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Chapter

The Interannual and Interdecadal
Variability in Tropical Cyclone
Activity: A Decade of Changes in
the Climatological Character
Anthony R. Lupo, Brendan Heaven, Jack Matzen

and Jordan Rabinowitz

Abstract

During the last decade, there has been concern that the frequency or intensity of
tropical cyclones (TCs) has increased. Also, climate models have shown varying
results regarding the future occurrence and intensities of TC. Previous research
from this group showed there is significant interannual and interdecadal variability
in TC occurrence and intensity for some tropical ocean basins and sub-basins. This
work examines global TC occurrence and intensity from 2010 to 2019 and compares
this period to the same quantities from 1980 to 2009. The data used here are
obtained from publicly available TC archives. Globally, the number of TC occurring
over the latest decade is similar to the previous decade. However, while the 40-year
trend shows an increase in TC, only intense hurricanes have shown an increase. The
Atlantic Ocean and North Indian Ocean Basins show increases in TC activity,
especially intense storms. The Southern Hemisphere and West Pacific Region show
decreases in TC activity. In the West Pacific, intense TC did not increase, but the
fraction of storms classified as intense increased. Only East Pacific TC activity
showed no significant short- or long-term trends. Interannual and interdecadal
variability in each sub-basin was found and there were some differences with
previous work.

Keywords: tropical cyclones, climate change, variability, ENSO, intensity, PDO

1. Introduction

A decade ago, Lupo [1] found no statistically significant long-term trends in
global tropical cyclone (TC) activity or in many of the regional basins, although
detailed records for some parts of the globe (e.g., the Southern Hemisphere) have
only been available since about 1980. This study looked at time series of varying
lengths within each ocean basin. This same work showed that there was interannual
variability in TC occurrences and intensities found in most ocean basins. However,
there was little statistically significant interannual TC variability during the nega-
tive or cold phase of the Pacific Decadal Oscillation (PDO), but interannual TC
variability with respect to El Nino and Southern Oscillation (ENSO) was enhanced
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during the positive or warm phase of the PDO. Lupo [1] also showed some
interannual variability in the length of the TC season in different basins as well.

Others (e.g., [2], and references therein) found significant interdecadal TC
variability in the Atlantic Region as related to teleconnections such as the North
Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO), and
relate these to a relative minimum in this region’s TC activity in the late twentieth
century and a sharp increase in TC activity for the early twenty-first century. These
results were consistent with the results of Lupo [1]. Camargo et al. [3] examine the
climatological character of TC including long- and short-range variability in each
ocean basin as well. This work is a comprehensive review of those that relate TC
activity to intraseasonal phenomena such as the Madden Julian Oscillation (MJO),
ENSO, the Quasi-biennial Oscillation (QBO), and others.

Since Lupo [1], others have published results showing that there have been more
recent increases in the number of stronger storms in both the Atlantic (e.g., [4, 5])
and the West Pacific basin [6]. The latter showed this trend has been occurring
since 1998, but others have demonstrated that the trend has been present in the
West Pacific since the 1970s (e.g., [7]). Globally, several studies (e.g., [8, 9]) have
demonstrated an increase in the most intense storms and/or the associated precipi-
tation rates [10]. The latest published study [11] examined the global frequency of
intense TC from 1979 to 2017 and found statistically significant increases as well.
Some have noted that these increases in intense TC are associated with basin-wide
changes in the sea surface temperature patterns (e.g., [6]). Others (e.g., [12])
examined the rapid intensification of TC over the Atlantic Region during the latter
part of the 20th century as related to climate variability and trends. Additionally,
the IPCC [4] fifth assessment report demonstrated no general agreement about
the relative contribution of natural and anthropogenic forcing to changes in TC
intensity.

The focus on the most intense TC during the last decade is likely due to the fact
that many climatological studies have established well the general character of TC
climatologies in the world’s ocean basins. Additionally, the contributing dynamics
to TC formation, development, and decay are well known (e.g. [3, 13, 14], and
references therein). At the turn of the twenty-first century, tropical cyclone (TC)
activity and how this may change in the future were of great interest to the atmo-
spheric science community (e.g., [15, 16]). Furthermore, there is interest in the
observed and potential increase in rainfall rates [10]. Increases in intensity and
rainfall rates could threaten vulnerable coastal areas.

The consensus of several global and regional scenarios for TC activity continues
to project that the annual frequency will remain similar to today or decrease
throughout the twenty-first century, but the intensity will increase (e.g., [4]). This
may be due to projected decreases in strong tropical convection, although the
confidence in this particular projection is lower. Additionally, these TC projections
have been identified as uncertain since high-resolution simulations struggle to ade-
quately capture TC occurrence and intensity [17, 18]. Also, the actual count of TCs
is dependent on the different detection methods [19].

However, as discussed above with reference to Lupo [1] and further in that
publication, the available time series across each region of the globe is uneven, and
the ability to observe TC has continuously improved. There have even been changes
in the instrumentation during satellite era and some studies (e.g., [20]) were able to
homogenize the most recent satellite-derived data in order to analyze trends in TC
occurrence and intensity. Also, changes in the techniques used to determine TC
character and intensity have occurred as well (e.g., [21–23]).

The goal of this work is two-fold. The first is to examine the latest decade in TC
activity in order to determine if there have been any major changes in global,
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regional, or subregional TC frequency since Lupo [1]. The activity of the latest
decade will be placed into the context of previous activity going back to 1980 and
recent studies where available. By going back to 1980, this work will present the
occurrence and intensity of TC in every ocean basin (and sub-basin) where they
occur over four decades and this work is one of only a few thus far (e.g., [11]). TC
intensity was not available for all ocean basins until approximately 1980 (e.g., [1]).
The techniques used here are the same as those found in Lupo [1] and earlier studies
in order to facilitate comparisons to these older studies published by this group. The
second will examine TC activity with respect to interdecadal variability, and in
particular the PDO, in each region in order to determine whether the results of Lupo
and Johnston [16] and Lupo [1] remained intact. While the examination of
interannual and interdecadal variability of TC is not unique, the study of these
quantities over the entire globe and in each TC basin and sub-basin for this recent
40-year period is the first as far as the authors are aware.

