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Chapter

Solution Methods of Large
Complex-Valued Nonlinear
System of Equations
Robson Pires

Abstract

Nonlinear systems of equations in complex plane are frequently encountered in
applied mathematics, e.g., power systems, signal processing, control theory, neural
networks, and biomedicine, to name a few. The solution of these problems often
requires a first- or second-order approximation of nonlinear functions to generate a
new step or descent direction to meet the solution iteratively. However, such
methods cannot be applied to functions of complex and complex conjugate vari-
ables because they are necessarily nonanalytic. To overcome this problem, the
Wirtinger calculus allows an expansion of nonlinear functions in its original com-
plex and complex conjugate variables once they are analytic in their argument as a
whole. Thus, the goal is to apply this methodology for solving nonlinear systems of
equations emerged from applications in the industry. For instances, the complex-
valued Jacobian matrix emerged from the power flow analysis model which is
solved by Newton-Raphson method can be exactly determined. Similarly, overde-
termined Jacobian matrices can be dealt, e.g., through the Gauss-Newton method in
complex plane aimed to solve power system state estimation problems. Finally, the
factorization method of the aforementioned Jacobian matrices is addressed through
the fast Givens transformation algorithm which means the square root-free Givens
rotations method in complex plane.

Keywords: large nonlinear system of equation solution in complex plane,
complex-valued Newton-Raphson and gauss-Newton iterative algorithms,
Cartesian coordinates

1. Introduction

This work is a tribute to Steinmetz’s contribution [1]. The reasons and motiva-
tions are stated throughout the whole document once the numerical solutions for
solving power system applications are typically carried out in the real domain. For
instance, the power flow analysis and power system state estimation are well-
known tools, among others. It turns out that these solutions are not well suited for
modeling voltage and current phasor. To overcome this difficulty, the proposal
described in this chapter aims to model the aforementioned applications in a unified
system of coordinates, e.g., complex domain. Nonetheless, the solution methods of
these problems often require a first- or second-order approximation of the set of
power flow equations; such methods cannot be applied to nonlinear functions of
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complex variables because they are nonanalytic in their arguments. Consequently,
for these functions Taylor series expansions do not exist. Hence, for many decades
this problem has been solved redefining the nonlinear functions as separate func-
tions of the real and imaginary parts of their complex arguments so that standard
methods can be applied. Although not widely known, it is also possible to construct
an extended nonlinear function that includes not only the original complex state
variables but also their complex conjugates, and then the Wirtinger calculus can be
applied [2]. This property lies on the fact that if a function is analytic in the space
spanned by ℜ xf g and ℑ xf g in , it is also analytic in the space spanned by x and x*
in . In complex analysis of one and several complex variables, Wirtinger operators
are partial differential operators of the first order which behave in a very similar
manner to the ordinary derivatives with respect to one real variable, when applied
to holomorphic functions, non-holomorphic functions, or simply differentiable func-
tions on complex domain. These operators allow the construction of a differential
calculus for such functions that is entirely analogous to the ordinary differential
calculus for functions of real variables [2, 3]. Then, taken into account the
Wirtinger calculus, this chapter shows how the Jacobian matrix patterns emerge in
complex plane corresponding to the steady-state models of power flow analysis and
power system state estimation, respectively.

In this chapter the classical Newton-Raphson and Gauss-Newton methods in
complex plane aiming the numerical solution of the power flow analysis and power
system state estimation are derived, respectively. Moreover, the factorization
methods addressed to deal with the Jacobian matrices emerged from these
approaches are included [4].

This chapter is organized as follows. The theoretical foundation which is based
on Wirtinger calculus is summed up in Section 2. Section 3 describes two algorithms
suggested to factorize Jacobian matrix in complex plane regardless if it is exactly
determined or overdetermined. In Section 4, the complex-valued static model
solution by using Newton-Raphson method is derived, whereas in Section 5, the
Gauss-Newton method developed in complex plane is equally presented. Finally, in
Section 6 some conclusions are gathered and stated the next issues to be investi-
gated in the near future.

2. Theoretical foundation

2.1 Complex differentiability

A complex function is defined as

f xð Þ ¼ u a, bð Þ þ j v a, bð Þ, (1)

where x ¼ aþ j b and u a, bð Þ, v a, bð Þ are real functions, u, v: 2 ! . Functions
like Eq. (1) are in general complex but may be real-valued in special cases, e.g.,

squared error cost function J e2
�
�
�
�

� �
. The definition of complex differentiability

requires that the derivatives defined as the limit be independent of the direction in
which Δx approaches 0 in complex plane:

f 0 x0ð Þ ¼ lim
Δx!0

f xþ Δxð Þ � f xð Þ

Δx
: (2)

This requires that the Cauchy-Riemann equations be satisfied, i.e.,
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∂u

∂a
¼

∂v

∂b
,

∂v

∂a
¼ �

∂u

∂b
: (3)

These conditions are necessary for f xð Þ to be complex differentiable. If the
partial derivatives of u a, bð Þ and v a, bð Þ are continuous on their entire domain, then
they are sufficient as well. Therefore, the complex function f xð Þ is called an analytic

or holomorphic function [2]. As an example, let f xð Þ ¼ x2 be a complex function
with x ¼ aþ j b. Then,

f xð Þ ¼ x2 ¼ a2 � b2
|fflfflffl{zfflfflffl}

¼u

þ j 2ab
|{z}
¼v

¼ y, (4)

which under differentiation rule leads to

∂u

∂a
¼ 2a ¼

∂v

∂b
¼ 2a;

∂u

∂b
¼ �2b ¼ �

∂v

∂a
¼ 2b

� �

: (5)

These results show that the Cauchy-Riemann equations hold, and hence
f xð Þ ¼ y ¼ x2 is a holomorphic function.

