
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Chapter

Securing the Deployment of
Cloud-Hosted Services for
Guaranteeing Multitenancy
Isolation
Laud Charles Ochei

Abstract

Multitenancy introduces significant error and security challenges in the cloud
depending on the location of the functionality to be shared and the required
degree of isolation between the tenants. Existing approaches for securing the
deployment of cloud-hosted services to serve multiple users have paid little
attention to evaluating the effect of the varying degrees of multitenancy isola-
tion on the security and access privilege of tenants (or components). In addition,
approaches for securing the isolation of tenants (or components) are usually
implemented at lower layers of the cloud stack and often apply to the entire system
and not to individual tenants (or components). This study presents CLAMP
(Cloud-based architectural approach for securing services through Multitenancy
deployment Patterns) to securing the deployment of cloud-hosted services in
a way that guarantees the required degree of isolation between the tenants.
We evaluated the framework by applying it to a motivating cloud deployment
problem. The findings show among other things that the framework can be used
to select suitable deployment patterns, evaluate the effect of varying degrees of
isolation on the cloud-hosted service, analyse the deployment requirements of
cloud-hosted services and optimise the deployment of the cloud-hosted service to
guarantee multitenancy isolation.

Keywords: security, cloud-hosted services, deployment, multitenancy, tenant
isolation

1. Introduction

Applications on the cloud are accessed over the internet using standard internet
protocols. In deciding to store data or host applications in the public cloud, an
organisation loses its ability to access the servers that store its information. In this
way, potentially sensitive data are at risk from insider attacks.

Therefore, cloud service providers must put in place security measures to
physical access to the servers in the data center and frequently monitor data centers
for suspicious activity. Security and privacy challenges deriving from the use of
the internet are substantial and but no different from the security issues of the

Cloud Computing Security - Concepts and Practice

2

applications not hosted in the cloud. The one significant security element intro-
duced by the cloud is multitenancy [1].

Multitenancy is an essential cloud computing property. Multitenancy is a soft-
ware architecture where one instance of a cloud offering is used to serve multiple
tenants and/or components [2, 3]. Multitenancy means that your application is
utilising a virtual machine on a physical computer that is hosting multiple virtual
machines. There are many forms of attack utilising multitenancy- inadvertent
data sharing, virtual machine escape, side channel attack, and denial of ser-
vice attack.

Users can require varying or different degrees of isolation between components
when implementing multitenancy. To avoid interference, a high degree of insula-
tion between components may be required, but this usually results in high resource
consumption and running costs per component. A low degree of isolation promotes
sharing of components, resulting in low resource consumption and running costs,
but with high performance impact when the workload changes and the application
does not scale up/down.

The challenge therefore is how to: (i) ensure that there is isolation between
multiple tenants accessing the service or components designed (or integrated) with
the service; (ii) resolve the trade-offs between varying degrees of isolation between
tenants or components.

Motivated by this problem, this study presents a framework, CLAMP (Cloud-
based architectural approach for securing services through Multitenancy deploy-
ment Patterns) to securing the deployment of cloud-hosted services in a way that
guarantees the isolation between tenants. The framework assumes that the issues of
security are tackled from the perspective of the tenant owns software components
and is responsible for configuring them to design and deploy its own cloud-hosted
application on a shared cloud platform whose provider does not have control over
these components.

We evaluated the framework by applying it to a motivating cloud deployment
problem that requires securing several components of a cloud-hosted service while
guaranteeing the required degree of isolation between tenants. The research ques-
tion addressed in this study is: “How can we secure the deployment of cloud-hosted
services in a way that guarantees isolation between tenants”.

The main contributions of this study are:

1. To develop a framework for securing the deployment of cloud-hosted services
in a way that guarantees the isolation of tenants.

2. To evaluate the framework by applying it to a motivating cloud deployment
problem.

3. To develop a cloud security checklist for guiding software architects in
 implementing the framework.

4. Present recommendations and best practice guidelines for securing the
 deployment of cloud-hosted services based on the framework.

Our findings show among other things that the framework can be used to select
suitable deployment patterns, evaluate the effect of varying degrees of isolation on
the cloud-hosted service, analyse the deployment requirements of cloud-hosted
services and optimise the deployment of the cloud-hosted service to guarantee
multitenancy isolation.

3

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

The rest of this chapter is organised as follows. Section 2 presents an overview
of cloud computing and cloud security. Section 3 presents architectures for
cloud-hosted services. Section 4 presents multitenancy in a cloud environment.
Section 5 discusses related work on multitenancy and cloud security. Section 6
presents a framework for securing the deployment of cloud-hosted services for
guaranteeing multitenant isolation, while Section 7 evaluates the framework
by applying it to a motivating cloud deployment problem. Section 8 provides
further discussion and recommendations for securing the deployment of cloud-
hosted services based on the framework. Section 9 concludes the chapters with
future work.

2. Cloud computing security

This section gives an overview of cloud computing and cloud security and
multitenancy.

2.1 Cloud computing

According to Armbrust et al. [4], “cloud computing refers to both the applica-
tions delivered as a service over the Internet and the hardware and systems software
in the data centers that provides those.

services.”
The cloud includes hardware for the data centre as well as software. The cloud

could either be a public cloud (that is, cloud that is provided to the general public in
a prepaid manner), private cloud (that is, an organisation’s internal IT infrastructure
which is not available to the public at large), or a hybrid cloud (that is, a private
cloud’s computing capacity that is enhanced by the public cloud).

Although there are so many definitions that have been given for the term cloud
computing, there is common agreement on the basic characteristics of a cloud
computing environment. These include [3]—pay-per-use, elastic capacity and
the illusion of infinite, self-service interface, and resources that are abstracted or
virtualized.

