new materials to get rid of these individual issues. With modern advances in 
synthesis methods, including the preparation of perovskite nanocomposites, there 
is a growing interest in perovskite-type materials for environmental application. 
Basically, this chapter concludes with a few of the major issues in the recent envi-
ronment: green energy (solar cell), fuel cell, sensors (gas and for biomedical), and 
remediation of heavy metals from industrial wastewater.

Keywords: perovskite, nanocomposite, fuel cell, sensors, solar cell, heavy metals, 
wastewater treatment

1. Introduction

Perovskites possess a very interesting crystal structure; are basically a combination 
of three basic crystal structures (simple cubic structure, body center cubic structure, 
and face-centered cubic structure). The extraordinary range of structure and proper-
ties interplay of perovskites makes them an exceptional research field for different 
branches like materials science, physics and solid-state chemistry. A wide range of 
unique functional materials and device ideas can be predicted through a basic under-
standing of the correlation between structural and chemical compatibility.

The perovskite structure is shown to be the single most adaptable ceramic host. 
Inorganic perovskite-type oxides are attractive compounds for varied applications 
due to its large number of compounds, they exhibit both physical and biochemical 
characteristics and their nano-formulation have been utilized as catalysts in many 
reactions due to their sensitivity, unique long-term stability, and anti-interference 
ability. Some perovskite materials are very hopeful applicants for the improvement 
of effective anodic catalysts performance. Depending on perovskite-phase metal 
oxides’ distinct variety of properties they became useful for various applications 
they are newly used in electrochemical sensing of alcohols, glucose, hydrogen-
peroxide, gases, and neurotransmitters. Perovskite organometallic halide showed 
efficient essential properties for photovoltaic solar cells.
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1.1 The basic structure of perovskites

Figure 1 depicts the ideal perovskite structure. In the ideal crystal structure 
of perovskite with general formula ABX3; where “A” and “B” are generally metal 
cations and “X” is an oxide or halide like Cl, Br, I, etc., “A” can be Ca, K, Na, Pb, Sr, 
and other rare-earth metals which occupy the 12-fold coordinated sites between the 
octahedra. “X” forms the BX6 octahedra where B located at the center of octahedra. 
Perovskite can be described as consisting of corner-sharing [BX6] octahedra with 
the A-cation occupying the 12-fold coordination site formed in the middle of the 
cube of eight such octahedra. In an ideal cubic unit cell of perovskite, Wyckoff posi-
tions for A- ion is at cube-corner positions (0, 0, 0); ion B sites at body center posi-
tion (1/2, 1/2, 1/2) and ion X sits at face-centered positions (1/2, 1/2, 0). Figure 2 
shows the elements which can be in A-site, B-site from the periodic table.

In ideal perovskite such as SrTiO3 [3], CsSnBr3 [4], etc., there is no such 
 distortion in the unit cell. There are many different types of lattice distortions 
that can happen due to the flexibility of bond angles within the ideal perovskite 
 structure [5].

i. Distortion in BX6 octahedra, by the Jahn-Teller effect.

ii. Off-center displacement of B-cation in BX6 octahedra, this one of the causes 
for ferroelectricity in these type of materials.

iii. So-called tilting in octahedra framework, usually occurring as a result of too 
small A-cations at cuboctahedral site.

iv. Ordering of more than one type of cations A or B, or of vacancies.

v. Ordering of more than one kind of anions X, or of vacancies.

The different physical properties (mainly electronic, magnetic, dielectric, and 
piezoelectric properties) of perovskite materials are crucially dependent on these 
distortions. The distortion as a consequence of cationic substitution can be used to 
fine-tune physical properties exhibited by perovskite.

Figure 1. 
The ideal structure for perovskite; blue balls represent the A-site, yellow ball shows the B-site, and magenta 
balls showing the position of X anion (face center position) [1].
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In the case of perovskite structure (closed packed), A-cation must fit among 
four BX6 octahedra. Each A-cation is surrounded by 12 nearest X-anions (12-
fold coordination). Therefore A-cations have limited space to accommodate itself in 
the interstitial position. In the case of ideal perovskite structure, the cell axis (a) is 
geometrically related to the ionic radii (𝑟𝐴, 𝑟𝐵, and 𝑟𝑋) as described in the following 
equation.