2.2 CR-Calculus or Wirtinger calculus

Introduced by Wilhelm Wirtinger in 1927 [2], the CR-Calculus, also known as
the Wirtinger calculus, provides a way to differentiate nonanalytic functions of
complex variables. Specifically, this calculus is applicable to a function f xð Þ given by
Eq. (1) if u a, bð Þ and v a, bð Þ have continuous partial derivatives with respect to a
and b, yielding

∂f

∂x
¼

∂f

∂a

∂a

∂x
þ

∂f

∂b

∂b

∂x
: (6)

Since we have

a ¼
xþ x ∗ð Þ

2
, ∂a ¼

∂xþ ∂x ∗ð Þ

2
, (7)

b ¼ j
x ∗ � xð Þ

2
, ∂b ¼ j

∂x ∗ � ∂xð Þ

2
, (8)

and by setting ∂x ∗

∂x to zero, it follows that

∂f

∂x
¼

1

2

∂f

∂a
� j

∂f

∂b

� �

: (9)

Note that the Cauchy-Riemann conditions for f �ð Þ to be analytic in x can be

expressed compactly using the gradient as ∂f
∂x ∗ ¼ 0, i.e., f �ð Þ is a function of only x.

Similarly, if we take the derivative of f �ð Þ with respect to x ∗ , that is,

∂f

∂x ∗
¼

∂f

∂a

∂a

∂x ∗
þ

∂f

∂b

∂b

∂x ∗
: (10)

By setting ∂x
∂x ∗ to zero, we get
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∂f

∂x ∗
¼

1

2

∂f

∂a
þ j

∂f

∂b

� �

: (11)

Again, the Cauchy-Riemann conditions for f �ð Þ to be analytic in x ∗ can be

expressed compactly using the gradient as ∂f
∂x ¼ 0, i.e., f �ð Þ is a function only of x ∗ .

In other words, the gradient (respectively conjugate gradient) operator acts as a
partial derivative with respect to x (respectively to x ∗ ), treating x ∗ (respectively x)
as a constant. Formally, we have

∂f xcð Þ

∂x
¼

∂f x, x ∗ð Þ

∂x

�
�
�
�
x ∗¼Const

¼
1

2

∂f

∂a
� j

∂f

∂b

� �

, (12)

∂f xcð Þ

∂x ∗
¼

∂f x, x ∗ð Þ

∂x ∗

�
�
�
�
x¼Const

¼
1

2

∂f

∂a
þ j

∂f

∂b

� �

: (13)

As an example, let f xcð Þ ¼ f x, x ∗ð Þ ¼ x ∗ x ¼ xk k2 ¼ a2 þ b2 be a real function
of complex variable which is the squared Euclidean distance to the origin, with
x ¼ aþ j b. Then,

f xcð Þ ¼ f x, x ∗ð Þ ¼ x ∗ x ¼ a2 þ b2
|fflfflffl{zfflfflffl}

¼u

þ j ab� abð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼v

¼ y (14)

as v ¼ 0; clearly the Cauchy-Riemann equations do not hold, and hence
f xcð Þ ¼ f x, x ∗ð Þ ¼ x ∗ x is not analytic and thus is non-holomorphic function. To
overcome this apparent difficult, by applying the CR-Calculus leads to

∂f xcð Þ

∂x
¼ x ∗ ;

∂f xcð Þ

∂x ∗
¼ x, (15)

which suggests the geometric interpretation shown in Figure 1. Its analysis
allows us to infer that the direction of maximum rate of change of the objective
function is given by the conjugate gradient defined in Eq. (13). Observe that its
positive direction is referred to a maximization problem (dot arrow), whereas the
opposite direction concerns to the cost function minimization.

Figure 1.
Contour plot of the real function of complex variable.
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Hereafter, a real-valued or complex-valued function and its argument are pro-
vided with a subscript c if it is a function in the complex conjugate coordinates, i.e.,
x, x ∗ð Þ. Moreover, when the CR-Calculus is extended to the vector case, it is
denoted that the multivariate CR-Calculus and the basic rules for the scalar case
remain unchanged.

3. Solution of the problem: Am�n xn�1 ¼ y
m�1

∈
m�n

As well in the real domain, there are two classes of methods for the numerical
solution of large linear system of equations in complex plane:

• Direct methods: Which produce the exact solution assuming the absence of
truncation and round-off errors, by performing a finite number of flops in a
finite known number of steps. These methods are usually recommended when
most of the entries in the coefficient matrix are nonzero and the dimension of
the system is not too large, for instance, the Gaussian elimination, the LU
decomposition and QR factorization, to cite a few.

• Iterative methods: This class of methods is beyond of this work. Notice the
solution provided by these methods is approximated and the accuracy is
imposed by the user. The number of ν accomplished iterations depends on the
given precision or convergence criterion. This class of methods is preferred
when the majority of the coefficients are equal to zero and the number of
unknowns is very large. The methods of Jacobi and Gauss-Seidel are good
examples, besides the classical Conjugate gradient method [5].

3.1 Three-angle complex rotation algorithm

The first studied algorithm is the three-angle complex rotations (TACR), which is
derived in polar coordinates [6]. Nonetheless, the key idea behind QR decomposi-
tion is to eliminate the square roots needed for the computation of the cosine and
sine which represent a bottleneck in real-time applications. Consequently, this
algorithm is devoid of interest for the solution of large linear systems of equations.