2. Data and methods

The data and methods are similar to those used in Lupo [1] and references
therein, and more detail regarding some of these subjects can be found there. This
study will examine all the globe’s ocean basins and includes tropical storm occur-
rences as well. The global ocean basins (Figure 1) are as follows: the North Atlantic,
East Pacific, West Pacific, North Indian, Southern Hemisphere (includes South
Indian and the South Pacific), and the South Atlantic. Following Lupo and Johnston
[16] and Lupo [1], the North Atlantic was divided into west and east along 45oW.
The East Pacific is divided along 125oW and 20oN as in Collins [24, 25], while the
West Pacific is divided up into 140oE and 20oN following Lupo [1]. The Indian
Ocean in the Northern and Southern Hemisphere is divided into west and east along
75oE. The southwest and southeast Pacific are divided by 180o longitude. Both the
Indian and SH sub-basin divisions followed Lupo [1]. TCs were assigned to the
basin and sub-basin in which they first reached tropical storm status. A study of the
background atmospheric and oceanic variables contributing to TC formation is not
performed here as it is beyond the scope of this work.

Figure 1.
The globe with the borders of each subregion for the North Atlantic (G = Gulf of Mexico, and C = Caribbean),
East Pacific (125oW 20oN), West Pacific (140oE 20oN), northern Indian (75oE), and southern hemisphere
(75oE in the Indian and 180o in the Pacific).
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2.1 Data

The TC occurrence and intensity data for all basins since 1980 were
downloaded via the UNISYS website (http://weather.unisys.com), although these
data can also be found in the National Hurricane Center (NHC) or the Joint
Typhoon Warning Center (JTWC) archives (e.g., [21]). The TC data since at least
1900 can be found in the International Best Track Archive for Climate Steward-
ship (IBTrACS) or the best track data archive [26, 27]. A description of these data
sets and their reliability can be found in references, such as Landsea [28], Knapp
et al. [26], or Kossin et al. [20]. Here, we use the term TC to include both
hurricanes and tropical storms (TSs) following Lupo et al. [29] and references
therein. TS refers only to those entities that obtained maximum wind speeds
between 35 and 64 kt. The year 1980 was chosen for this study in order that time
series of the same length can be compared across the globe since TCs were not
categorized in the Southern Hemisphere until that year (see [1]). Also, TC data
sets from before the satellite era may be missing TC occurrences that went
undetected by ship or aircraft (e.g., [30]). Additionally, this study will compare
and contrast briefly the most recent four decades with those previous to 1980 (see
[16]) where those data exist (Atlantic Region andWest Pacific Region). Hurricane
intensity was rendered using the maximumwind speed attained during the lifetime of
the storm. However, since wind speed data have relatively large measurement error,
the Saffir-Simpson [31] hurricane intensity scale values were used here. In order to
further eliminate problems with some of the data as discussed in Lupo and Johnston
[16] and later studies, we combined hurricane intensity categories (Category 1 and
2—weak; Category 3, 4, and 5—intense) following Landsea [28].

2.2 Methodology

Arithmetic means and correlations were analyzed, and means were tested for
statistical significance using a two-tailed z-score test, assuming the null hypothesis
(e.g., [32, 33]). Intensity distributions were also tested using a χ2 statistical test.
These distributions were tested using the total sample climatology as the expected
frequency and a subperiod as the observed frequency. The χ2 test was used to test
the intensity distributions (TS and Category 1–5) of the most current decade against
those of the previous 30 years as well as to examine the interannual or interdecadal
variability of intensities. It has been hypothesized that using the climatological
frequency as the “expected” frequency is more appropriate than using an approxi-
mated distribution since such analytical distributions (e.g., Poisson distribution)
may not adequately represent real-world distributions (e.g., [34]). It should be
cautioned that while statistical significance reveals strong relationships between
two variables, it does not imply cause and effect. Conversely, relationships that are
found to be strong, but not statistically significant may still have underlying causes
due to some atmospheric forcing process or mechanism (e.g., [34]). The long-term
trends were tested for statistical significance using analysis of variance techniques
(ANOVA) and in particular the F-test [32, 33].

The following descriptions can be found also in Lupo and Johnston [16]. The
data were stratified by calendar year in the Northern Hemisphere (NH). In the
Southern Hemisphere (SH), the tropical cyclone year is defined as the period
beginning on July 1 and ending on June 30. For example, July 1, 2018 to July 1, 2019
was defined as 2019 since the majority of the SH TC season takes place from
approximately December through April. We then analyzed the annual and monthly
distributions of TC occurrence in order to find trends in TC season length or both
the total sample and each intensity category.
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2.3 Interannual and interdecadal variability

The Japan Meteorological Agency (JMA) El Nino and Southern Oscillation
(ENSO) Index was used in this study. A list of El Niño (EN), La Niña (LN), and
Neutral (NEU) years used here are shown in Table 1. A description of the JMA
ENSO Index can be found on the Center for Oceanic and Atmospheric Prediction
Studies website (http://coaps.fsu.edu/jma.shtml) hosted by Florida State Univer-
sity. In summary, this index is widely used (see [35]) and is defined by the long-
term running mean sea surface temperature (SST) anomalies from the Niño 3 and
3.4 regions in the central and eastern tropical Pacific (e.g., [36]). The SST anomaly
thresholds used to define EN years are those greater than +0.5oC, less than � = 0.5oC
for LN years, and NEU otherwise. The JMA ENSO criterion defined the EN
year as beginning on October 1 and ending on September 30. For example, ENSO
year 1982 began on October 1, 1982 and ended on September 30, 1983. This
definition, however, was modified here so that the EN year commenced with the
initiation of the NH hurricane season (approximately June 1) following Lupo and
Johnston [16] and used in Lupo [1]. This modification was necessary since EI Nino
conditions typically begin to set in well before October 1, and the period August
to October is close to the climatological peak of the hurricane season for the NH.
No modification was needed for the SH. Additionally, while the JMA ENSO Index is
more sensitive with the definition of LN than other indexes, it is less sensitive
overall [37].

The Pacific Decadal Oscillation (PDO) is a 50- to 70-year oscillation described in
the late twentieth century (e.g., [38, 39]) within the Pacific Ocean basin. We define
the epochs of the PDO as found in Lupo et al. [35] and these are also cataloged at
COAPS. The positive phase persisted from 1977 to 1998, while the negative phase
has persisted since 1999. The most recent negative phase encompasses the most
recent two decades, while the decades of the 1980s and 1990s are largely character-
ized by the positive phase. Where the data exist before 1980 (the Atlantic and
western Pacific Regions), we can use the results of Lupo and Johnston [16] to
characterize the negative PDO years from 1947 to 1976.