 ( ) ( )= + = +2 2
A X B X

a r r r r  (1)

The ratio of the two expressions for the cell length is called Goldschmidt’s toler-
ance factor (t) and it allows us for evaluating the degree of distortion in the unit 
cell. The expression for Goldschmidt’s tolerance factor [6] is as follows.

 
( )
( )
+

=
+2

A X

B X

r r
t

r r
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where 𝑟𝐴 is the radius of A-cation is, 𝑟𝐵 is the radius for B-cation and 𝑟𝑋 is the 
radius for X-anion.

1.2 Why lead-free?

Lead (and its oxide form) is highly hazardous and its harmfulness is further 
improved due to its volatilization at high temperature mainly during calcination 
and sintering causing environmental pollution during different sample preparation 
techniques [7]. According to the European Union (EU), hazardous substances like 
lead and other heavy metals is planning to strictly prohibit [8, 9].

1.2.1 Toxicity effects of lead

The main indications of lead poisoning are tiredness, muscles and joints 
pain, abdominal uneasiness, etc. Sometimes the deposition of lead sulfide 

Figure 2. 
A map of the elements in the periodic table which can occupy the A, B, and/or X sites [2].



Perovskite and Piezoelectric Materials

4

can be found out in the dental margin of the gums of the patients having poor 
dental hygiene. Lead harming has been considered as a health hazard, for its 
bad effects on neurological and cerebral development [10–12]. The main route 
of absorption in adults is the respiratory region where 30–70% of inhaled lead 
(typically the inorganic form like oxides and salts) goes into the cardiovascular 
system. The maximum tolerance of lead in blood ranges from 1.45 to 2.4 mol L−1 
(30–50 g 100 mL−1) with a provision of 6 monthly observations [13]. Basically, 
lead has few significant biochemical properties that give toxic effects on the 
human biological system. (i) As lead is electropositive in nature, it shows a very 
high affinity for the enzymes, which are necessary for the synthesis of hemoglo-
bin. (ii) The divalent lead behaves similarly to calcium preventing mitochondrial 
oxidative phosphorylation as a result intelligence quotient (IQ ) got reducing. 
(iii) The transcription of DNA can also disturb by lead by interacting with bind-
ing protein and nucleic acids [14, 15]. Figure 3 illustrated the adverse effect of 
lead on the human body.

Bearing in mind the hazardous effect of Pb in Pb-based compounds, the 
research communities focused on designing the materials which are basically 
Pb-free. Hence, this chapter concludes with some Pb-free perovskite-type materials 
for the environmental application point of view.

Figure 3. 
Schematic diagram for toxic effect of lead on human body.
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2.  Application of Pb-free perovskites from a different aspect  
of environmental

2.1 Perovskites as solid oxide fuel cells

Recently, the inorganic perovskite-type of oxide nanomaterials have been widely 
applied in the processing of chemically modified electrodes [16, 17]. They have 
acknowledged considerable attention in the last few decades because of their catalytic 
activity in diverse processes like purification of waste gas and catalytic combustion.

In the fuel cell, there is a direct conversion of chemical energy into electrical 
energy similar to a battery. These are attractive because of their great efficiency, low 
emission, almost zero pollution (basically noise pollution). The solid oxide fuel cells 
(SOFCs) have come into the picture as effective substitutions to the combustion 
engines due to their prospective to minimize the environmental impact of the use of 
conventional fossil fuels. Perovskite oxides exhibited attractive properties like a high 
electrical and ionic conductivity similar to that of metals and the perfect mix of these 
two types [18]. This mixed conduction properties of perovskite oxides are advanta-
geous for electrochemical reaction. The working principle of a SOFC is depicted by 
Figure 4 [19]. The perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ used as an effective cathode for 
intermediary SOFC reported by Shao and Haile. This cathode unveiled the maxi-
mum power density of 402 and 1010 mW cm−2 at 500 and 600°C, respectively [20]. 
The combination of single and double perovskite oxide Ba0.5Sr0.5(Co0.7Fe0.3)0.6875W0.