3.2 Complex-valued fast givens rotations

On the other hand, the fast plane rotation [7] that is derived in complex plane and
rectangular coordinates is a square root- and division-free Givens rotations [8]. In
this sense, the fast plane rotation which is also referred as the complex-valued fast
Givens rotations (CV � FGR) is a very efficient algorithm, aiming a QR-
decomposition of matrices once the computations are performed incrementally, i.e.,
as the data arrives sequentially in time. Thus, it allows us to reduce the overall
latency and hardware resources drastically. In the forthcoming contribution, the
CV � FGR performance will be compared to the well-known approaches which
were successfully applied to the power system state estimation [9–11], once they are
accordingly converted from real to complex domain. Further proposals in the
updated state of the art will be equally considered, e.g., [12] and [13], to cite a few.

The complex fast Givens transformationM is computed using Algorithm 1 such

that the second component of MH x is zero and MHDM is a diagonal matrix, as
shown below:
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M ¼
β 1

1 α

� 	

|fflfflfflffl{zfflfflfflffl}

type¼1

or
1 α

β 1

� 	

|fflfflfflffl{zfflfflfflffl}

type¼2

(16)

MH x ¼
r

0

" #

& MH
d f 0

0 dg

" #

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼D

M ¼
dnewf 0

0 dnewg

" #

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼Dnew

:
(17)

Notice the superscript H denotes the Hermitian operation, i.e., complex conju-
gate transpose.

Algorithm 1. Complex fast Givens transform.

[α, β, r, type, dnewf , dnewg ] = fast.givens (f, g, d f , dg);

if f ¼ 0 then
type¼ 1; α ¼ β ¼ 0; r ¼ g;
dnewf ¼ dg; dnewg ¼ d f ;

else if g ¼ 0 then
type¼ 2; α ¼ β ¼ 0; r ¼ f ;
dnewf ¼ d f ; dnewg ¼ dg;

else if fk k2 ≤ gk k2 then
type¼ 1; i ¼ f=g; s ¼ dg=d f ;

α ¼ �i; β ¼ s ∗ i;

γ ¼ s ∗ ik k2; r ¼ g ∗ 1þ γð Þ;
dnewf ¼ 1þ γð Þ ∗ dg; dnewg ¼ 1þ γð Þ ∗ d f ;

else
type¼ 2; i ¼ g=f ; s ¼ d f=dg;

α ¼ �i; β ¼ s ∗ i;

γ ¼ s ∗ ik k2; r ¼ f ∗ 1þ γð Þ;
dnewf ¼ 1þ γð Þ ∗ d f ; dnewg ¼ 1þ γð Þ ∗ dg;

end if

The matrices Q , M, and D are connected to the following equation:

Q ¼ M Dnewð Þ�1=2 ¼ M diag 1=sqrt dnewi

� �� �
: (18)

In the sequence the QR-decomposition using complex fast Givens transformations
is presented as Algorithm 2.

Algorithm 2. Sequential fast Givens QRD decomposition.

[Qα, Qβ, type, R]=fast.givens_QRD (A);

[m,n]=size(A);
R ¼ zeros nð Þ; D ¼ In;
R 1, 1 : nð Þ ¼ A 1, 1 : nð Þ;
for i ¼ 2 : m do

new¼ A i, 1 : nð Þ; dnew ¼ 1;
if i< ¼ n then
k ¼ i;

else
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k ¼ nþ 1;
end if
for j ¼ 1 : k� 1 do

Step 1: Get alpha and beta using Algorithm 1:
[α, β, R j, jð Þ, type, dnewf , dnewg ]=fast.givens (R j, jð Þ, new 1, jð Þ, d f , dg);

Step 2: Update elements based on type
if j< n and type=1 then

R j, jþ 1 : nð Þ

new 1, jþ 1 : nð Þ

" #

¼
1 β

α 1

" #H
R j, jþ 1 : nð Þ

new 1, jþ 1 : nð Þ

" #

else if J < n and type=2 then

R j, jþ 1 : nð Þ

new 1, jþ 1 : nð Þ

" #

¼
β 1

1 α

" #H
R j, jþ 1 : nð Þ

new 1, jþ 1 : nð Þ

" #

end if
end for
if k< ¼ n then
R k, 1 : nð Þ ¼ new 1, 1 : nð Þ; d kð Þ ¼ dnew;

end if
end for

Note that the complex fast Givens QRD does not require any square root
operation, and during each incremental QRD-update step, the incoming input data
row-vector is stored, i.e., vector new. In the sequence, the input data row-vector
elements are zero-out (inner for loop) in order to update upper triangular matrix R.
The new vector is overwritten each time till the QRD-algorithm has exhausted all
the input data, i.e., the upper triangular matrix R is entirely updated.

4. Complex-valued Newton-Raphson method

Aiming the solution of any set of exactly determined equations in complex
plane, the vector of unknowns is regularly taken into account in the iterative
algorithm as follows:

xc ¼ x1, x2, … , xN�1, x
∗

1 , x
∗

2 , … , x ∗

N�1


 �T
, (19)

and the residual vector hereafter termed as “mismatches” vector leads to

M xcð Þ ¼ M1,M2, … ,MN�1,M
∗

1 ,M
∗

2 , … ,M ∗

N�1


 �T
: (20)

Nonetheless, here the goal is to calculate xc that satisfies

M xcð Þ ¼ Ye xcð Þ � Y s ¼ 0, (21)

where in Eq. (21), Y s is a vector of specified quantities, i.e., constant term;

Ye xcð Þ ¼ Jc Δxc is a vector of calculated quantities at each iteration. Consequently,

the linearization of Eq. (21) from one step to the sequel leads to

M x ν�1ð Þ
c

� 


þ J ν�1ð Þ Δx νð Þ
c ¼ 0, (22)
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or

Δx νð Þ
c ¼ � J ν�1ð Þ

� ��1
M x ν�1ð Þ

c

� 


, (23)

where J is the complex-valued Jacobian matrix which the dimension is
2 N � 1ð Þ � 2 N � 1ð Þ. It means that at least one complex-valued state variable have
to be specified, i.e., is known.