An in-depth discussion is found in Lupo [1] describing why these two
teleconnections were used primarily to define interannual and interdecadal vari-
ability, in spite of the fact that many studies (e.g., [2, 3], and references therein)
have shown for example that variability in the Atlantic Ocean Basin can be linked to

EN NEU LN

1982 1979–1981 1988

1986–1987 1983–1985 1998–1999

1991 1989–1990 2007

1997 1992–1996 2010

2002 2000–2001 2017

2006 2003–2005

2009 2008

2014–2015 2011–2013

2018 2016

2019

Table 1.
The list of ENSO years as found in Lupo et al. [35] and references therein.
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teleconnections there. While the NAO-related variations in TC activity can make
interpretation of PDO-related hurricane variability more difficult, there is substan-
tial overlap between the PDO and the interdecadal modes of the North Atlantic
Oscillation (NAO) [35]. Nonetheless, ENSO is a main driver of interannual TC
activity in many ocean basins as demonstrated by many studies (e.g., [3]), and since
PDO can be shown to modulate ENSO behavior, the focus here will be on these
teleconnections.

3. Global tropical cyclone activity from 2010 to 2019

3.1 A comparison of tropical cyclone activity since 1980

In Lupo [1], tropical cyclone activity was examined within each ocean basin over
different time periods. Here tropical cyclone activity since 1980 only was examined
for each ocean basin and globally (Table A1). Globally, there has been no statisti-
cally significant trend in overall TC activity over the last 40 years and this is
consistent with recent studies (e.g., [4]) (Tables A1f and 2, Figure 2a and b).
There was also no significant difference in the TC intensity distributions when
comparing those of the most recent decade versus the 1980–2009 period. A note-
worthy change implied in the global data set was an increase in tropical storm
activity since 2000 at the expense of weaker (Category 1 and 2) hurricanes. How-
ever, the most recent decade (2010–2019) did not show appreciable changes
worldwide when compared with the previous decade (2000–2009) or with the
1980–2009 period. There was, however, a significant upward trend in the number
of Category 3–5 and 4–5 storms significant at the 99% confidence level (Table 2)
consistent with Elsner [6, 10], or Kossin et al. [11].

An examination of each ocean basin demonstrates that only the ATL (Table A1a
and Figure 2c and d) and NIND (Table A1d and Figure 2i and j). Regions experi-
enced statistically significant increases for the trend in hurricane activity (at the
95% and 99% confidence levels, respectively) and total TC activity (at the 99%
confidence level in both regions) (Table 2). Both regions showed slightly more
activity in the most recent decade (2010–2019). Testing the distribution of TC
intensities in both regions showed no statistically significant difference between the
distribution of these for the most recent decade versus 1980–2009 using the χ2 test.
However, the ATL increases are most notable in the tropical storm category
(Table A1a), but with little change in the weak hurricanes. In the NIND Region,
however, these increases were noteworthy only for the number of hurricanes,
especially major hurricanes (Category 3 and 4). In both of these regions, the
increase in the trend for major hurricanes categories was significant at the 99%
confidence level. A comparison to Klotzbach and Gray [2] or Lupo [1] showed that
the ATL Region trends found here are consistent with those found for the late
twentieth or early twenty-first century identified in those publications. Thus, this
region has a longer history of increasing activity. In Lupo [1], the NIND Region
showed little trend in TC activity. The upward trends in all categories for the NIND
noted here (Table 2) could be a real phenomenon or a function of better detection
and classification.

The increases were offset by overall decreases in the WPAC (Table A1c and
Figure 2g and h) and SHEMI Regions (Table A1e and Figure 2l and k), which
would show decreases, but only the decrease in WPAC hurricanes and SHEMI total
TC were significant at the 99% confidence level (Table 2). Both regions were less
active in the most recent decade (2010–2019). In the WPAC (Table A1c), the
results found here were complex but contradict the results cited in section one.
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Figure 2.
The annual occurrence of (a) and (b) global, (c) and (d) Atlantic, (e) and (f) East Pacific, (g) and (h) West
Pacific, (i) and (j) North Indian, and (k) and (l) Southern hemisphere tropical cyclones (left) hurricanes
(right) from 1980 to 2019. The orange line is the linear trend line in each figure. The abscissa is years and the
ordinate is annual occurrence.
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Examining the major hurricanes, the trend was downward for the Category 3–5 TC,
but upward for the Category 4–5 results. Neither trend was statistically significant
(Table 2), and the significant downward trend was noteworthy in TC Category 1–2
(not shown). While this does not agree with studies like Zhao et al. [6], who have
found an increase in intense TC over the WPAC, the decrease in weaker TC means
that a greater percentage of WPAC TC was in the major category. During the past
two decades, about 60% of TC were classified as major compared to 50% in the two
decades prior to those (see also [1]). In spite of a greater ratio of more intense TC in
the WPAC, the intensity distributions were not significantly different in either
region when testing the intensity distributions.

In the SHEMI, the number of total TCs has decreased significantly, but the
number of Category 3–5 and Category 4–5 TCs increased and these trends were
significant at the 95% and 99% confidence level respectively (Table 2). The overall
decrease was driven by decreases in the number of TS and a decrease in Category
1–2 storms (Table A1e) significant at the 99% confidence level (not shown). The
2010–2019 decade showed decreases overall and in the number of hurricanes from
the previous decade (2000–2009), and this decade was less active than the last
decades of the twentieth century (Table A1e). The most recent decrease continued
the overall decrease found in Lupo [1]. As for the WPAC however, the percentage
of major hurricanes was higher (55%) for the early twenty-first century compared
to the late twentieth century (43%).

The EPAC Region showed very little trend throughout the period (Table A1b,
Figure 2e and f) in any category, including no statistically significant trend in the
major hurricane categories (Table 2). This result is similar to that of Lupo [1].
However, it was clear that the 2010–2019 period in the EPAC was more active than
the previous two decades suggesting interdecadal variability. This will be studied
below. Additionally, testing the distribution of TC intensities for this region shows

ATL EPAC WPAC NIND SHEMI Globe

TS + Hur 0.202** �0.003 �0.044 0.039** �0.102** 0.129

Tot Hur 0.056* �0.023 �0.114** 0.040**
�0.044 �0.085

Cat 3–5 0.043* 0.007 �0.007 0.029** 0.044* 0.117**

Cat4–5 0.032* 0.034 0.030 0.017** 0.088** 0.202**

The value given is the slope of the trend line. Statistically significant values are bold, while those marked with a *, **
are significant at the 95%, 99% confidence level, respectively.

Table 2.
A summary of the statistical significance for trends within each ocean basin.

Figure 3.
The TC intensity distributions in the EPAC region for (a) 1980–2009 and (b) 2010–2019. The abscissa is TC
intensity and the ordinate is annual occurrence.
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that the distribution of TC from 2010 to 2019 was similar to that for the period 1980–
2009 at the 95% confidence level when using the χ2 test (Figure 3). This is the only
region in which the distributions were similar to an acceptable degree of confidence.