There are three basic cloud service models:

i. Software as a Service (SaaS): In the SaaS model, cloud providers can install,
operate and access their application software using a web browser. An
example of a SaaS provider is Salesforce.com, which utilises the SaaS model
to provide Customer Relationship Management (CRM) applications located
on their server to customers. This eliminates the need for customers to run
and install the application on their own computers.

ii. Platform as a Service (PaaS): In the PaaS model, cloud providers deliver
cloud platforms which represent an environment for application develop-
ers to create and deploy their applications. A notable example of PaaS
is the Google App Engine, which provides an environment for creating
and deploying web-based applications written in specific programming
languages.

iii. Infrastructure as a Service (IaaS): In the IaaS model, cloud providers offer
physical (computers, storage) and virtualized computer resources. Examples
of IaaS providers include: Amazon EC2, and Azure Services Platform.

Cloud Computing Security - Concepts and Practice

4

2.2 Cloud security

Cloud security relates to a wide range of policies, techniques, applications,
and controls used to safeguard virtualized IP, information, apps, services, and
related infrastructure. Cloud security is very essential for companies making
the shift to the cloud and also for customers who use the cloud for a range of
personal services especially as security threats continue to evolve and become
more advanced. Cloud security concerns fall into two wide classifications: (i)
security concerns faced by cloud providers (businesses providing software,
platform, or infrastructure-as - a-service organisations through the cloud);
(ii) security concerns faced by their customers (businesses or organisations
that host applications or store data in the cloud). However, the responsibility is
shared. There are four (4) main forms of attack that use multitenancy: inadver-
tent information sharing, virtual machine escape, side-channel attack, denial
of service attack. The focus of this study is mostly related to inadvertent infor-
mation sharing where a tenant has a set of components/resources or services
which are mapped to some physical resource on the cloud platform. Under this
situation, data residing on the physical resource from one tenant may be leak to
another tenant.

Cloud service suppliers often store more than one customer information on
the same server in order to conserve resources (e.g., CPU, memory, storage space)
reduce cost and maintain service level agreement. To handle such sensitive situa-
tions, cloud service providers usually put in place robust secure measures to ensure
proper data isolation and logical storage segregation [5].

Cloud security is the protection of data, applications, and infrastructures
involved in cloud computing. Cloud security concerns can be grouped in various
ways. Gartner listed seven (7) categories of cloud security. In the “data segregation”
category, which is the closest to the focus of our study, the cloud is typically in a
shared environment alongside data from other customers [6]. The Cloud Security
Alliance identified 12 areas of concern [7]. In “Abuse and Nefarious Use of Cloud
Services” category, which is the closet to our study, the focus is on the use of poorly
secured cloud service deployments, free cloud service trials and fraudulent account
sign-ups via payment instrument fraud expose cloud computing models such as
IaaS, PaaS, and SaaS to malicious attacks.

3. Architectures for cloud-hosted services

The architectures or cloud patterns used to deploy cloud-hosted services to
the cloud are of great importance to software architects because they determine
whether or not the system’s essential quality attributes (e.g., performance) will be
exhibited [1, 8, 9].

3.1 Architectural patterns

Architectural and design patterns have long been used to provide known
solutions to many common problems a distributed system face [1, 10]. A system/
application architecture decides whether or not it will show its necessary quality
attributes (e.g., performance, availability, and security) [1, 8].

Definition 2.3: Architectural Pattern. Architectural patterns are compositions
of architectural elements that provide bundled solutions to solve recurring prob-
lems a system faces [1].

5

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

A cloud pattern in the cloud computing environment represents a well-defined
format for explaining an appropriate solution to a cloud-related problem [11]. There
are several cloud problems, such as: (i) selecting an appropriate cloud type for host-
ing applications; (ii) selecting a cloud service delivery approach; (iii) deploying a
multi-tenant service in a way that ensures tenant isolation.

Cloud deployment architects are using cloud patterns as a reference guide
to document best practice on how to plan, develop and deploy cloud-based
applications.

Definition 2.4: Cloud Deployment Pattern. A “Cloud deployment pattern” is
defined as a type of architectural pattern, which embodies decisions as to how ele-
ments of the cloud application will be assigned to the cloud environment where the
application is executed.

Our definition of cloud deployment pattern is similar to the concept of design
patterns [10], (architectural) deployment patterns [1], collaboration architectures
[8], cloud computing patterns [11], cloud architecture patterns [12], and cloud
design patterns [13].

One of a cloud deployment architect’s main duty is to assign cloud application
elements to the hardware elements (e.g. processor, filesystems) and communica-
tion elements (e.g. protocols, message queues) in the cloud environment so that the
necessary quality attributes can be achieved.

Figure 1 demonstrates how elements of Hudson (a typical of Global Software
Development tool) are mapped to the elements of the cloud environment. Hudson
operates on an Amazon EC2 instance while periodically extracts and stores the data
it produces on separate cloud storage (e.g., Amazon S3).

4. Multitenancy in a cloud environment

Multitenancy is an essential cloud computing property where a single instance
of a cloud offering is used to serve multiple tenants and/or components [14, 15].
One of the challenges of implementing multitenancy on the cloud is how to enable
the required degree of isolation between multiple components of a cloud-hosted

Figure 1.
Mapping elements of a cloud-hosted service to the external environment.

Cloud Computing Security - Concepts and Practice

6

application (or tenants accessing a cloud-hosted application). We refer to this as
multitenancy isolation.

Definition 1: Multitenancy isolation. The term “Multitenancy Isolation” refers
to an approach to ensuring that one tenant’s performance, stored data volume, and
access rights do not impact other tenants accessing the shared application compo-
nent or its functionality. Multitenancy isolation can be represented in three main
cloud multitenancy patterns [11]:

1. Shared component: Tenants use the same instance of a resource and may not
be aware that other tenants are using it.

2. Tenant-isolated component: Tenants share the same resource instance but are
assured of their isolation. This pattern allows for the tenant-specific configura-
tion of the functionality or resource offered.

3. Dedicated component: Tenants do not share resource instance. That is, each
tenant is associated with one instance (or a certain number of instances) of the
resource.

4.1 Degrees of multitenancy isolation

The degree of isolation between tenants accessing a shared component of
an application can be expressed in the three multitenancy patterns (i.e., shared
component, tenant-isolated component and dedicated component). The shared
component reflects the lowest degree of isolation between tenants whilst the highest
is the dedicated component.