As a further advantage provided by the Wirtinger calculus [2, 3], the Jacobian
matrix which emerged in Cartesian coordinates needs lesser algebra task as well as
minor implementation effort (encoding) than the former procedure in real domain
[14]. Thereby, the Jacobian matrix in expanded form may be represented through
four partitions matrix, yielding

J ¼

∂M1

∂x1

∂M1

∂x2
⋯

∂M1

∂xN�1

⋮
∂M1

∂x ∗

1

∂M1

∂x ∗

2

⋯
∂M1

∂x ∗

N�1

∂M2

∂x1

∂M2

∂x2
⋯

∂M2

∂xN�1

⋮
∂M2

∂x ∗

1

∂M2

∂x ∗

2

⋯
∂M2

∂x ∗

N�1

∂MN�1

∂x1

∂MN�1

∂x2
⋯

∂MN�1

∂xN�1

⋮
∂MN�1

∂x ∗

1

∂MN�1

∂x ∗

2

⋯
∂MN�1

∂x ∗

N�1

⋯ ⋯ ⋯⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯

∂M ∗

1

∂x1

∂M ∗

1

∂x2
⋯

∂M ∗

1

∂xN�1

⋮
∂M ∗

1

∂x ∗

1

∂M ∗

1

∂x ∗

2

⋯
∂M ∗

1

∂x ∗

N�1

∂M ∗

2

∂x1

∂M ∗

2

∂x2
⋯

∂M ∗

2

∂xN�1

⋮
∂M ∗

2

∂x ∗

1

∂M ∗

2

∂x ∗

2

⋯
∂M ∗

2

∂x ∗

N�1

∂M ∗

N�1

∂x1

∂M ∗

N�1

∂x2
⋯

∂M ∗

N�1

∂xN
⋮

∂M ∗

N�1

∂x ∗

1

∂M ∗

N�1

∂x ∗

2

⋯
∂M ∗

N�1

∂x ∗

N�1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

(24)

For instance, Figure 2 displays the pattern for the IEEE-57 bus system in -
domain and complex plane. This latter is given by Eq. (24).

Figure 2.
Sparsity structure of (a) real-valued Jacobian matrix; (b) complex-valued Jacobian matrix of the IEEE 57-bus
system.

8

Advances in Complex Analysis and Applications



4.1 Jacobian matrix factorization

In order to factorize the Jacobian matrix required in Eq. (23), the recommended
procedure is to operate the factorization on the augmented Jacobian matrix,
yielding

Ja ¼ J M x ν�1ð Þ
c

� 
h i

, (25)

which the dimension is 2n� 2nþ 1ð Þ, resulting

~Ja ¼ Tc
~M x ν�1ð Þ

c

� 
h i

, (26)

where Tc is an upper triangular matrix of dimension (2n� 2n) and ~M x
ν�1ð Þ
c

� 


comprises the corresponding rows in the updated rhs vector of dimension (2n� 1).
Finally, Eq. (23) is solved by performing a back-substitution via

Δx νð Þ
c ¼ Tc

~M x ν�1ð Þ
c

� 


: (27)

On the other hand, it is recommendable to perform the convergence checking
over the infinity norm of two vectors. Firstly, as the former, it occurs over the
corrections to be applied to the state variables and simultaneously over the mis-
matches vector. This latter is included, aiming to be aware against ill-conditioned
systems [14], yielding

Δx νð Þ
c

�
�

�
�
∞

and M xcð Þ νð Þ
�
�
�

�
�
�
∞

≤ tol e:g:, 10�12
� �

: (28)

If Eq. (28) is satisfied, stop and print out the results. Otherwise, the state vector
is updated as shown below:

x νð Þ
c ¼ x ν�1ð Þ

c þ Δx νð Þ
c , (29)

and the iteration counter is increased followed by the updating of the mismatch
vector and the Jacobian matrix factorization. This latter task can be mandatory or
not once the Jacobian matrix may be kept constant throughout the iterative process
(approximate, instead of full gain) which is a decision very often adopted after the
second iteration aiming to lighten the computational burden. Further details can be
found in [14], but in the sequence, a small example is presented forwarded of
simulations carried out on large systems. However, as any other application in the
industry, the power flow model lies in the solution of a system of linear algebraic
equations which is summarized thereafter.

4.2 Nodal equation

This approach requires the nodal admittance matrix building, e.g.,

I ¼ Ybus V, (30)

thus the complex nodal power can be expressed as

S ¼ diag Vð Þ I ∗ , (31)
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or

S ¼ diag Vð Þ Y ∗

bus V
∗ : (32)

Then, the nodal complex power at bus� k, i.e., Sk, is

Sk ¼ Vk y
∗

kk V
∗

k þ Vk

X

m¼0
m6¼k

N

y ∗km V ∗

m , (33)

where N is the number of network nodes. Therefore, the unknowns to be deter-
mined are the voltages at each node or bus into the system and the general power flow
equations that model any type of branch in an electrical network, i.e., transmission
lines and phase- and phase-shifting-transformers can be written, yielding

Skm ¼ Vk
y ∗km

tkmt ∗km
� j bshkm

� �

V ∗

k � Vk
y ∗km
tkm

V ∗

m, (34)

Smk ¼ Vm y ∗km � j bshkm

� 


V ∗

m � Vm
y ∗km
t ∗km

V ∗

k : (35)

and their complex conjugate counterpart are

S ∗

km ¼ V ∗

k

ykm
t ∗kmtkm

þ j bshkm

� �

Vk � V ∗

k

ykm
t ∗km

Vm, (36)

S ∗

mk ¼ V ∗

m ykm þ j bshkm

� 


Vm � V ∗

m

ykm
tkm

Vk: (37)

In Eqs. (34)–(37), tkm ¼ akm e�jφkm is the general off-nominal tap transformer
model which is composed by an ideal transformer with complex turns ratio tkm : 1
in series with its admittance or impedance. Thus, if the corresponding branch is
referred to.