3125O3−δ (B-SCFW) was investigated by Shin et al. [21] for self-assembled perovskite 
composites for SOFC. In contrast, Goodenough reported that the double perovskite 
Sr2MgMnMoO6-δ can act as an anode material for SOFC with dry methane as the fuel 
and it shows maximum power density of 438 mW cm−2 at 800°C. This anode mate-
rial exhibited long-term stability and having oxygen insufficiency, as well as some 
good environmental effects like tolerance to sulfur, stability in reducing atmosphere 
[22]. Table 1 enlisted with some perovskites used as anode and cathode for SOFCs.

Figure 4. 
Diagram illustrates the working principle of SOFC [19].
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2.2 Perovskites as sensor

2.2.1 Perovskites as glucose sensor

It is very essential to determine hydrogen peroxide (H2O2) and glucose analyti-
cally in any aspect of our daily life. In environmental waste management, chemical 
and food industries, and medical diagnostics H2O2 widely used as one of the most 
important oxidizing agents [29]. On the other hand, glucose represents a funda-
mental component in human blood that delivers energy through the metabolic 
process. If in human blood, the glucose concentration fluctuates than the normal 
range of 80–120 mg dL−1 (4.4–6.6 mM) is related to the metabolic disorder from 
insulin insufficiency and hyperglycemia, the so-called diabetes mellitus [30]. To 
perform the diagnosis and supervision of such health issue it is necessary a tight 
observation of glucose level of blood. Hence, it is very significant to make the 
biosensors for the sensitive determination of glucose and H2O2. Basically, there are 
two types of glucose sensors available: enzymatic and non-enzymatic. Different 
types of enzymatic glucose sensors were constructed and used in the literature 
exhibiting the advantages of simplicity and sensitivity. However, enzymatic glucose 
sensors suffered from the lack of stability and the difficult procedures required for 
the effective immobilization of the enzyme on the electrode surface. The lack of 
enzyme stability was attributed to its intrinsic nature because the enzyme activity 
was highly affected by poisonous chemicals, pH, temperature, humidity, etc. As a 
result, most attention was given for a sensitive, simple, stable, and selective non-
enzymatic glucose sensor. Different novel materials were proposed for the electro-
catalytic oxidation of glucose like noble nanometals, nanoalloys, metal oxides, and 
inorganic perovskite oxides. Inorganic perovskite oxides as nanomaterials exhibited 
fascinating properties for glucose sensing like ferroelectricity, superconductivity, 
charge ordering, high thermopower, good biocompatibility, catalytic.

Wang et al. utilized a carbon paste electrode (CPE) modified with LaNi0.5Ti0.5O3 
(LNT) as a promising nonenzymatic glucose sensor. This glucose sensor displayed a 
perfect electrochemical activity and was used to quantify of glucose with great sen-
sitivity of 1630.57 μA mM−1 cm−2 and a low detection limit of 0.07 μM. This glucose 
sensor also demonstrated an excellent reproducibility, long-term immovability, as 
well as outstanding selectivity with no interference from the common interfering 

Perovskite 

compositions

Anode/

cathode 

In cell

Fuel used Operating 

temperature 

(°C)

Maximum 

power 

density 

(mW cm−2)

Reference

Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode Humidified H2 

(~3% H2O)

500 402 [20]

600 1010

Ba0.5Sr0.5Co0.2Fe0.8O3-δ Cathode Humidified H2 800 266 [23]

NdFeO3 Anode Sulfur vapor 

or SO2

620 0.154 [24]

650 0.265

La0.6Sr0.4Fe0.8Co0.2O3 Cathode Glycerol 800 Not reported [25]