The three key areas where tenant isolation can be addressed in a system are: per-
formance, stored data volume and access privileges. For example, in performance
isolation, other tenants should not be affected by the workload created by other ten-
ants. For example, other tenants should not be impacted by the workload generated
by other tenants when considering performance isolation.

Guo et al. [16] evaluated different isolation capabilities related to authentication,
information protection, faults, administration etc.

Different isolation capabilities related to faults, information protection, authen-
tication, administration, etc., have been evaluated by Guo et al. [16]. Bauer and
Adams [17] have studied how to virtualization can be used to ensure that the failure
of one tenant instance does not spread into other tenant instances.

A high degree of isolation can be achieved by deploying an application com-
ponent exclusively for one tenant. This would ensure that there is little or no
performance interference between the components when workload changes. The
deployment of an application component specifically for one tenant can achieve a
high degree of insulation. This ensures that when workload changes, there is little or
no performance impact between the components.

Nevertheless, since components are not shared (e.g. in a situation where some
strict laws and regulations prohibit them from being shared), this means duplicat-
ing the components for each tenant, resulting in high resource consumption and
running costs. In general, this would restrict the number of requests to access the
components.

It may also be that a component requires a low degree of isolation, for example,
to facilitate sharing of the functionality, data, and resources of the component.
This would minimise resource consumption and running costs, but other

7

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

component’s performance might be affected if one of the components experiences
a change in workload.

The challenge for a cloud deployment architect would therefore be how to
overcome the trade-offs between the required performance, system resources and
access privileges at different levels of an application when selecting one (or combi-
nations) of multitenancy patterns to deploy software tools in the cloud. Resolving
the trade-off involving access privileges of users at different levels of an application
depending on the type of multitenancy deployment pattern that is being used is one
of the strategies for providing security for cloud-hosted services deployed based on
multitenancy architecture.

4.2 Implementation of multitenancy isolation

Multitenancy isolation can be implemented both at the process levels (i.e., based
on the processes that interacts with the system) and data levels (i.e., based data
that is being generated or manipulated by the system) of a cloud-hosted service.
Figure 2 shows an architecture that can be used to implement multitenancy isola-
tion at the data level. This implementation represents an application that logs each
operation into a database by relying on an automated build verification and testing
in response to a specific event such as detecting changes in a file.

A specific example of an implementation shown in Figure 2 is to use Hudson’s
Files Found-Trigger plugin to poll one or more directories and start a build if there
are certain files in those directories [18]. Hudson is an open source tool and so can
be easily modified by adding a Java class that accepts a filename as argument into
the plugin. The plugin is loaded into a separate class loader during execution, to
avoid interfering with the core functionality of Hudson.

Definition 2: Application Component. This refers to an encapsulation of a
functionality or resource that is shared between multiple tenants. A component of
an application could be a data handling component (e.g. database), communication

Figure 2.
Multitenancy isolation architecture for cloud-hosted applications.

Cloud Computing Security - Concepts and Practice

8

component (e.g. message queue), user interface component (e.g. AJAX) or process-
ing component (e.g. load balancer).

There are several solutions to multitenancy implementation which have been
widely discussed in the literature. Multitenancy can be introduced at different cloud
stack layers: application layer [16], middleware layer [19], and data layer [20, 21].

It has been suggested that customization is the solution to addressing the
hidden constraints on multitenancy such as complexities, security, scalability and
flexibility [22]. Furthermore, integrating a plugin into a cloud-based service can
provide a workaround for true multitenancy. Again, most of the solutions available
to incorporate multitenancy require a re-engineering of the cloud service to some
degree [17, 23].

Other research work on multitenancy isolation include: [24–30].

5. Related work on cloud security

Apart from the general research on best practices in securing the cloud against
various forms of attacks, there is little research on approaches to secure cloud
services against attacks arising from implementing multitenancy architectures.
There is also little research on approaches for securing the deployment of cloud-
hosted services in a way that guarantees varying degrees of isolation between
tenants.

According to Bass et al., one of the significant security challenges introduced in
the cloud is multitenancy [1]. Implementing multitenancy means that your cloud-
hosted services are utilising the virtual machine on a physical machine that host
multiple virtual machines. Much of literature on multitenancy and cloud security
has established that the obvious approach to addressing the problem is for cloud
providers to allow users to reserve entire virtual machines for their use. Although
this defeats some of the economic benefits of using the cloud, it is nevertheless a
mechanism to prevent multitenancy attacks [1–3].

Previous research has looked at this problem from the perspective of the cloud
providers, for instance, autoscaling algorithms and supporting security-based
strategies provided by IaaS providers such as Amazon and optimization frameworks
suggested for use by SaaS providers such as Salesforce.com.

This study, however, looks at the issue from the tenant’s viewpoint, who owns
software components and is responsible for configuring them to build and deploy
their own cloud-hosted application on a shared cloud platform where the cloud
provider has no control over the software components. The focus of this chapter is
to provide a framework for securing the deployment of cloud-hosted services in a
way that guarantees multitenancy isolation.

The work by [31] is one of the most detailed studies on cloud security. The
author explores different aspects of security and the possible solutions that have
been considered by different authors. The author did not consider approaches for
securing the deployment of cloud-hosted services in a way that guarantees varying
degrees of isolation between tenants.

6. Framework for securing the deployment of cloud-hosted services for
guaranteeing multitenant isolation

The section discusses the framework for securing the deployment of cloud-
hosted services for guaranteeing multitenant isolation.

9

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

6.1 Developing the CLAMP framework

The study presents a robust framework, CLAMP, for securing the deployment
of cloud-hosted services for guaranteeing multitenancy isolation. The framework,
CLAMP (Cloud-based architectural approach for securing services through
Multitenancy deployment Patterns), is basically a framework for guiding soft-
ware architects in securing the deployment of cloud-hosted services in a way that
guarantees the required degree of isolation between other tenants when one of the
tenants (or components) experiences a high workload or security breach.