1. Off-nominal tap transformer: bshkm ¼ 0 and φkm ¼ 0.

2. Pure-shifter: bshkm ¼ 0 and akm ¼ 1.

3. Phase-shifter: bshkm ¼ 0.
4. π�transmission line: akm ¼ 1 and φkm ¼ 0.

4.3 Small example

The power flow model in complex plane as detailed in [14] is applied to a small
example system in which the diagram is shown in Figure 3, while the corresponding
branch parameters and bus data, both in pu (Vbase ¼ 230 kV; Sbase ¼ 100MVA), are
presented in Table 1.

The nodal admittance matrix, Ybus, leads to

Ybus ¼

þ213:3474� j 380:8922 �205:1282þ j 358:9744 �8:2192þ j 21:9178

�205:1282þ j 358:9744 þ205:2414� j 359:3821 �0:1132þ j 0:6037

�8:2192þ j 21:9178 �0:1132þ j 0:6037 þ8:3324� j 22:3256

2

6
4

3

7
5:

(38)

The whole set of intermediary results throughout the iterative process is
presented in the sequence.
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As in the real domain, the elements of the complex-valued Jacobian matrix
remain practically unchanged after the second iteration, which suggest that we may
keep them constant thereafter. Moreover, the computation of some entries can be
avoided because they are complex conjugates of other entries; it turns out that these
elements are PV-nodes.

Branch Series Shunt

i ! j R X Charging Y/2

pu pu MVAr pu

1-2 0.0012 0.0021 39.2 0.196

1-3 0.0150 0.0400

2-3 0.3000 1.6000

Bus Specified quantities in pu

Type Pg V Pload Q load

PV-2 1.0000 1.0000 0.2160 0.0918

PQ-3 2.700 1.620

Table 1.
Branch and bus data.

Figure 3.
Small 3-bus system.
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Interestingly, the numerical values of the state variables corrections, state vari-
ables, and mismatches vectors calculated in the complex plane are displayed in the
Tables 2–4, respectively.

4.4 Performance in larger systems

The algorithm described earlier was encoded in MATLAB by using sparsity
technique and column approximate minimum degree (colamd) ordering scheme.
The numerical tests were executed by using an Intel® Core™ i5-4200 CPU at
1.60 Hz 2.30 GHz, 6GB of RAM, and 64-bit operating system. A flat start condition
is assigned to the state variables in all simulations.

Thereby, Table 5 presents the performance on larger systems of the Newton-
Raphson method in complex plane which is highlighted in bold. The corresponding
performance is compared with those of the former Newton-Raphson method
developed in polar and rectangular coordinates, both in real domain. In all simula-

tions the convergence criterion of 1� 10�12 is assumed.

Δx Δx ν¼0ð Þ
Δx ν¼1ð Þ

Δx ν¼2ð Þ
Δx ν¼3ð Þ

Δx2 0:0023� eþj 90:00 0:0003� e�j 90:39 0:0127 � e�j 90:08 0:1708� eþj 89:92

Δx3 0:1278� e�j 138:75 0:0185� e�j 174:56 0:4267 � e�j 179:44 0:2326� e�j 179:18

Δx ∗

2 0:0023� e�j 90:00 0:0003� eþj 90:37 0:0127 � eþj 90:07 0:1708� e�j 89:91

Δx ∗

3 0:1278� eþj 138:75 0:0203� eþj 178:81 0:4795� eþj 173:22 0:2615� eþj 173:47

Δxk k
∞

a 0:127809 0:020316 4:795255� 10�4 2:614490� 10�7

aConvergence criteria: ΔXk k
∞
< tol:≈ 10�4.

Table 2.
Unknown correction vector.

M M ν¼0ð Þ M ν¼1ð Þ M ν¼2ð Þ M ν¼3ð Þ � 10�3

M2 �1:5680þ j 0:0000 þ0:2178þ j 0:0000 þ0:0093þ j 0:0000 þ0:1229þ j 0:0000

M3 þ2:7000þ j 1:4240 þ0:1363þ j 0:3648 þ0:0021þ j 0:0087 þ0:0011þ j 0:0047

M ∗

2 þ0:0000þ j 0:0000 þ0:0000� j 0:0000 þ0:0000� j 0:0000 þ0:0000� j 0:0000

M ∗

3 þ2:7000� j 1:4240 þ0:1363� j 0:3648 0:0021� j 0:0087 0:0011� j 0:0047

Convergence criteria: Mk k
∞
< tol:≈ 10�4.

Table 4.
Mismatch vector.

x x ν¼0ð Þ x ν¼1ð Þ x ν¼2ð Þ x ν¼3ð Þ

x2 1:000� e j 0:0 1:000� eþj 0:132 1:000� eþj 0:115 1:000� eþj 0:115

x3 1:000� e j 0:0 0:907 � e�j 5:326 0:889� e�j 5:548 0:889� e�j 5:552

x ∗

2 1:000� e�j 180 1:000� e�j 0:132 1:000� e�j 0:115 1:000� e�j 0:115

x ∗

3 1:000� e�j 180 0:907 � eþj 5:326 0:887 � eþj 5:421 0:887 � eþj 5:420

Table 3.
Unknown vector.
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The results presented in the aforementioned table allows us to infer that the
Newton-Raphson method in complex plane has very good performance. Except for
the SIN-1916 bus system, the time consuming required to achieve the solution is
lower than the remainder approaches.