Sm0.5Sr0.5CoO3-δ Cathode Not reported 700 936 [26]

La0.8Sr0.2Cr0.97V0.03O3 Anode Dry methane 800 Not reported [27]

La0.75Sr0.25Cr0.5Mn0.5O3 Anode Methane Not reported Not reported [28]

Table 1. 
Summary report of few Pb-free perovskites used in SOFCs.
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substances such as dopamine, ascorbic acid, and uric acid [31]. The perovskite-
spinel type composite oxide LaNi0.5Ti0.5O3-NiFe2O4 with different compositions was 
demonstrated as the glucose sensor by Wang et al. This material also exhibits admi-
rable reproducibility, stability and selectivity in glucose sensitivity with a linear 
signal-to-glucose concentration range of 0.5–10 mM and a detection limit (S/N = 3) 
of 0.04 mM [32]. Furthermore, LaxSr1-xCoyFe1-yO3-δ (x = 0.6; y = 0.0 and 0.2) 
perovskites were studied as electro-catalytic materials for H2O2 and glucose electro-
chemical sensors by Liotta et al. [33]. The group of Atta et al. has reformed SrPdO3 
perovskite with gold nanoparticles to be employed as a non-enzymatic voltammetric 
glucose sensor. This nanocomposite disclosed an excellent performance to glucose 
sensing in terms of highly reproducible response, high sensitivity, low detection 
limit, appreciable selectivity, long-standing stability [34]. He et al. depicted that the 
perovskite oxide La0.6Sr0.4CoO3-δ can provide superior electro-oxidation activities 
(to H2O2 and glucose) over La0.6Sr0.4Co0.2Fe0.8O3-δ and LaNi0.6Co0.4O3 that translates 
to good H2O2 or glucose detection performance. They have modified the sensor by 
making composite with reduced graphene oxide (RGO) and La0.6Sr0.4CoO3-δ for 
exhibiting higher detection properties and improved selectivity [35].

2.2.2 Perovskites as a gas sensor

The clean air is undoubtedly most necessary than water for human health, but 
unfortunately, human activities accompanying socioeconomic developments are 
the vital pollution sources. So, it is very important to closely observe the quality of 
the air, including the indoor air quality (IAQ ) as we spent most of our time (~90%) 
of our time in the indoor climate, to prevent different unusual symptoms [35–37]. 
Thus, researchers and scientists across the whole globe have been developing new and 
advanced material based innovative methods for consistent and careful detection of 
gases and volatile organic compounds (VOCs) hazardous to human and environmen-
tal health [38, 39]. The environmental worries about health hazards due to the exis-
tence of poisonous gases, for example, CO, CO2, NO2, O3, etc., and subsequent safety 
regulations have demanded the enhanced use of sensors in various sceneries from the 
industrial sites to automobiles, the different workplaces and even homes. Among the 
several toxic gases, CO and NO2 are the most harmful air pollutants and are dangerous 
for animals, plants and as well as human beings. The Occupational Safety and Health 
Administration (OSHA) have also announced the limit lowest tolerance for these type 
of gases in a particular time period, for example, the limits for CO and NO2 gases are 
∼20 ppm and ∼5 ppm over the period of 8 h respectively. Over-acquaintance to these 
gases could be the reason for diseases and in dangerous cases even loss of human life 
[40]. There are a number of features that the materials can have to be utilized as gas 
sensors, explicitly, an excellent similitude with the target gases, easy to synthesize, 
thermal stability, appropriate electronic structure, and adaptation with present 
technologies. The perovskite oxides are interesting materials as gas sensors because of 
their ideal bandgap, excellent thermal stability and the size difference between the A- 
and B-sites cations, tolerating different dopants addition for monitoring the catalytic 
properties and their semiconducting properties. Lots of perovskites were synthesized 
to utilize as gas sensors for detecting different hazardous gases. Table 2 enlisted with 
different perovskite oxides for various gas sensing applications.