3.2 Interannual and interdecadal variability

In this section, the 2010–2019 results are partitioned by ENSO phase in order to
compare these results to those of Lupo [1] and Lupo and Johnston [16]. As shown in
Lupo et al. [35], this most recent decade was still classified as a negative PDO. Thus,
to examine interannual variability, a comparison was made to the previous decade
and interdecadal variability was examined by comparing to the decades of the 1980s
and 1990s (Table A2). These decades were primarily positive PDO years (1977–
1998). This study also provides an opportunity in some ocean basins to compare to
the previous negative PDO epoch in order to determine whether the current nega-
tive PDO epoch is comparable or if there are differences that may be due to
enhanced satellite coverage or if these differences could be physical. The results
here were also compared by sub-basin within each global region.

An examination of the Atlantic Region activity (Table A2a) demonstrates that
there were more TCs observed during LN and NEU years during the latest decade,
and this activity was consistent with that of the previous decade. A comparison to
the activity during the 1980s and 1990s demonstrated that while there were more
TCs overall (significant at the 95% confidence interval when testing the means), the
ENSO variability was similar. During each decade, EL years were 30% (or greater)
less active than during other years. Thus, there was no significant difference
between ENSO variability across the positive phase of the PDO and the current
negative phase in spite of a more active negative PDO phase when testing the means
in Table A2a. Previous studies (e.g., [1]) showed similar results, with the exception
that the negative PDO phase showed weaker ENSO-related variability. Addition-
ally, the ENSO variability with respect to TC intensity distributions was similar in
that the comparison of the EN years to all years in each phase of the PDO (Figure 4)

Figure 4.
The TC intensity distributions for (a) all PDO+ TC, (b) all PDO+ EN TC, (c) all PDO � TC, and (d) all
PDO � EN TC in the ATL region.
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and these were similar at the 90% confidence level. The LN year distributions were
different from either the EN years or those overall, but not at standard levels of
significance.

A comparison of Table A2a to the results of Lupo and Johnston [16] demon-
strated that both the current (since 1999) and the previous (1947–1976) negative
PDO epoch were more active than the positive PDO epoch (1977–1998). This result
is similar to that of Klotzbach and Gray [2], who also show the mid-twentieth
century and early twenty-first century were more active times for TC occurrence in
the Atlantic Region compared to the latter twentieth century. This also supports the
contention of overlap between multi-decadal epochs of the PDO and Atlantic
Region teleconnections described in Section 2.3. However, in Lupo and Johnston
[16], the number of TCs reaching hurricane strength did not vary at all with respect
to ENSO from 1947 to 1976. Their study did not include tropical storms. Thus, it
would be difficult to state with certainty that the difference between the results
above and the Lupo [1] study are real as they may be a result of not counting TS in
the earlier study or the lack of satellite observations. The non-count of TS is
supported since if TSs are not included in the current negative PDO period, the
ENSO variability in this phase is much weaker.

An examination of the regional occurrence of TC within the Atlantic over the
latest decade (Table A2a) demonstrates that the western Atlantic is the most active
sub-basin and that the ENSO variability within this region is minor. The Gulf and
Caribbean sub-basin TC activity was also unchanged as EL years are much less
active in these two areas. These results agree with the previous studies from this
group and others (see [3]). The only substantial difference between the results
presented here and the previous results was that the eastern Atlantic was signifi-
cantly more active (at the 99% confidence level) even when considering the small
sample size. This may be due to increased SSTs over this part of the Atlantic during
the last decade (e.g., [40]). A comparison of the length of the TC season (not shown
here) to previous results [1] would demonstrate that the Atlantic Region TC season
may be beginning about 2 weeks earlier than June 1 as TCs were observed in May
for 5 of the 10 years during this decade.

In the East Pacific Region (Table A2b), the most recent decade shows ENSO
variability that is opposite of the Atlantic Region, in that there are more TCs during
EL years than during LN years due to the warmer sea surface temperatures there.
This is similar to Collins [24] or Lupo [1]. There was also little difference in TC
numbers across the positive and current negative PDO epoch, and their intensity
distributions were similar, a result significant at the 95% confidence level (as in
Figure 3). When taken together, the first two decades of the 40-year period show
ENSO variability similar to the latter two decades in that there were about 30–35%
fewer TC in LN years. When testing the means, this result was statistically signifi-
cant at the 95% confidence level. Testing the TC intensity distributions demon-
strates that LN years were similar to the overall distributions at the 95% confidence
level during both phases of the PDO in a manner similar to Figure 3. Even the EN
year TC intensity distributions are similar to the overall intensity distribution in the
positive PDO phase at the 90% confidence level. Only the EN years TC intensity
distribution during the negative phase of the PDO was different from the overall
distribution, but not at statistically significant levels.

In Table A2b, it is apparent that the East Pacific Region is dominated strongly
by activity in the southeast quadrant and this has not changed across any decade or
PDO epoch. TC occasionally form further up the Central American and North
American coast in the northeast quadrant, but only during LN and NEU years,
while TC formed rarely in the northwest quadrant. The southwest quadrant TC
activity did account for about 16% of the East Pacific Region activity and the ENSO
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variability in this quadrant was similar to the previous decades and also similar to
that of the southeast quadrant (e.g., Camargo et al. [3] and references therein). The
only difference is that the most current decade showed stronger ENSO variability,
but this was not statistically significant. Finally, there was no appreciable change in
the length of the East Pacific TC season.

As shown above, there has been a decrease in West Pacific hurricanes.
Table A2c confirms that the TC activity of the most recent decades is less than that
of the previous three decades, which can be assumed to be real since satellite
coverage has been comprehensive since 1980. However, it is difficult to attribute
this decrease to interdecadal variability when comparing to Lupo [1] since the TC
activity from the 1940s through the 1970s occurred during an era with less satellite
coverage. This same study concluded that there was no significant West Pacific
Region interdecadal or interannual variability. Overall, LN years were 20% less
active than EN years from 1980 to 2019. For this period and region, this is signifi-
cant at the 95% confidence level. Thus, there is a strong correlation between the
interannual variability within this region and the East Pacific Region (e.g., [3]). An
examination of the TC intensity distributions (Figure 5) shows that the distribution
of negative and positive PDO is similar at the 90% confidence level using the χ2 test.
This is also true for the EN year TC distributions in relation to the intensity distri-
butions for the positive or negative phase of the PDO (Figure 5).