In the next section, the Gauss-Newton method is presented. The goal is to solve
overdetermined systems of equations, i.e., the former nonlinear least-squares
method in complex plane.

5. Complex-valued weighted-least-squares method (CV-WLS)

As shown in [3], the complex-valued WLS state estimator minimizes an objec-
tive function defined as

argmin
xc

J xcð Þ ¼
1

2
zc � hc xcð Þð ÞH Ω

�1
c zc � hc xcð Þð Þ, (39)

where zc = z, z ∗ð Þ is a vector of specified complex values of dimension (2m� 1),
xc = x, x ∗ð Þ is a vector of complex-valued state variables of dimension (2n� 1), hc(xc)
is a vector of nonlinear functions of dimension (2m� 1) that maps zc to xc, ωc is
a vector of random errors in complex plane which dimension is (2m� 1), and

CV-Jacobian

matrix

dimension

2 N � 1ð Þ � 2 N � 1ð Þ

Algorithms Number of

iterations

Time/iteration

(s)

Total time

(s)

IEEE-14 1:RV �NRM pð Þ 5 0.0184 0.1647

2:RV �NRM rð Þ 5 0.0150 0.0942

26� 26 3:CV�NRM rð Þ 5 0:0098 0:0767

IEEE-30 1:RV �NRM pð Þ 5 0.0206 0.1791

2:RV �NRM rð Þ 6 0.0105 0.1121

58� 58 3:CV�NRM rð Þ 6 0:0091 0:0645

IEEE-57 1:RV �NRM pð Þ 6 0.0132 0.1653

2:RV �NRM rð Þ 6 0.0137 0.1303

112� 112 3:CV�NRM rð Þ 6 0:0110 0:0810

IEEE-118 1:RV �NRM pð Þ 5 0.0162 0.1575

2:RV �NRM rð Þ 6 0.0196 0.1840

234� 234 3:CV�NRM rð Þ 5 0:0121 0:1056

SIN-1916 1:RV �NRM pð Þ 7 0.4642 3.4732

2:RV �NRM rð Þ 8 0.3095 2.6430

3830� 3830 3:CV�NRM rð Þ 7 0:7699 4:5561

(p)—polar coordinates; (r)—rectangular coordinates; tol., 1� 10�12.

Table 5.
Performance in larger systems—squared matrices.
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Ωc ¼ E ωc ω
H
c

� �
is a Hermitian positive-definite covariancematrix ofωc which dimen-

sion is (2m� 2m).The superscript �ð ÞH stands forHermitian operator, i.e., the transpose
complex conjugate operation. Thus, the necessary condition of optimality is given by

∂J xcð Þ

∂xc
¼ �H xcð ÞH Ω

�1
c zc � hc xcð Þð Þ ¼ 0: (40)

By applying a first-order Taylor series expansion of hc xcð Þ about x νð Þ
c , we get

hc xcð Þ ¼ hc x νð Þ
c

� 


þH x νð Þ
c

� 


xc � x νð Þ
c

� 


: (41)

By replacing Eq. (41) into Eq. (40), we obtain

H x νð Þ
c

� 
H
Ω

�1
c zc � hc x νð Þ

c

� 


�H x νð Þ
c

� 


xc � x νð Þ
c

� 
h i

¼ 0, (42)

yielding the updated estimated state vector expressed as

x νþ1ð Þ
c ¼ x νð Þ

c þG x νð Þ
c

� 
�1
H x νð Þ

c

� 
H
Ω

�1
c Δz νð Þ

c ,

¼ x νð Þ
c þ Δx νð Þ

c ,

(43)

where

Δx νð Þ
c ¼ G x νð Þ

c

� 
�1
H x νð Þ

c

� 
H
Ω

�1
c Δz νð Þ

c : (44)

Notice G x
νð Þ
c

� 


¼ H x
νð Þ
c

� 
H
Ω

�1
c H x

νð Þ
c

� 


and Δz
νð Þ
c ¼ zc � hc x

νð Þ
c

� 


. Thus, the

iterations are stopped when

Δx νð Þ
c

�
�

�
�

�
�

�
�
∞

≤ tol, e:g:, 10�3, (45)

where �k k
∞
is the infinity norm and ν is the iteration counter.

Note that in Eq. (40), H xcð Þ is the Jacobian matrix of dimension (2m� 2n)
defined in the complex domain, yielding

H xcð Þ ¼
Δ ∂hc xcð Þ

∂xc
¼
Δ

∂hc xcð Þ

∂x

∂hc xcð Þ

∂x ∗

∂h ∗

c xcð Þ

∂x

∂h ∗

c xcð Þ

∂x ∗

0

B
B
B
@

1

C
C
C
A
: (46)

Let Jh ¼
∂hc xcð Þ

∂x and Jdh ¼
∂hc xcð Þ
∂x ∗ be Jacobian submatrices of dimension (m� n).

They are obtained through the Wirtinger partial derivatives with respect to the
complex and the complex conjugate state variables using the chain differentiation
rule. Now, let us define the Jacobian matrix as

Jc xcð Þ ¼ Jh Jdh
� �

: (47)

In the important special case given by Eq. (39) where J xcð Þ is a real-valued
function of complex variables, the following property holds
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J xcð Þ∈ )
∂h ∗

c xcð Þ

∂x
¼

∂hc xcð Þ

∂x ∗

� � ∗

¼ Jdh
� � ∗

: (48)

Therefore, taking into account the chain rule differentiation mentioned earlier
and the property stated in Eq. (48), Eq. (46) becomes

H xcð Þ ¼
Jh Jdh

Jdh
� � ∗

Jhð Þ ∗

 !