2.3 Perovskites as solar cell materials

The consumption of energy has been continuously increasing globally and limita-
tions of sources of fossil fuels leading to perform the research on sustainable, environ-
ment-friendly, and renewable energy sources. Due to the abundance of sun rays on 
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Perovskites Sensing for Response ratio % Reference

LaCoO3 CO Under 5000 ppm CO at 500°C, the thick film 

sensor achieved a high sensing response of 

∼279.86

[41]

La0.9Ce0.1CoO3 CO 240% with respect to 100 ppm CO in air [42]

Ca modified 

LaFeO3

SO2 Maximum resistive response of 3 ppm SO2 was 

detected at ~275°C by the LaCaFeO3 samples, 

and it shows 15% higher efficiency than LaFeO3

[43]

NdFe1–xCoxO3 CO 1215% at 170°C for 0.03% CO gas [44]

LaFeO3 Ethanol Not reported [45]

Ag-LaFeO3 Methanol The maximum response to the other test gases 

is 8

[46]

Ag-LaFeO3 Formaldehyde Best response to 0.5 ppm formaldehyde (24.5) 

at 40°C

[47]

SrFeO3 Ethanol Not reported [48]

LaFeO3 NO2 Not reported [49]

GaFeO3 Ethanol Ethanol sensing down to 1 ppm at 350°C [50]

SrTi1 − xFexO3 − δ Hydrocarbons Not reported [51]

α-Fe2O3/LaFeO3 Acetone Response 48.3% at 100 ppm concentration at 

350°C

[52]

YCo1-xPdxO3 CO, NO2 Different for the different composition [53]

ZnSnO3 n-Propanol gas The detection limit of ZnSnO3 nanospheres to 

500 ppb n-propanol gas could reach 1.7

[54]

LaFeO3 and 

rGO-LaFeO3

NO2 and CO Response 183.4% for 3 ppm concentration of 

NO2 at a 250°C

[55]

BaTiO3/LaFeO3 

nanocomposite

Ethanol Response 102.7% to 100 ppm ethanol at 128°C [56]

Ba-BiFeO3 Ethanol Temperature dependent sensing performance 

toward 100 ppm ethanol gas; maximum 

sensitivity at 400°C

[57]

La doped BiFeO3 Acetone The morphotropic phase boundary (MPB) phase 

Bi0.9La0.1FeO3 shows ultra-low concentration 

detection of 50 ppb acetone

[58]

Pr doped BiFeO3 Formaldehyde 50 ppm, 190°C, Rgas/Rair = 17.6 [59]

BaTiO3 thick films H2S BaTiO3 sensor operated at 350°C [60]

Sr doped BaTiO3 NH3 and NO2 0.2 mol% doping of Sr showed enhanced 

performance for sensing of both NO2 and NH3 

gases at room temperature

[61]

BaSnO3 SO2 10 ppm of SO2 [62]

BaSnO3 LPG Addition of noble metal Pt, the operating 

temperature decreases and the sensitivity 

improved but also imparted partial selectivity 

for the detection of LPG

[63]

LaBO3 (B = Fe, Co) Acetone At a low operating temperature of 120°C showed 

that the LaFeO3 NFs based sensor displayed high 

stable and selective response toward 40 ppm 

acetone with fast response and recovery time of 

14 and 49 s

[64]