The CLAMP framework is illustrated as a layered architecture in Figure 3. It
shows how the components of the framework work together to support the task of
securing the deployment of components of a cloud-hosted service for guarantee-
ing multitenancy isolation. The development of CLAMP was inspired by the well
understood architectural structure/pattern called layered pattern [1]. A layer is an
abstract “virtual machine” that provides a cohesive set services through a managed
interface. In a strictly layered system, a layer can only use the services of the layer
immediately below it. This structure is used to imbue a system with portability, the
ability to change the underlying computing platform.

The different components of the CLAMP framework are described as follows.

6.1.1 Layer one: selection of a suitable architectural pattern

This layer addresses the selection of a suitable architectural pattern. In order
to secure the deployment of cloud-hosted services for guaranteeing multitenancy
isolation, it may be very difficult if not impossible to use one cloud pattern to
deploy the service to the cloud due to the different requirements of the service
including accessibility of the service to a wider audience and a combined assurance
for security and privacy. For instance, the architect would require a combination of

Figure 3.
A layered architecture for securing the deployment of cloud-services for guaranteeing multitenancy isolation.

Cloud Computing Security - Concepts and Practice

10

several deployment patterns together with supporting technologies for archiving
components of the cloud-hosted service (i.e., in a hybrid fashion) to integrate
components located in a different cloud environment to form one cloud solution.
Again, if communication is required internally to exchange messages between
application components, then a message-oriented middleware technology would
also be needed. Therefore, the challenge is that of selecting a suitable pattern
(together with the supporting technologies) or a combination of patterns in order
to secure the deployment of cloud-hosted services for guaranteeing multitenancy
isolation. It is assumed that there is a repository of cloud deployment patterns from
where a software architect can select a suitable pattern (s) to address the business
requirements of the company/user.

6.1.2 Layer two: evaluation of the required degree of isolation between tenants

The layer addresses the evaluation of the required degree of isolation between
tenants. There are varying degrees of isolation between tenants that are accessing a
cloud-hosted service. Some of the tenants would require a higher or different degree
of isolation than others. Tenants would be able to share application components
as much as possible at the very basic degree of multitenancy, which translates into
increases use of underlying resources.

At the very basic degree of multitenancy, tenants would be able to share applica-
tion components as much as possible which translates to increased utilisation of
underlying resources. While some components of the application may benefit from
a low degree of isolation between tenants, other components may require a higher
degree of isolation because the component may be either too sensitive or cannot be
shared as a result of certain corporate legislation and regulation.

There is increasing evidence, for example, that many cloud providers are
reluctant to set up data centres in mainland Europe due to stricter legal require-
ments that prohibit data processing outside Europe [32, 33]. This requirement will
traverse down to the IaaS level, and customers must take this into consideration
if intending to host applications outsourced to such cloud providers [11] that
host customers data outside Europe. Therefore, evaluating the required degree of
isolation between the tenants will allow for the appropriate mapping of security
requirements during the deployment of cloud-hosted services onto cloud pro-
vider’s infrastructure.

6.1.3 Layer three: analysis of the deployment requirements of the cloud-hosted
service

Layer three addresses the analysis of the deployment requirements of the cloud-
hosted service. This involves two main activities: (i) mapping tenant isolation to
key process of the cloud-hosted services, cloud resources required to support the
service and layers of the cloud stack on the which the service will be executed; (ii)
analysing the trade-offs that should be considered when implementing the required
degree of tenant isolation.

The mapping is rooted in the framework of a typical architectural deployment
system that has two main components: the cloud application (that is, the compo-
nent or service to be deployed) and the cloud environment (that is, the environ-
ment in which the process/service is performed) [1]. This mapping also captures
the link between a process associated with a cloud-hosted service (e.g., continuous
integration process), being used in a hybrid deployment scenario by utilising a
cloud-hosted environment (e.g., SaaS and PaaS deployment environment).

11

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

In our previous research, we provided an explanatory framework for (i) map-
ping tenant isolation to different software processes, cloud resources and applica-
tion stack layers (ii) illustrating the different trade-offs for consideration in order to
achieve optimal deployment of components in a way that guarantees the required
degree of tenant isolation [34] (see Figure 4).

Issues relating to security, privacy, trust and regulatory compliance can mostly
be tackled in a hybrid fashion. For example, data / bugs created from a bug tracking
system could be stored at some location to comply with privacy and legal regula-
tions, while the architecture of the bug tracking system could be changed to limit
the access of certain data to users residing in regions not deemed to be of interest to
those who own the hosted data. Securing cloud-hosted services deployed with the
goal of guaranteeing varying degrees of multitenancy isolation can best be tackled
using a hybrid approach.

The second aspect of the analysis involves analysing the key trade-offs for
consideration when implementing the required degree of tenant isolation for
cloud-hosted software processes. There are six key aspects of the trade-offs that
have to be considered when implementing security for multi-tenant cloud-hosted
software services. These trade-off include tenant isolation versus (resource shar-
ing, the number of users/requests, customizability, the size of generated data, the
scope of control of the cloud application stack and business constraints). Table 1
shows the trade-offs and the key decision that have to be main when considering the
trade-offs.

6.1.4 Layer four: optimisation of the deployment of the cloud-hosted services

This layer deals with the optimization of the components of a cloud-hosted
service. In a cloud environment, varying degrees of tenant isolation are possible,
depending on the type of component being shared, the process supported by the
component and the location of the component on the cloud application stack (i.e.,
application level, platform level, or infrastructure level).

In a cloud environment, depending on the type of component being shared,
the processes enabled by the component, and the location of the component on
the cloud application stack (i.e. application level, platform level, or network level),

Figure 4.
Mapping of degrees of tenant isolation to cloud-hosted services and resources.

Cloud Computing Security - Concepts and Practice

12

varying degrees of tenant isolation are possible. Therefore, it is important for soft-
ware architects to be able to able to control the required degree of isolation between
tenants sharing components of a cloud-hosted application.

For instance, the deployment of an application component specifically for
one tenant will achieve a high degree of isolation. This would make sure that
when workload changes, there is little or no performance impact between the
components.

However, because components are not shared it implies duplicating the compo-
nents for each tenant, which leads to high resource consumption and running cost.
Overall, this will limit the number of requests allowed to access the components.
A low degree of isolation would allow sharing of the component’s functionality,
data and resources. This would reduce resource consumption and running cost, but
the performance of other components may be affected when one of experiences a
change in workload.