¼
Jc xcð Þ

J ∗c xcð Þ S

 !

, (49)

where S is a swap operator that permutes blocks of m rows or blocks of n
columns depending upon whether S pre-multiples or post-multiples a matrix,
respectively. Moreover, this operator is an isomorphism from  to the dual space


∗ , which obeys the properties S�1 ¼ ST ¼ S. It shows that S is symmetric and is

equal to its own inverse, that is, S2 ¼ I. For instance, as shown in [2], this matrix is
defined as

S ¼
Δ 0 In

In 0

� 	

, (50)

where In is the (n� n)-identity matrix.
Now, the complex-valued gain matrix G x̂cð Þ in expanded form can be

expressed as

G x̂cð Þ ¼
Gxx Gx ∗ x

Gxx ∗ Gx ∗ x ∗

 !

, (51)

where Gx ∗ x ∗ ¼ Gxx

� � ∗
and Gx ∗ x ¼ Gxx ∗

� � ∗
, all of dimension (n� n). Then, it

follows from Eq. (47) that

Gxx ¼
1

2

∂h

∂x̂

� �H

Ω
�1
c

∂h

∂x̂

� �

þ
∂h

∂x̂ ∗

� �H

Ω
�1
c

∂h

∂x̂ ∗

� � ! ∗" #

,

¼
1

2
Jh

H
Ω

�1
c Jh þ Jdh

H
Ω

�1
c Jdh

� 
 ∗h i

,

(52)

Similarly, we get

Gx ∗ x ¼
1

2

∂h

∂x̂

� �H

Ω
�1
c

∂h

∂x̂ ∗

� �

þ
∂h

∂x̂ ∗

� �H

Ω
�1
c

∂h

∂x̂

� � ! ∗" #

,

¼
1

2
Jh

H
Ω

�1
c Jdh þ Jdh

H
Ω

�1
c Jh

� 
 ∗h i

:

(53)

The investigation of the sparsity structure of the Jacobian matrix in complex
plane given by Eq. (49), e.g., Figure 4, reveals that the Jacobian matrices in the
-domain are sparser than its counterpart in the -domain [15]. Figure 4 is
referred to the Brazilian equivalent 730-bus system which the Jacobian matrix in the
-domain has 10,396 nonzero elements, while in the -domain, it has 18,403
nonzero elements; it is about 45% sparser.
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Nonetheless, the recommended numerical procedure aiming to solve the
complex-valued power system state estimation problem is addressed by solving the
weighted form of the right-hand-side (rhs) of Eq. (40) instead of Eq. (44), yielding

~H x̂cð Þ Δx νð Þ
c ¼ Δ~zc, (54)

where ~H x̂cð Þ ¼ Ω
�1=2
c H x̂cð Þ is of dimension (2m� 2n) and Δ~zc ¼ Ω

�1=2
c Δzc is

of dimension (2m� 1). Thus, the incremental changes in the state vector are
calculated via

Δx νð Þ
c ¼ ~H x̂cð Þ† Δ~zc, (55)

where the † operator is defined as the Moore-Penrose pseudoinverse [3].
Aiming to avoid explicitly store, the Q-matrix, we apply the QR-transformation

to the augmented matrix, Ha x̂cð Þ, given by

Ha x̂cð Þ ¼ ~H x̂cð Þ Δ~zc

 �

: (56)

By storing the rotations in compact form, the complex-valued Jacobian matrix
can be kept constant and only the right-hand-side vector is updated throughout the
final iterations. The solution of the state vector increment given by Eq. (55) is found
by executing a simple back-substitution of Eq. (56) after performing unitary trans-
formations to the latter matrix, resulting in

Figure 4.
Sparsity structure of (a) real-valued Jacobian matrix; (b) real-valued gain matrix; (c) complex-valued
Jacobian matrix; and (d) complex-valued hessian matrix of the Brazilian equivalent 730-bus system.
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~Ha x̂cð Þ ¼ Tc Δ~~zc

 �

: (57)

Here, Tc is an upper triangular matrix of dimension (2n� 2n), and Δ~~zc com-
prises the corresponding rows in the updated rhs vector of dimension (2n� 1).
Finally, Eq. (55) is solved by performing a back-substitution via

Δx νð Þ
c ¼ Tc Δ

~~zc: (58)

5.1 Small example

The one-line diagram of a 2-bus system is depicted in Figure 5. The system is
provided with two PMU measurements that meter the nodal voltage magnitudes
and phase angles and two real and reactive power flow measurements, which are
identified by means of black bullets and red triangles, respectively. In Table 6, the
transmission line parameters are given in pu.

From Figure 5, the complex power injections at sending and receiving end,
respectively, are written yielding

S1 ¼ V1 y ∗12 � j bsh12

� 


V ∗

1 � y ∗12 V
∗

2

h i

, (59)

S2 ¼ V2 y ∗12 � j bsh12

� 


V ∗

2 � y ∗12 V
∗

1

h i

: (60)

Applying the Wirtinger calculus to Eqs. (59) and (60) leads to the Jacobian
matrix given by Eq. (47) at each iteration as shown in the sequence. Here, the
complex power injection measurement at each end, i.e., S1 and S2, is equal to the
corresponding power flow measurement, i.e., S12 and S21, respectively.

Figure 5.
2-Bus power system.