Table A2c also demonstrates that the occurrence of TC by quadrant in the West
Pacific over the most recent decade was similar to that found in the earlier decades
and Lupo [1]. In short, the southwest quadrant is the most active and shows only
marginal (insignificant) interannual and interdecadal variability. The southeast
quadrant is associated with 30% less TC activity than the southwest, but very strong
(statistically significant at the 95% confidence level) ENSO variability. There were
two to four times more TCs in the southeast quadrant during EN years, a result that
agrees with many studies (e.g., [1, 3]). The recent decreases noted above for the
West Pacific Region overall was distributed among the four sub-basins, though as a
percentage, the decrease was largest (approximately 35% less) for the northeast
quadrant. Additionally, the active southeast quadrant in the West Pacific during EN

Figure 5.
As in Figure 4, except for the West Pacific region.
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years combined with the active southwest quadrant for the East Pacific supports the
conclusions of Camargo et al. [3], Lupo [1] and others in that during El Nino years,
the Pacific is active across the basin for EN years, while during LN years activity
was centered closer to their respective quadrants for both regions. Like the East
Pacific, there was no significant change noted in the length of the TC season here
(not shown).

In the North Indian Ocean Basin, there was an increase in the number of TC
occurrences as shown above, and Table A2d suggests that this was driven primarily
by increases in the western Indian Ocean Region including the Arabian Sea. This
includes the number of major storms. Since the regional classification for the inten-
sity of these storms began in 1977, there is no need to compare this region or the
Southern Hemisphere results (this region began reporting intensity in 1980) to
earlier results. Table A2d also demonstrated that EN years were slightly more
active than other years, and this is opposite that of the previous three decades. Thus,
there are no conclusions that can be drawn about ENSO variability, nor about the
interdecadal variability. However, Ng and Chan [27] showed that there was
strong variability on the 5-year timescale in this region linked to the Indian Ocean
Dipole (IOD).

An examination of TC intensity distributions (not shown) shows that regardless
of how the results are stratified in the North Indian Ocean Region, the distributions
are similar to the overall distribution at the 95% confidence level or higher. The only
exception was the distribution of TC intensities in LN years during the positive
phase of the PDO were different, but not at standard levels of significance. The
reason for the lack of variability in TC intensities in this region may be the less
frequent occurrence of storms in this region. Finally, there was no change in the TC
season here (not shown) and this was identical to the results of Lupo [1] and
references therein who showed that this region possessed a double peak in activity
(May–June and October–December), which is associated with the annual migration
of the Intertropical Convergence Zone.

The decrease in Southern Hemisphere variability shown in Table A2e for the
most recent decade (2010–2019) continues the trend identified when comparing
2000–2009 or the previous two decades. Like the NIND Region, there are too few
years to attribute these decreases to interdecadal variability as of yet. When exam-
ining the sub-basins, the decreases over the past two decades were primarily the
result of fewer TC in the East Indian Ocean and to a lesser extent over the southwest
Pacific. Additionally, during this decade, the TC season extends from October to
April, which is similar to the previous decades [1]. Lastly, an examination of the
distribution of TC intensities for the positive versus negative PDO demonstrated
the distributions were different, but not at standard levels of significance.

The overall interannual variability during the most recent decade showed more
TC during EL years, which was counter to the results of the previous three decades
(Table A2e). This variability, however, was not significant at acceptable levels of
confidence. Lupo et al. (2011) found weak ENSO-related variability, which was
marginally significant with more TC occurring during LN years. Examining the sub-
basins exposed an error in assigning the ENSO year in Lupo [1] (see their Table 17)
for these values only. The overall results were consistent between this study and the
Lupo’s [1] study. The distribution of TC intensities during EN and LN years com-
pared to the negative PDO years showed these distributions were similar at the 99%
and 95% confidence level, respectively. During PDO positive years, the same com-
parison showed similarity at the 95% and 90% confidence level, respectively (not
shown).

A discussion of the SHEMI sub-basin results (Table A2e) demonstrates that TC
numbers in the West Indian Ocean Basin demonstrate the most current decade was
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slightly more active than the previous 30 years. EL years were more active over all
decades than LN years observing nearly double the TC activity. This is then oppo-
site to what was reported by Lupo [1] as that study reported more TC in LN years.
The East Indian Ocean Basin saw the largest decreases as in the previous 30 years, as
11.3 TC events per year were reported. Here, the results show that for the latest
decade only 7.7 TCs per year were observed, representing a decrease of about 33%.
This was nearly equal to the total decrease in SEMI TC overall. More importantly, in
the previous 30 years, LN season TC outnumbered EN season TC by more than two
to one. For the latest decade, LN years experienced only 20% more TCs per season.
This preference for LN years as in the West Indian Ocean Basin was of the opposite
sense reported in Lupo [1]. However, the results presented here now agree with
results for the East Indian and West Pacific numbers reported for these regions in
earlier studies (e.g., [3], and references therein).

Only in the southwest Pacific were the observed TCs and their interannual
variability in the current decade consistent with those of the previous 30 years,
showing a slight preference for LN years. Thus, the coding error of Lupo [1] did not
have a major impact on the results reported for this sub-basin only. The southeast
Pacific was the least active TC region of the SHEMI outside of the South Atlantic,
and the occurrences of TC in the latest decade were consistent with the previous
three. The latest decade showed only a slight preference for TC occurrences in EL
years, and this was consistent with the three previous decades except that the
previous decades saw stronger disparities between annual TC occurrences in EL
years versus LA years. The ENSO variability in this sub-basin was opposite to what
was reported in Lupo [1].

Globally, there were 79.5, 90, and 92 TCs that occurred during LN, NEU, and EN
years, respectively, during the last decade. This compares to 82, 91.3, and 85.7 TCs
occurring during these years over the previous decade, respectively. The compara-
tive numbers for the 1980–1999 period revealed there were 83.3, 88.8, and 85.6 TCs
that occurred per LN, NEU, and EL year, respectively. Thus, the most recent decade
demonstrates slightly different ENSO variability from that of the previous three
decades, but this difference is not statistically significant. Over the entire 40-year
period, these TC occurrence numbers were 81.8, 89.7, and 87.4, during LN, NEU,
and EN years respectively.

4. Summary, discussion, and conclusions

In this chapter, the global tropical cyclone activity for 2010–2019 was examined
and compared firstly to the TC activity of the previous decade (2000–2009) and then
to those occurring from 1980 to 1999. By doing so, we compared the results here to
the previous results reported in works such as Camargo et al. [3] or Lupo [1]. The
data sources used here were the same as those used in that study. The definitions for
the TC season, basins, sub-basins, and internannual and internannual variability were
identical to those used in Lupo and Johnston [16] and Lupo [1]. The statistical tests
used here can be found in standard statistics text books.