This is a decision-making challenge that requires an appropriate decision to be
made to address the trade-off between a lower degree of isolation versus the pos-
sible influence that can occur between components or a high degree of isolation
versus the difficulty of high resource usage and component running costs.

In a nutshell, the procedure for implementing the framework can be summaries
with following four steps: (i) Select suitable deployment patterns (one or combina-
tion of several patterns), (ii) Evaluate the effect of varying degrees of isolation
on the cloud-hosted service, (iii) Analyse the deployment requirements of cloud-
hosted services and (iv) optimise the deployment of the cloud-hosted service to
guarantee multitenancy isolation.

6.2 Developing a security checklist for deployment of cloud-hosted services

In addition to the framework, CLAMP, we develop a security checklist to guide
software architects in securing the deployment of cloud hosted services. The layers
of the frameworks are used to develop the categories of the checklist. Many of
the items in the checklist may seem obvious but the purpose of a checklist is help
ensure the completeness of the security design while implementing the CLAMP
framework.

In using the security checklist, the software architect should think about how to
review the security of the cloud-hosted services and figure out how well it satisfies
security in each of the categories of the framework. In other words, what questions

Category Checklist

Selection of a suitable

architectural pattern

What are classes of cloud patterns available, what are the tools and processes

to support the selection of suitable cloud patterns.

Evaluation of the required

degree of isolation

between tenants

What are the data and processes of the cloud-hosted service that require

security? What is the required degree of isolation between tenants accessing

the components of the cloud-hosted services?

Analysis of the

deployment requirements

of the cloud-hosted

How can you map the key resources of the cloud-service (e.g., store for the

archive data) to the cloud provider’s platform? What are the trade-offs to

consider when securing the deployment of cloud-hosted services? (e.g.,

customizability, scope of control, business requirements)

Optimisation of the

deployment of the cloud-

hosted services

What are the components (or tenants) that are required to design (or

integrate) with the cloud-hosted services? How feasible is it to tag components

or whole system?

Table 1.
Security checklist for evaluating the framework.

13

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

would you ask a software architect to evaluate how the framework satisfies the
requirements for securing the deployment of cloud-hosted services for guarantee-
ing multitenancy isolation. This is the basis for the security checklist.

7. Evaluation of framework for securing the deployment of cloud-hosted
services

This section presents a simple case study of a cloud deployment problem to
illustrate how to use the proposed framework to secure the deployment of a cloud-
hosted services in a way that guarantees multitenancy isolation. The following
scenario explains our motivation.

7.1 Motivating scenario

Let us assume that there are multiple components of a cloud service (e.g.,
data-handling component) hosted on the same or different cloud infrastructure.
These components which are of various types and sizes are required to design (or
integrate with) a cloud-hosted service (e.g., continuous integration system such
as Hudson or Jenkins) and their supporting processes for deployment to multiple
tenants. Tenants, in this case, may be multiple users, departments of a company
or different companies. The laws and regulations of the company make it liable to
share and archive data generated from the component (e.g., builds of source code)
and keep it accessible for auditing purposes. However, access to some components
or some aspects of the archived data will be provided solely to particular groups of
tenants for security reasons. The question is: in a resource-constrained environ-
ment, how can we secure the deployment of components of this cloud-hosted
service in a way that guarantees the required degree of isolation between other
tenants when one of the tenants (or components) experiences a high workload or
security breach (Table 2).

7.2 Applying the CLAMP framework

This section explains how to apply the proposed framework, CLAMP, to secure
the deployment of this cloud-hosted service in a way that guarantees the required
degree of isolation between other tenants. Each component of the framework has

Category Analysis

Selection of a suitable

architectural pattern

The problem requires a hybrid-related deployment pattern, namely,

integrating data stored in multiple clouds

Evaluation of the required

degree of Isolation

between tenants

The requirement to allow a particular group of users to access some

components for security reasons means that the company requires the

highest degree of isolation between tenants

Analysis of the

deployment requirements

of the cloud-hosted

Map the tenant isolation to key processes associated with the cloud-hosted

service, cloud resources and layers of the cloud stack. Analyse the trade-offs

required for optimal deployment

Optimisation of the

deployment of the cloud-

hosted services

Tag each component. Analyse the trade-off involved, namely, achieving a

high degree of isolation versus resource sharing. To address this trade-off, an

optimization model is recommended to be used to select optimal components

for deployment to the cloud

Table 2.
Summary of how problem was analysed per layer of the framework.

Cloud Computing Security - Concepts and Practice

14

a part to play in securing the deployment of components of a cloud-hosted service.
The structure of evaluating the framework, CLAMP, in its textual form, is specified
as a string consisting of three sections-(i) Context; (ii) Problem; and (iii) Solution.
In a more general sense, the string can be represented as: [CONTEXT; PROBLEM;
SOLUTION]. Each layer of the framework maps to the step required to provide a
solution to the cloud deployment problem. Table 2 summaries how the problem
was evaluated based each layer of the framework.

7.2.1 Step one: selecting a suitable cloud deployment pattern

In order to address this challenge, this framework would recommend that the
architect should reference some sort of a classification or taxonomy to guide in the
selection of a suitable pattern together with the supporting technologies. In our
previous work, we have developed a taxonomy and a process for guiding architect
in selecting a suitable framework for cloud deployment [35]. In addition, a general
process, CLIP (CLoud-based Identification process for deployment Patterns) has
been developed for guiding architects in selecting applicable cloud deployment pat-
terns (together with the supporting technologies) using the taxonomy for deploy-
ing services/application to the cloud we also discussed.

It is important to note that the company does not have direct access to the cloud
IaaS. Therefore, the architect must select a deployment pattern that can be imple-
mented at the application level to secure the deployment of the cloud-hosted services
for guaranteeing multitenancy isolation. By making reference to the taxonomy of
cloud-deployment patterns and the general process for selecting applicable deploy-
ment patterns based on the taxonomy, we would recommend that the architect should
select a hybrid-related deployment pattern for addressing the requirements of the
customer. It is assumed that the data archived by Hudson contains the source code and
(possibly configuration files) that drives a critical function of an application used by
the company.