Table 2. 
Tabulated with different perovskite oxides for various gas sensing applications.
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our globe, the transformation of sunlight into electricity is one of the most favorable 
studies for increasing energy demands without having any adverse effect on the global 
climate. Solar cell technology offers an eco-friendly and renewable energy path to con-
vert photon energy into electricity openly [65]. Nowadays a large effort has been put in 
the research to develop high efficiency, low-cost photovoltaic devices but regrettably 
did not succeed yet. During the last decade, research into perovskite solar cells (PSCs) 
has increased and it also been nominated as a runner-up for the top 10 breakthroughs 
research of 2013 by the editors of Science [66]. The organic-inorganic perovskite 
having the general formula ABX3 where A is cesium (Cs), methylammonium (MA), 
or formamidinium (FA); B is Pb or Sn; and X is Cl, Br, or I, have recently appeared as 
an exciting class of semiconductors which can act as solar cell materials [67]. These 
organic-inorganic halide perovskite solar cells have shown substantial improvement 
of power conversion efficiency (PCE) from the preliminary efficiency of 3.8% [68] to 
about 22.1% [69]. The maximum theoretical power conversion efficiency accomplished 
by perovskite (CH3NH3PbI3) is about 31.4% [70]. The organic-halide perovskites owing 
extraordinary performance because of some unique properties like (i) high absorbing 
coefficient, (ii) high charge carrier mobility, (iii) long diffusion length, (iv) direct 
bandgap which can be engineered easily and (v) moreover easy to fabricate [71]. 
The normally used Pb-based perovskites have numerous advantages such as (i) large 
diffusion length, (ii) absorption range, (iii) low exciton binding energy, and (iv) high 
carrier mobility. Conversely, the Pb-based perovskite solar cell has a serious toxic issue 
on both humans and the environment [72]. Generally, PV panels are positioned on 
the roof of houses or in the open field, their exposure to rainfall is inescapable. In the 
manifestation of rain and moisture the degradation of PbI2 may cause mild to acute 
health issues, like effects on cardiovascular, neurological, reproductive system [73] 
mainly it is carcinogenic [72, 74] Additionally, lead pollution has severe effects on 
water and soil resources and emission of greenhouse gasses [75, 76]. Hence, in PSCs, 
it is essential to replace Pb for economical green energy conversion devices which may 
use mankind in future endeavors [77].

To develop Pb-free PSCs, Sn2+ metal cation was the first another candidate 
to replace Pb2+ as of its comparable electronic configuration and effective ionic 
radius (Sn2+: 115 pm) to lead (Pb2+: 119 pm) [78]. The hybrid organic-inorganic 
halide perovskites having the chemical formula of AMIVXVII

3, where A represents a 
small monovalent organic molecule, MIV is a divalent group-IVA cation and XVII is 
a halogen anion, have recently attracted remarkable attention in the photovoltaic 
community MASnI3 and MASn-(I3−xBrx) have been shown to the efficiencies of 
6.4% [79] and 5.73% [80] respectively. CH3NH3SnI3, HC(NH2)2SnI3, NH2NH3SnI3, 
and NH2(CH2)3SnI3 is the promising candidate to be a light sensitizer with suitable 
inorganic hole-transport material to achieve cost-effective and efficient lead-free 
perovskite solar cell [81, 82]. Gagandeep et al. uses the graphene as the layer for 
charge transport and is demonstrate the structure like n-Graphene/CH3NH3SnI3/p-
Graphene which shows the efficiency of 10.67–13.28% [83]. Giorgi et al. substituted 
Pb by TlBi (MATl0.5Bi0.5I3) and InBi (MAIn0.5Bi0.5I3) and depicted that these systems 
are quietly equivalent to MAPbI3 and can be good replacements for PSCs [84]. 
Germanium is also assumed as a possible candidate for Pb substitution in halide 
perovskites. The theoretical structure and electronic properties of AGeI3 (A = MA, 
FA, Cs) were investigated by Krishnamoorthy et al. [85]. There are several ele-
ments like: Bi [86–88], Sb [89–91], Ti [92], Cu [93, 94] that use to substitute Pb to 
decrease the lead pollution. The group of Song et al. has reported the photovoltaic 
application of Sn-based halide perovskite materials having the general formula 
ASnI3 (A = Cs, methylammonium and formamidinium tin iodide as the representa-
tive light absorbers). Among all the perovskites, CsSnI3 devices accomplished a 
maximum power conversion efficiency of 4.81% [95]. Nishimura et al. synthesized 



Perovskite and Piezoelectric Materials

10

GeI2 doped FA0.98EDA0.01SnI3 and GeI2 doped EA0.98EDA0.01SnI3 PSCs and shows the 
power conversion efficiency of 13.24% for lead-free perovskite solar cell has been 
demonstrated with mixed cation and surface passivation [96].