Global TC activity in general during the latest decade was very similar to that of
the previous decade and within most sub-basins there were broad similarities as
well. However, this study found some key differences from Lupo [1]. The following
results are new here.

These are:

• Globally, there were no statistically significant increases or decreases in overall
global TC activity although the trend in the number of storms has shown
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increases. The number of intense storms (Category 3–5) showed a statistically
significant increase over the 40-year period similar to IPCC [4], Kossin et al.
[11], and others. The number of TSs also increased, but this was not statistically
significant. These increases in these TCs were found in most global basins.
Only the number of Category 1 and 2 storms decreased, especially since 2000.

• In the ATL Region, the number of TCs during 2010–2019 was similar to 2000–
2009. The overall 40-year trend was upward in the total number of TCs,
hurricanes only, and intense hurricanes. These were all statistically significant.
The interannual variability over the latest four decades was similar in that there
were more TCs during LN years (about 30% more). Additionally, the ATL TC
season during the 2010–2019 period started about 2 weeks earlier than the
previous decades, while the eastern Atlantic observed an increase in TC activity.

• While the intensity distributions were different when comparing negative and
positive phases of the PDO, this result was not statistically significant. Also, the
distributions of LN and EN TC intensities were compared to the total sample
within each phase of the PDO, and the EN intensity distributions were similar
at the 90% confidence level.

• In the EPAC, few differences in the climatological character of TC were noted
when compared to Collins [24, 25] or Lupo [1]. When comparing the TC
intensity, distributions for each phase of the PDO or with respect to ENSO
showed that these distributions were similar at standard levels of significance
except when comparing the distribution of EN year TC intensities to the
distribution of positive PDO TC.

• Other studies showed significant increases in the number of intense TCs within
the WPAC. Such an increase was not found here, but significant decreases in
the number of Category 1 and 2 storms resulted in an increase in the proportion
of WPAC TCs classified as intense. The decrease in the number of TC basin-
wide was distributed approximately evenly across each quadrant. In this
region, the TC intensity distributions were similar for each phase of the PDO at
the 90% confidence level. This same result was found when comparing EN
year TC intensities to the total distribution in each PDO phase.

• Within the IND Region, there were significant increases in TC for the latest
decade and over the entire 40-year period for total TC occurrence, Category 1
and 2 storms, and intense TCs and all these trends were statistically significant.
These increases were especially evident within the western Indian Ocean Basin
and Arabian Sea. All TC intensity distributions tested for interannual and
interdecadal variability were similar to each other at standard levels of
significance.

• In the SHEMI, the 40-year trends showed significant decreases in TC
frequency overall including the number of TSs and Category 1 and 2
hurricanes. But there was a significant increase in the number of intense
storms. The number of TCs observed over the latest decade was the lowest in
the 40-year period and proportion of TCs reaching Category 3 or higher
increased. In this region, the positive and negative PDO TC intensity
distributions were different, but not at standard levels of significance. The EN
and LN year TC intensity distributions in each phase of the PDO were similar
to the total sample for that PDO phase.

14

Current Topics in Tropical Cyclone Research



• There was no significant SHEMI interannual variability overall, but the latest
decade showed more TCs in EN years as compared to LN years. This was
different from the previous 30 years. A coding error found in the Lupo [1]
results showed that the variability associated with ENSO was opposite that
reported in Lupo [1] for three of the four sub-basins.
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Appendix

See Appendix Tables A1 and A2.

Category 1980–1989 1990–1999 2000–2009 2010–2019 1980–2019

a. Atlantic

TS 4.1 4.6 7.7 8.1 6.1

Cat. 1,2 3.5 3.9 3.7 4.4 3.9

Cat. 3–5 1.7 2.5 3.5 2.7 2.7

Cat. 4,5 1.0 1.4 2.1 1.7 1.6

Tot Hur 5.2 6.4 7.2 7.1 6.5

TS + Hur 9.3 11.0 14.9 15.2 12.6

b. East Pacific

TS 8.6 5.6 9.1 7.8 7.8

Cat. 1,2 5.4 4.5 4.4 4.7 4.7

Cat. 3–5 4.6 5.5 2.8 5.7 4.7

Cat. 4,5 2.3 3.9 1.8 4.0 3.0

Tot Hur 10.0 10.0 7.2 10.4 9.4

TS + Hur 18.6 15.6 16.3 18.2 17.2

c. West Pacific

TS 9.7 10.3 10.4 11.3 10.4

Cat. 1,2 8.1 9.1 6.5 5.1 7.2

Cat. 3–5 8.4 9.0 9.5 8.3 8.8

Cat. 4,5 5.4 7.3 8.0 6.3 6.8

Tot Hur 16.5 18.1 16.0 13.4 16.0

TS + Hur 26.2 28.4 26.4 24.7 26.4

d. North Indian Ocean

TS 3.7 2.9 4.0 3.2 3.4

Cat. 1,2 0.5 1.3 0.6 1.1 0.9

Cat. 3–5 0.2 1.0 0.5 1.2 0.7

Cat. 4,5 0.1 0.7 0.4 0.8 0.5
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Category 1980–1989 1990–1999 2000–2009 2010–2019 1980–2019

Tot Hur 0.7 2.3 1.1 2.3 1.6

TS + Hur 4.4 5.2 5.1 5.5 5.0

e. Southern Hemisphere

TS 14.6 12.8 13.0 12.0 13.1

Cat. 1,2 8.0 7.8 5.6 5.3 6.7

Cat. 3–5 5.0 7.3 7.1 6.3 6.4

Cat. 4,5 1.6 4.8 4.5 4.8 3.9

Tot Hur 13.0 15.1 12.8 11.6 13.1

TS + Hur 27.6 27.9 25.8 23.6 26.2

f. Global

TS 40.7 37.3 44.4 43.7 41.3

Cat. 1,2 25.5 26.6 21.0 20.9 23.4

Cat. 3–5 19.8 25.3 23.2 24.2 23.2

Cat. 4,5 10.4 18.1 16.7 17.6 15.6

Tot Hur 45.4 51.9 44.3 44.8 46.6

TS + Hur 86.1 88.2 88.7 88.5 87.9

Table A1.
The decadal mean number of tropical storm (TS), category 1–2, category 3–5, category 4–5, total hurricanes,
and total TC for each decade from the 1980s to the 2010s and for the entire period within each global ocean
basin and over the entire globe.