The data stored by Hudson is presumed to contain the source code and (possibly
configuration files) which drives a critical function of an application used by the
company. Any unauthorised access to it may be devastating for the company. In
this circumstance, the most appropriate multitenancy pattern to use is the hybrid
backup deployment pattern. This pattern can be used to extract data to the cloud
environment and archive it different cloud environments [11].

7.2.2 Step two: evaluating the varying degrees of isolation

This step involves evaluating the required degree of isolation between tenants
and then select an appropriate multitenancy pattern or combination of patterns to
support such a required degree of isolation. There are varying degrees of isolation
between tenants that are accessing the cloud-hosted service and so some of the
tenants would require a higher or different degree of isolation than others.

One of the key requirements of the company to provide access to some com-
ponents or some aspects of the archived data solely to particular groups of tenants
for security reasons. Based on this key requirement, we conclude that the company
requires the highest degree of isolation between tenants.

The varying degrees of multitenancy isolation can be captured in three main
cloud deployment patterns: shared component, tenant-isolated component and
dedicated component. The shared component represents the lowest degree of isola-
tion between tenants while the dedicated component represents the highest. In a
dedicated component pattern, tenants do not share resources, though each tenant is
associated with one instance or a certain number of instances of the resource.

15

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

7.2.3 Step three: analysis of the deployment requirements of the cloud-hosted
service

The step involves analysing the deploying requirements of the cloud-hosted ser-
vices. This analysis entails mapping tenant isolation to key processes associated with
the cloud-hosted service, cloud resources required to support the service and layers
of the cloud stack on the which the service will be executed. This analysis translates
to using a hybrid approach to map the SaaS and PaaS level of the cloud provider
to the cloud-hosted service which has a backup cloud storage. This type of cloud
pattern is referred to as a hybrid backup pattern [3]. The archive data in a problem
scenario can be stored in any location to comply with privacy and legal regulations
of the company while the architecture of the cloud-hosted service could be modi-
fied to restrict exposure of certain data to users located in regions not considered to
be of interest to the owners of the hosted data.

The second aspect of the analysis involves analysing the different trade-offs to be
considered for optimal deployment of components with a guarantee of the required
degree of tenant isolation. There are three main trade-offs that the company has to
consider. The first trade-off relates to tenant isolation versus customizability. The
higher the degree of isolation that is required, the easier it is to customise a cloud-
hosted service to implement tenant isolation. However, because we assumed that the
user has access to the application layer of the cloud stack, it would be more difficult
to implement a higher degree of isolation at the application level in terms effort, time
and skills set required to modify the source code. This raises issues of compatibility
and interdependencies between the cloud-hosted services and required plugins and
libraries. Each time a multitenant application or its deployment environment changes,
then a tedious, complex and security maintenance process is also required.

The second trade-off relates to the “scope of control” of the cloud application
stack. The architect has more flexibility to implement or support the implementation
of the required degree of tenant isolation when there is greater “scope of control” of
the cloud stack application. As the company requires a higher degree of isolation (e.g.,
based on the dedicated component), then the scope of control should extend beyond
the higher level to the lower levels of the cloud stack (i.e., PaaS and IaaS) even as the
cost of implementation of such a cloud security architecture will certainly increase.

The third trade-off relates to the trade-off between tenant isolation and business
(or legal) requirements of the company. A key legal requirement of the company
is that access to some components or some aspects of the archived data will be
provided solely to particular groups of tenants for security reasons. The dedicated
component which offers a high degree of isolation can be used to handle the legal
requirements Such legal restriction, for example, legal restrictions and the location
and configuration of the cloud infrastructure are usually difficult to compensate for
at the application level. For example, a legal requirement can state that data that a
specific cloud provider has hosted in Europe cannot be stored elsewhere (e.g., in the
USA). Therefore an architect would have to map this form of requirement to a cloud
infrastructure that specifically meets this requirement.

7.2.4 Step four: optimisation of the deployment of the cloud-hosted services

The key task in step four is to optimise the deployment of components of the
cloud-hosted service. Some requirements cannot be fully satisfied and so there
has to be some optimisation to ensure that the cloud deployment is carried out in
way that does not compromise the security of the components of the cloud-hosted
service. This entails tagging the components (or tenants) associated with the
cloud-hosted service so that the software architects can be have more leverage to

Cloud Computing Security - Concepts and Practice

16

implement the required degree of isolation between tenants. In [36] an implemen-
tation of the model-based algorithm was presented for providing optimal solutions
for deploying components designed to use (or be integrated with) a cloud-hosted
application in a way that guarantees multitenancy isolation (Figure 5).

7.3 Applying the security checklist

In addition to applying the framework on the motivating problem, we also
apply the security checklist to support design and analysis of process for securing
the deployment of cloud-hosted services for guaranteeing multitenancy isolation.
Table 3 shows the result of the security checklist.

Category Checklist

Selection of a suitable

architectural pattern

The hybrid patterns are a class of cloud pattern that can be explored. The hybrid

backup pattern is suitable for the problem. Tools and technologies such as cloud

storage, and REST, and message exchange technologies can be implemented

Evaluation of the

required degree of

isolation between

tenants

The highest degree of isolation would be required for isolate tenants.

The data to secure include archive data- source code, configuration files. The key

software process in this problem is the continuous integration process

Analysis of the

Deployment

requirements of the

Cloud-hosted

The process supporting the cloud-hosted service (i.e., continuous integration)

should be mapped to a cloud platform that allows data to be stored in multiple

location without much restrictions. The key trade-offs in this problem are tenant

isolation versus (customizability, scope of control, business requirements)

Optimisation of the

deployment of the

cloud-hosted services

The main components to optimise are—authorization/authentication data or

database components, queue messages. The approach of tagging components can

be done either manually or dynamically using a model/algorithm depending on

the number of components and complexity of the processes involved

Table 3.
Applying the security checklist.

Figure 5.
Mapping a continuous integration system to cloud stack based on hybrid backup pattern.