2.4 Removal of heavy metals from wastewater

To survive on this planet the clean air, water, and foods are essential to all forms 
of life. The surface and the groundwaters are only the sources of clean water which 
help to all living systems as well as human activities such as consuming, irrigation of 
crops, industrial application, etc. [97]. Water pollution is one of the most world-
wide common issues as the population outbursts and industrial evolutions are there. 
Day by day, the heavy metals (maybe in the form of ions) are released into water 
bodies by various industries [98] and are exceedingly water-soluble, non-decom-
posable, oncogenic agents and cause adverse health complications on the animals 
as well as human beings. Wastewaters coming out from various industries contain 
many heavy metal ions, for example, Cu2+, As5+, Ni2+, Sb5+, Zn2+, Cd2+, and Pb2+ 
[99]. In addition to heavy metal ions, the different organic and inorganic dyes are 
alternative pollutant releases from different industries for example papers, textiles, 
and plastics where the dyes are used for coloring their product and also generate 
significant volumes of wastewater. Many of these dyes containing heavy metal ions 
have a tendency to store in the living entities causing a different type of diseases and 
disorders [100–102]. Hence, it is essential to purify the metal-contaminated water 
before its discharge to the environment. Among all compare to current methods to 
remove heavy metal from the contaminated water [100, 101] adsorption method is 
the most likely one because it low cost-effective, high efficiency, and simple to run.

2.4.1 Heavy metals from contaminated water

The group of Zhang et al. synthesized the porous nano-calcium titanate micro-
spheres via a citric acid assisted modified sol-gel method and used for absorption 
of heavy metals like lead, cadmium, and zinc [103]. Haron et al. reported that the 
nano-crystalline LaGdO3 perovskite was synthesized by the co-precipitation method 
could adsorb heavy metal ions (Cd2+ and Pb2+) which should be the attention in an 
application such as wastewater treatment [104]. Zhang et al. synthesized porous 
nano-barium-strontium titanate via sol-gel method using sorghum straw as a template 
and investigate about adsorption mechanism of Pb, Zn, and Cd from contaminated 
water [105]. LaFeO3 nanoparticles were synthesized by Rao et al. by the sol-gel 
method in presence of different chelating agents and these nanoparticles utilized 
for an adsorbent of the removal of heavy metal ions in particular cadmium ion. The 
LaFeO3 sample prepared with succinic acid (SA) as a chelating agent shows a higher 
removal efficiency of Cd2+ ions from aqueous systems [106]. Zhang et al. investigated 
Sr modified LaFeO3 and its structural and catalytic activity. La0.8Sr0.2FeO3 contributed 
significantly enhanced activity in methane combustion and CO oxidation because the 
oxygen vacancies accelerated the dissociation of gaseous oxygen on the surface in CO 
oxidation and facilitated the diffusion of lattice oxygen from the bulk to the surface 
during CH4 combustion [107]. The perovskite LaAlO3 was manufactured using the 
co-precipitation method by Haron et al. The structural and efficiency of removal of 
heavy metal (Cd2+ and Pb2+) were extremely investigated by them. The adsorption 
performance was studied which fit with the Langmuir isotherm. The results disclosed 
that LaAlO3 perovskite showed high efficiency as heavy metal ions remover from 
the contaminated water. This adsorbent could be recycled with an EDTA solution 
and reprocessed with only slightly less efficient than that of the fresh sample [108]. 
The group of Chen et al. synthesized ternary photocatalyst ZnTiO3/Zn2Ti3O8/ZnO 
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heterojunction which displays excellent performance for the degradation of organic 
pollutants as well as reduction of heavy metal Cr(VI) ions from wastewater [109]. 
Figure 5 schematically represent the heavy metal ion (Cd2+) adsorb with LaFeO3 
perovskite prepared with the different chelating agent.