Branch Series Shunt

i ! j R X Charging Y/2

pu pu MVAr pu

1-2 0.0203 0.1318 62.62 0.3131

Table 6.
Branch data.
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As observed in the above expressions of Jc, the sub-matrix Jh is more sparse than

the sub-matrix Jdh, which affects the sparsity structure of the complex-valued Jaco-
bian matrix as shown earlier in Figure 4. The state variables at each iteration are
provided in Table 7, while the estimated measured quantities are given in Table 8.

x x ν¼0ð Þ x ν¼1ð Þ x ν¼2ð Þ x ν¼3ð Þ

V1 1:0000 1:0097 1:0000 1:0001

eþj 0:0 e�j 0:1015 eþj 0:0018 eþj 0:0004

V2 1:0000 0:8973 0:8954 0:8956

eþj 0:0 e�j 14:9708 e�j 15:0924 e�j 15:0904

V ∗

1 1:0000 1:0097 1:0000 1:0001

eþj 0:0 eþj 0:1015 e�j 0:0018 e�j 0:0004

V ∗

2 1:0000 0:8973 0:8954 0:8956

eþj 0:0 eþj 14:9708 eþj 15:0924 eþj 15:0904

Table 7.
Estimated state variables.

ẑi ẑ ν¼0ð Þ ẑ ν¼1ð Þ ẑ ν¼2ð Þ ẑ ν¼3ð Þ

S12 0.0000 � j 0.3131 +1.4747 + j 0.1745 +1.8873 + j 0.4815 +1.8827 + j 0.4248

S21 0.0000 � j 0.3131 �1.4014 � j 0.0707 �1.8036 � j 0.5094 �1.7997 � j 0.4500

S1 0.0000 � j 0.3131 +1.4747 + j 0.1745 +1.8873 + j 0.4815 +1.8827 + j 0.4248

S2 0.0000 � j 0.3131 �1.4014 � j 0.0707 �1.8036 � j 0.5094 �1.7997 � j 0.4500

Table 8.
CV-estimated quantities.
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The residual vector and the chi-squared index throughout the iterations are
presented in Table 9. Notice that the estimated values obtained in the -domain are
exactly equal to those extracted from the power flow report in the -domain.
Furthermore, the Gauss-Newton iterative algorithm converges in three iterations in
both vector spaces, i.e., real and complex domain.

5.2 Performance in larger systems

In the sequel, Table 10 presents the performance on larger systems of the Gauss-
Newton method in complex plane which is highlighted in bold. In all simulations

the convergence criterion of 1� 10�3 is assumed.
The comparative analysis of the results presented in the aforementioned table

allows us to infer that the Newton-Raphson method in complex plane has very good
performance. Except for the SIN-1916 bus system, the time consuming required to
achieve the solution is lower than the remainder approaches.

6. Conclusions and future developments

The chapter’s prime goal is to present the advances aiming to solve nonlinear
system of equations in complex plane, regardless if it is exactly or overdetermined.
Firstly, it develops the former Newton-Raphson method addressed to solve exactly
determined problem. Thereafter, the weighted-least-squares (WLS) is developed

r ν¼ið Þ r ν¼0ð Þ r ν¼1ð Þ r ν¼2ð Þ r ν¼3ð Þ

rV1 0:0000þ j 0:0000 0:1991þ j 0:0000 �0:0097 þ j 0:0018 0:0000� j 0:0000

rV2
�0:1349� j 0:2333 0:1634� j 0:0000 �0:0017 � j 0:0015 0:0006� j 0:0001

rS12 1:8827 þ j 0:7375 0:4080þ j 0:2499 �0:0046� j 0:0571 �0:0000� j 0:0004

rS21 �1:7998� j 0:1366 �0:3984� j 0:3790 0:0038þ j 0:0597 �0:0001þ j 0:0003

rS1 1:8827 þ j 0:7375 0:4080þ j 0:2499 �0:0046� j 0:0571 �0:0000� j 0:0004

rS2 �1:7998� j 0:1366 �0:3984� j 0:3790 0:0038þ j 0:0597 �0:0001þ j 0:0003

J x̂ð Þ ν¼ið Þ 14:7654 1:1288 0:013825 8:8� 10�7

Table 9.
CV-residual vector.

CV-Jacobian matrix

dimension

2m� 2n

Algorithms Number of

iterations

Time/

iteration (s)

Total time

(s)

IEEE-14 60� 28 3:CV�NRM rð Þ 3 0:045303 0:108547

IEEE-30 124� 60 3:CV�NRM rð Þ 3 0:067118 0:158415

IEEE-118 368� 236 3:CV�NRM rð Þ 8 0:150205 1:064942

SIN-340 1704� 680 3:CV�NRM rð Þ 7 0:992872 6:724038

SIN-1916 9642� 3832 3:CV�NRM rð Þ 8 29:856246 242:695989

(r)—rectangular coordinates; tol.—1� 10�3.

Table 10.
Performance in larger systems—overdetermined matrices.
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through the Gauss-Newton method. In both cases the applications are carried out on
small examples and larger systems. All results demonstrate the advantages of the
algorithms developed in complex plane over the former procedure, although the
computational burden is still a bottleneck for larger systems. Highlight that there
are many enhancements that can be addressed to mitigate this problem. To cite a
few, they are shown as follows:

1.Ordering schemes based on rows overlapped by columns ordering schemes
[12, 13].

2.Suppressing of complex conjugate calculation storing during the Jacobian
matrices building.

Nomenclature

xc Vector of the state variables in the conjugate coordinate system
x, x ∗ Complex and complex conjugate state variables
t, t ∗ Complex and complex conjugate tap position
ℜ �f g, ℑ �f g Real and imaginary part of a complex variable
J Complex-valued Jacobian matrix for the exactly determined system

of equations
H Complex-valued Jacobian matrix for the overdetermined system of

equations
M Complex-valued mismatch vector
�ð Þc Quantity in the conjugate coordinate system

�k k2 Squared Euclidean norm

�k k
∞

Infinity norm
ν Iteration counter
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