17

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

8. Discussions and recommendations

This section presents a general discussion of the key security issues that should
be considered together with some recommendations that can be followed in order
to secure the deployment of cloud-hosted services in a way that guarantees mult-
itenancy isolation.

8.1 Assurance for compliance with legislation and regulatory requirements

One of the challenges of implementing cloud security is to provide assurance
to cloud users who need to demonstrate compliance with various legislation and
regulatory requirements. Our proposed framework addresses this challenge by
providing guidance to the software architecture based on the a taxonomy of cloud
deployment patterns to not only to select a suitable cloud deployment pattern but
to also evaluate the requirements of the customer to select a cloud multitenancy
pattern that guarantees the required degree of isolation between tenants.

For example, there is growing evidence that many cloud providers are unwill-
ing to set data centres in mainland Europe because of tighter legal requirements
that disallow the processing of data outside Europe (Hon & Millard 2017, Google
2017). This requirement will traverse down to the IaaS level, and customers must
take this into consideration if intending to host applications outsourced to such
cloud providers [11]. The challenge, therefore, for a cloud deployment architect is
that there are no case studies to understand and evaluate the effect of the required
degree of isolation on the performance, systems resources and access privileges at
different levels of a cloud-hosted service when opting for one (or combinations) of
a particular degree of isolation between tenants.

8.2 Customizability of the cloud-hosted services and supporting process

Customising a cloud-hosted GSD tool (or any cloud-hosted service) can be very
challenging if the service has several components that are being shared. A service
deployed on the cloud can have many inter-dependencies on different levels of the
application itself and with other applications, plugins, libraries, etc., deployed with
other cloud providers. This could impact the security of the cloud-hosted system
in a way that we did not anticipate and thus the degree of tenant isolation that was
needed. There is also a serious risk that incompatible plugins and libraries will be
used to alter, configure and run these GSD tools. This could corrupt the GSD tool
and stop other supporting programs/processes from running. A simple way to
tackle this infrastructure problem is to move tenant isolation deployment down the
lower levels of the cloud stack, where the architect can deploy the GSD framework
on a PaaS platform, for example. Middleware issues and methods for SaaS device
customizability were discussed in [37, 38].

8.3 Errors and sensitivity to workload interference

Multitenancy may pose significant error and security challenges in the cloud,
particularly when different degrees of isolation are introduced between multiple
tenants who share resources. When resources are shared between multiple tenants
in a multitenant cloud-service, it is very possible to affect the performance and
resource usage of other tenants due to errors associated with one tenant (e.g. due to
overload of the tenant or inadequate resource allocated to the tenant).

The type of error associated with a cloud-hosted service is a pointer to the
key resources to consider in achieving the required degree of tenant isolation.

Cloud Computing Security - Concepts and Practice

18

For example, moving the VM image instance associated with a cloud hosted service
whose file permission had been set on a local machine to the cloud infrastructure
could cause affect the requires degree of tenant isolation and hence the security of
other tenants during cloud deployment. Therefore, it is necessary to get repository
ownership and permission right before deploying such a cloud-hosted service.

8.4 Tagging components with the required degree of isolation

One of the challenges of securing the deployment of a cloud-hosted service is
how to handle such cloud-hosted services that several interdependencies with other
services elements to which it interacts. Therefore, it is important that components
designed to be used or incorporated with a cloud-hosted service should be tagged as
much as possible when the necessary degree of tenant isolation is needed.

Tagging can be a complex and complicated process and may not even be
feasible under certain circumstances (e.g. where the component is incorporated
into other systems and is not under customer control). Therefore, this can also be
predicted in a dynamic way instead of labelling each part with an insulation value
as necessary.

In our previous work [39], we built an algorithm that dynamically learns the fea-
tures of existing components in a repository and then uses this knowledge to associ-
ate each component with the appropriate degree of isolation. This information is
critical to making key security decisions and optimising the resources consumed by
the components, particularly in a dynamic or real-time environment.

9. Concluding remarks

The chapter presented CLAMP, a framework for securing the deployment of
cloud-hosted services in a way that guarantees the isolation between tenants to
contribute to the literature on multitenancy and cloud security. The framework is
based on a layered architectural structure where the layers are allowed to use other
layers in a strictly managed fashion; a layer is only allowed to use the layer immedi-
ately below.

The framework was evaluated by applying it to a motivating cloud deployment
problem that requires securing several components of a cloud-hosted service while
guaranteeing the required degree of isolation between tenants. The findings show
among other things that the framework can be used to select suitable deployment
patterns, evaluate the effect of varying degrees of isolation on the cloud-hosted
service based on the requirements of the business, analyse the deployment require-
ments of cloud-hosted services and optimise the deployment of the cloud-hosted
service to guarantee multitenancy isolation.

Future work would entail design an experimental procedure for automatically
evaluating the framework (i.e., the layered-architectural structure) for secur-
ing the deployment of a real-life cloud-hosted service for guaranteeing isolation
between tenants. Thereafter, this experimental design will incorporate into a
simulator and testing tool for evaluating the layered-architecture for securing the
cloud-hosted service for guaranteeing isolation between tenants. This approach
has been discussed in [1] as a way to turn architectural parameters into constants,
ranges and other that can be easily measured. This will allow software architects to
determine the effect of each form of improvement or business requirements of the
component or cloud-hosted service before deciding whether the service is secured
enough to be deployed without compromising the required degree of isolation
between tenants.