2.4.2 Heavy metals in wastewater from the textile industry

The growing population in our globe, demands to clothe and increase with the 
taming sense of fashion and lifestyle thus textiles are contrived to meet the growing 
demands. In several countries such as India and Sri Lanka; the production of textile 
becomes their source of income that subsidizes their gross domestic product (GDP). 
However, this has brought both significances to such countries either in a positive way 
which is an enhancement of the economy or in a negative way indorsed to environ-
mental pollution. The textile industries have been adapted as the worst reprobates of 
pollution contributors [110]. Especially, in India, according to the Central Pollution 
Control Board [111], a total of 2324 textile industries are set up. The textile industries 
employ different types of dyes for the manufacturing of various fabric materials. 
In reality, about 1 million different dyes are found in the market [112] and roughly 
700,000 tons of artificial dyes are produced per year [113]. The disposal of dyes in 
waters exemplifies a severe environmental issue due to the coinciding presence of vari-
ous types of pollutants [114–116]. All traditional methods used for the treatment of 
dyes and/or heavy metals have limitations because of cost, efficiency and operational 
complications. Among all of them, adsorption was exposed as one of the most effec-
tive methods due to its simplicity in operation, adaptability, high-treatment efficiency 
and low cost, and hence it is extensively applied for wastewaters treatment [117–121].

The perovskite oxide La0.9Sr0.1FeO3, capped with cetyl trimethyl ammonium 
bromide (CTAB) cationic surfactant, and used as a sorbent for the removal of the 
anionic Congo red (CR) dye from aqueous solutions was reported by Ali et al. [122]. 
The group of Chu et al. demonstrated the efficiency of Ag-La0.8Ca0.2Fe0.94O3-δ for 
the removal of organic and bacterial pollutants by catalytic peroxymonosulfate 
(PMS) activation. The oxygen vacancies in the B-site of perovskite enhances PMS 
activation and The SO4• and •OH radicals enhance the biocidal activity [123]. 
Nanocrystalline LaAlO3:Sm3+:Bi3+ composites are used to adsorb Direct Blue-53 (DB-
53) dye was reported by Pratibha et al. [124]. This adsorbent is good and promising 
in the adsorption capacity and is advantageous in the elimination of toxic and 
non-biodegradable pollutants from water. The group of Dong et al. hydrothermally 
synthesized perovskite BaZrO3 in the form of hollow micro- and nano-sphere. This 
size-tunable BaZrO3 hollow nanospheres exhibited an excellent adsorption perfor-
mance for reactive dyes in acidic conditions and can be used as excellent circular 
adsorbents for removing reactive dyes. They show the adsorption capacities are over 

Figure 5. 
Representation of the adsorption process over LaFeO3 nanoparticles surfaces prepared using succinic acid (SA), 
citric acid (CA), and oxalic acid (OA) [106].
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160 mg g−1 for different investigated dyes at a pH value of 2. The adsorbents were 
easily recovered by using a basic solution with the adsorption performance persis-
tent and the desorption rate is more than 97 wt% [125]. Siddharth et al. synthesized 
the perovskite structure of Ti-doped BaMnO3 (BaMn0.85Ti0.15O2.93) and its enhanced 
photocatalytic degradation (~99%) as compared to BaMnO3 toward toxic water 
impurities like RhB and MB dyes within 270 and 150 min under sunlight [126].

3. Conclusion

Nowadays, because of the increasing population and demand for natural 
resources is a global concern, hence, it is one of the origins of environmental pollu-
tion. Among all the pollutants, lead is one of the most hazardous materials. For the 
reason that the toxic effect of lead in lead-based materials, the researcher com-
munities and scientists concentrated on synthesized lead-free materials possessing 
the same properties. Since the last two decades, the investigation on such materials 
enhances unexpectedly. Lead-free perovskite materials with excellent dielectric 
and piezoelectric properties belonging to the ferroelectric family and these reduce 
the adverse effect on the human body as well as the environment. Here this chapter 
concludes with different applications like SOFCs, sensors, solar cells, wastewater 
treatment of lead-free perovskite materials.
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