a. Atlantic All CRBN GULF WATL EATL

1980–1999/2000–2009

LN (3/1) 12.7/15.0 2.3/2.0 3.0/4.0 3.7/7.0 3.7/2.0

NEU (12/6) 10.1/17.3 1.0/3.3 1.9/3.5 5.8/7.0 2.2/3.7

EN (5/3) 7.0/10.0 0.4/1.3 1.4/1.7 4.0/6.3 1.2/1.3

Total 10.2/14.9 1.1/2.6 1.9/3.0 5.1/6.8 2.2/2.8

2010–2019

LN (2) 18.0 4.0 2.0 6.5 5.5

NEU (5) 16.2 1.6 3.8 6.5 4.4

EN (3) 11.3 1.3 0.7 5.3 4.0

Total 15.2 2.0 2.5 6.2 4.5

b. East Pacific All NW NE SW SE

1980–1999/2000–2009

LN (3/1) 12.3/14.0 0.0/0.0 1.7/1.0 1.7/3.0 9.0/10.0

NEU (12/6) 17.9/15.7 0.1/0.2 1.1/0.8 2.8/2.2 13.8/12.5

EN (5/3) 18.4/18.3 0.0/0.0 0.4/0.3 3.2/4.0 14.6/14.2

Total 17.1/16.3 0.1/0.1 1.0/0.7 2.7/2.8 13.3/12.7

2010–2019

LN (2) 13.0 0.5 0.5 0.5 11.5
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NEU (5) 17.2 0.0 0.4 2.0 14.8

EN (3) 23.3 0.0 0.0 5.7 17.7

Total 18.2 0.1 0.3 2.8 15.0

c. West Pacific All NW NE SW SE

1980–1999/2000–2009

LN (3/1) 22.7/25.0 3.7/4.0 3.3/6.0 13.0/11.0 2.7/4.0

NEU (12/6) 28.4/26.7 2.6/3.0 3.7/3.3 13.0/13.2 9.2/7.2

EN (5/3) 27.4/26.3 2.2/3.3 1.6/3.0 10.8/9.3 12.8/10.7

Total 27.3/26.4 2.7/3.2 3.1/3.6 12.5/11.8 9.1/7.9

2010–2019

LN (2) 20.1 4.0 1.0 11.0 4.0

NEU (5) 26.2 2.6 3.4 12.6 7.6

EN (3) 25.0 2.7 1.0 10.3 11.0

Total 24.7 2.9 2.2 11.6 8.0

d. North Indian All West East

1980–1999/2000–2009

LN (3/1) 6.0/6.0 2.3/2.0 3.7/4.0

NEU (12/6) 4.5/5.0 1.2/1.5 3.3/3.5

EN (5/3) 4.8/5.0 0.8/1.3 4.0/3.7

Total 4.8/5.1 1.3/1.5 3.6/3.6

2010–2019

LN (2) 4.5 1.5 3.0

NEU (5) 5.8 2.6 3.2

EN (3) 5.7 3.0 2.7

Total 5.5 2.5 3.0

e. Southern Hemisphere All W IND E IND SW PAC SE PAC

1980–1999/2000–2009

LN (2/2) 30.5/28.0 4.0/5.5 15.0/14.5 8.0/5.5 3.5/2.5

NEU (13/6) 27.8/25.0 6.1/5.7 12.5/11.8 7.2/4.7 1.9/2.8

EN (5/2) 26.6/26.0 6.6/9.5 6.8/6.5 6.6/6.5 6.6/3.5

Total 27.8/25.8 6.0/6.4 11.4/11.3 7.1/5.2 3.3/2.9

2010–2019

LN (2) 22.5 4.0 8.5 7.5 2.5

NEU (4) 22.8 6.5 8.3 4.8 3.3

EN (4) 25.2 8.5 6.8 6.8 3.0

Total 23.6 6.8 7.7 6.1 3.0

Table A2.
The mean annual TC occurrence stratified by ENSO phase and sub-basin for the (a) ATL, (b) EPAC,
(c) WPAC, (d) NIND, and (e) SHEMI.

17

The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade…
DOI: http://dx.doi.org/10.5772/intechopen.93028



Author details

Anthony R. Lupo*, Brendan Heaven, Jack Matzen and Jordan Rabinowitz
School of Natural Resources, University of Missouri, Columbia, MO, USA

*Address all correspondence to: lupoa@missouri.edu

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

18

Current Topics in Tropical Cyclone Research



References

[1] Lupo AR. The interannual and
interdecadal variability in hurricane
activity, Chapter 1. In: Lupo AR, editor.
Recent Hurricane Research: Climate,
Dynamics, and Societal Impacts. Rijeka,
Croatia: IntechOpen; 2011. pp. 38, 616

[2] Klotzbach PJ, Gray WM.
Multidecadal variability in North
Atlantic tropical cyclone activity.
Journal of Climate. 2008;21:3929-3935

[3] Camargo SJ, Sobel AH, Barnston AG,
Klotzbach PJ. The influence of natural
climate variability on tropical cyclones,
and seasonal forecasts of tropical
cyclone activity. Global Perspectives on
Tropical Cyclones, World Scientific
Series on Asian Pacific Weather and
Climate. 2010;4:325-360

[4] Intergovernmental Panel on Climate
Change (IPCC). Climate Change 2013:
The Physical Scientific Basis. 2013.
Available from: http://www.ipcc.ch

[5]Walsh KJE, McBride JL,
Klotzbach PJ, Balachandran S,
Camargo SJ, Holland G, et al. Tropical
cyclones and climate change. Wiley
Interdisciplinary Reviews: Climate
Change. 2015;7:65-89. DOI: 10.1002/
wcc.371

[6] Zhao J, Zhan R, Wang Y. Global
warming hiatus contributed to the
increased occurrence of intense tropical
cyclones in the coastal regions along
East Asia. Nature, Scientific Reports.
2018;8:6023. DOI: 10.1038/s41598-018-
24402-2

[7]Mei W, Xie SP. Intensifcation of
landfalling typhoons over the Northwest
Pacific since the late 1970s. Nature
Geoscience. 2016;9:753-757

[8] Elsner JB, Kossin JP, Jagger TH. The
increasing intensity of the strongest
tropical cyclones. Nature. 2008;455:
92-95

[9]Holland G, Bruyère CL. Recent
intense hurricane response to global
climate change. Climate Dynamics.
2014;42:617-627

[10] Liu M, Vecchi GA, Smith JA,
Knutson TR. Causes of large projected
increases in hurricane precipitation
rates with global warming. npj Climate
and Atmospheric Science. 2019;2:38.
DOI: 10.1038/s41612-019-0095-3

[11] Kossin JP, Knapp KR, Olander TL,
Velden CS. Global increase in major
tropical cyclone exceedance probability
over the past four decades. Proceedings
of the National Academy of Sciences of
the United States of America. 2020.
DOI: 10.1073/pnas.1920849117

[12]Wang C, Wang X, Weisberg RH,
Black ML. Variability of tropical cyclone
rapid intensification in the North
Atlantic and its relationship with
climate variations. Climate Dynamics.
2017;49:3627-3645. DOI: 10.1007/
s00382-017-3537-9

[13] Emanuel KA. The dependence of
hurricane intensity on climate. Nature.
1987;326:483-485

[14] Zuki MZ, Lupo AR. The interannual
variability of tropical cyclone activity in
the southern South China Sea. Journal of
Geophysical Research. 2008;113:D06106.
DOI: 10.1029/2007JD009218-14

[15]Henderson-Sellers A et al. Tropical
cyclones and global climate change: A
post-IPCC assessment. Bulletin of the
American Meteorological Society. 1998;
79:19-38

[16] Lupo AR, Johnston GJ. The
variability in Atlantic Ocean Basin
hurricane occurrence and intensity as
related to ENSO and the North Pacific
Oscillation. National Weather Digest.
2000;24:1-13

19

The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade…
DOI: http://dx.doi.org/10.5772/intechopen.93028



[17] Roberts MJ, Vidale PL,
Mizielinski MS, Demory ME,
Schiemann R, Strachan J, et al. Tropical
cyclones in the UPSCALE ensemble of
high-resolution global climate models.
Journal of Climate. 2015;28:574-596

[18] Strachan J, Vidale PL, Hodges K,
Roberts M, Demory ME. Investigating
global tropical cyclone activity with a
hierarchy of AGCMs: The role of model
resolution. Journal of Climate. 2013;26:
133-152. DOI: 10.1175/JCLI-D-
12-17 00012.1

[19]Walsh KJE, Camargo SJ, Vecchi GA,
Daloz AS, Elsner J, Emanuel K, et al.
Hurricanes and climate: The U.S.
CLIVAR working group on hurricanes.
Bulletin of the American Meteorological
Society. 2015;96(6):997-1017. DOI:
10.1175/BAMS-D-13-00242.1

[20] Kossin JP, Olander TL, Knapp KR.
Trend analysis with a new global record
of tropical cyclone intensity. Journal of
Climate. 2013;26:9960-9976

[21]Dvorak VF. A technique for the
analysis and forecasting of tropical
cyclone intensities from satellite
pictures. NOAA Technical
Memorandum NESS 45. 1973. p. 19

[22]Dvorak VF. Tropical cyclone
intensity analysis using satellite data.
NOAA Tech. Rep. NESDIS 11.
Washington, DC: NOAA/NESDIS; 1984.
p. 47

[23] Knaff JA, Brown JP, Courtney J,
Gallina GM, Beven JL. An evaluation of
Dvorak technique–based tropical
cyclone intensity estimates. Weather
and Forecasting. 2010;25:1362-1379

[24] Collins JM. The relationship of
ENSO and relative humidity to
interannual variations of hurricane
frequency in the North-East Pacific
Ocean. Papers of the Applied Geography
Conference. 2007;30:324-333

[25] Collins JM. Contrast high north-East
Pacific tropical cyclone activity with low
North Atlantic activity. Southeastern
Geographer. 2010;50(1):83-98

[26] Knapp KR, Kruk MC, Levinson DH,
Diamond HJ, Neumann CJ. The
international best track archive for
climate stewardship (IBTrACS).
Bulletin of the American Meteorological
Society. 2010;91:363-376

[27]Ng KWE, Chan JCL. Interannual
variations of tropical cyclone activity
over the northern Indian Ocean.
International Journal of Climatology.
2012;32:819-830

[28] Landsea CW. A climatology of
intense (or major) Atlantic hurricanes.
Monthly Weather Review. 1993;121:
1703-1713

[29] Lupo AR, Latham TK, Magill T,
Clark JV, Melick CJ, Market PS. The
interannual variability of hurricane
activity in the Atlantic and East Pacific
regions. National Weather Digest. 2008;
32(2):119-135

[30] Vecchi GA, Knutson TR. Estimating
annual numbers of Atlantic hurricanes
missing from the HURDAT database
(1878–1965) using ship track density.
Journal of Climate. 2011;24:1736-1746

[31] Simpson RH. The hurricane disaster
potential scale. Weatherwise. 1974;
27(169):186

[32]Neter J, Wasserman W,
Whitmore GA. Applied Statistics. 3rd
ed. Boston: Allyn and Bacon; 1988. p.
1006

[33]Wilks DS. Statistical Methods in the
Atmospheric Sciences. International
Geophysics Series Number 91. 2nd ed.
Cambridge, MA, USA: Academic Press;
2006. p. 627

[34] Lupo AR, Oglesby RJ, Mokhov II.
Climatological features of blocking

20

Current Topics in Tropical Cyclone Research



anticyclones: A study of northern
hemisphere CCM1 model blocking
events in present-day and double CO2

atmospheres. Climate Dynamics. 1997;
13:181-195

[35] Lupo AR, Jensen AD, Mokhov II,
Timazhev AV, Eichler T, Efe B. Changes
in global blocking character in recent
decades. Atmosphere. 2019;10:92

[36] Pielke RA Jr, Landsea CN. La Nina,
EI Nino, and Atlantic hurricane
damages in the United States. Bulletin of
the American Meteorological Society.
1999;80:2027-2034

[37]Hanley DE, Bourassa MA,
O’Brien JJ, Smith SR, Spade ER. A
quantitative evaluation of ENSO
indices. Journal of Climate. 2003;16:
1249-1258

[38]Mantua NJ, Hare SR, Zhang Y,
Wallace JM, Francis RC. A Pacific
Interdecadal climate oscillation with
impacts on Salmon production. Bulletin
of the American Meteorological Society.
1997;78:1069-1079

[39]Minobe S. A 50–70 year climatic
oscillation over the North Pacific and
North America. Geophysical Research
Letters. 1997;24:683-686

[40] Prigent A, Lübbecke JF, Bayr T,
et al. Weakened SST variability in the
tropical Atlantic Ocean since 2000.
Climate Dynamics. 2020;54:2731-2744.
DOI: 10.1007/s00382-020-05138-0

21

The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade…
DOI: http://dx.doi.org/10.5772/intechopen.93028