19

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

Author details

Laud Charles Ochei
Robert Gordon University, Aberdeen, United Kingdom

*Address all correspondence to: l.c.ochei@rgu.ac.uk

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

20

Cloud Computing Security - Concepts and Practice

[1] Bass L, Clements P, Kazman R.
Software Architecture in Practice,
3/E. United States: Pearson Education;
2013

[2] Bauer E, Adams R. Reliability and
Availability of Cloud Computing. New
Jersey: John Wiley & Sons; 2012

[3] Buyya R, Broberg J, Goscinski A.
Cloud Computing: Principles and
Paradigms. New Jersey, United States:
John Wiley & Sons, Inc.; 2011. DOI:
10.1002/9780470940105

[4] Armbrust M, Fox A, Griffith R,
Joseph AD, Katz R, Konwinski A,
et al. A view of cloud computing.
Communications of the ACM.
2010;53(4):50-58

[5] Srinivasan MK, Sarukesi K,
Rodrigues P, Manoj MS, Revathy P.
State-of-the-art cloud computing
security taxonomies—A classification
of security challenges in the present
cloud computing environment. In:
Proceedings of the International
Conference on Advances in Computing,
Communications and Informatics;
ACM. 2012. pp. 470-476

[6] Brodkin J. Gartner—Seven Cloud-
Computing Security Risks. 2019.
Available from: https://www.infoworld.
com/article/2652198/gartner–seven-
cloudcomputing-security-risks.html
[Accessed: 14 August 2019]

[7] Brook J-M, Field S, Shackleford D.
Top threats to cloud computing plus:
industry insights. 2019. Available from:
https://cloudsecurityalliance.org/
artifacts/top-threats-cloud-computing-
plusindustry-insights/ [Accessed: 14
August 2019]

[8] Junuzovic S, Dewan P. Response
times in n-user replicated,
centralized, and proximity-based
hybrid collaboration architectures.

In: Proceedings of the 2006 20th
Anniversary Conference on Computer
Supported Cooperative Work; ACM.
2006. pp. 129-138

[9] Stol K-J, Avgeriou P, Babar MA.
Design and evaluation of a process
for identifying architecture patterns
in open source software. In: Ivica C,
Volker G, Matthias B, editor. Software
Architecture: 5th European Conference,
ECSA 2011, Essen, Germany, September
13-16, 2011. Proceedings. Vol. 6903.
London: Springer; 2011. pp. 147-163

[10] Vlissides J, Helm R, Johnson R,
Gamma E. Design Patterns: Elements
of Reusable Object-Oriented Software.
Vol. 49. Boston, United States: Addison-
Wesley; 1995. p. 120

[11] Fehling C, Leymann F, Retter R,
Schupeck W, Arbitter P. Cloud
Computing Patterns. London, England:
Springer; 2014

[12] Wilder B. Cloud Architecture
Patterns. 1st ed. Sebastopol, CA, United
States: O’Reilly Media, Inc.; 2012

[13] Homer A, Sharp J, Brader L,
Narumoto M, Swanson T. Cloud Design
Patterns. Redmon, Washington, United
States: Microsoft; 2014

[14] Krebs R, Momm C,
Kounev S. Metrics and techniques
for quantifying performance
isolation in cloud environments.
Science of Computer Programming.
2014;90:116-134

[15] Pearson S. Privacy, security
and trust in cloud computing. In:
Privacy and Security for Cloud
Computing. London: Springer-Verlag;
2013. pp. 3-42

[16] Mehta A. Multi-tenancy for cloud
architectures: Benefits and challenges.
2017. Available from: http://www.devx.

References

21

Securing the Deployment of Cloud-Hosted Services for Guaranteeing Multitenancy Isolation
DOI: http://dx.doi.org/10.5772/intechopen.92142

com/architect/Article/47798/ [Accessed:
May 2020]

[17] Aiken L. Why multi-tenancy is
key to successful and sustainable
software-as-a-service (SaaS). 2017.
Available from: http://www.cloudbook.
net/resources/stories/. [Accessed: May
2020]

[18] Hudson. Apache Software
Foundation. 2016. Available from:
http://wiki.hudson-ci.org//display/
HUDSON/Files+Found+Trigger
[Accessed: May 2020]

[19] Strauch S, Andrikopoulos V,
Leymann F, Muhler D. Esb mt: Enabling
multi-tenancy in enterprise service
buses. In: In 2012 IEEE 4th International
Conference on Cloud Computing
Technology and Science (CloudCom);
IEEE. 2012. pp. 456-463

[20] Vengurlekar N. Isolation in private
database clouds. 2012. Available from:
http://www.oracle.com/technetwork/
database/database-cloud/ [Accessed:
May 2020]

[21] Wang ZH, Guo CJ, Gao B,
Sun W, Zhang Z, An WH. A study and
performance evaluation of the multi-
tenant data tier design patterns for
service oriented computing. In: IEEE
International Conference on E-Business
Engineering, 2008. ICEBE’08; IEEE.
2008. pp. 94-101

[22] Khan MF, Mirza AU, et al. An
approach towards customized multi-
tenancy. International Journal of
Modern Education and Computer
Science. 2012;4(9):39

[23] Momm C, Krebs R. A qualitative
discussion of different approaches
for implementing multi-tenant saas
offerings. In: Software Engineering
(Workshops). Vol. 11. 2011. pp. 139-150

[24] Mietzner R, Unger T, Titze R,
Leymann F. Combining different

multitenancy patterns in service-
oriented applications. In: Enterprise
Distributed Object Computing
Conference, 2009. EDOC’09; IEEE
International; IEEE. 2009. pp. 131-140

[25] Yusoh ZIM, Tang M. Composite saas
placement and resource optimization
in cloud computing using evolutionary
algorithms. In: 2012 IEEE 5th
International Conference on Cloud
Computing (CLOUD); IEEE. 2012.
pp. 590-597

[26] Shaikh F, Patil D. Multi-tenant
e-commerce based on saas model
to minimize it cost. In: In 2014
International Conference on Advances
in Engineering and Technology
Research (ICAETR); IEEE. 2014. pp. 1-4

[27] Westermann D, Momm C. Using
software performance curves for
dependable and cost-efficient service
hosting. In: Proceedings of the 2nd
International Workshop on the Quality
of Service-Oriented Software Systems;
ACM. 2010. p. 3

[28] Abbott ML, Fisher MT. The Art of
Scalability: Scalable Web Architecture,
Processes, and Organizations for the
Modern Enterprise. Indiana, United
States: Pearson Education; 2009

[29] Leymann F, Fehling C, Mietzner
R, Nowak A, Dustdar S. Moving
applications to the cloud: An
approach based on application model
enrichment. International Journal of
Cooperative Information Systems.
2011;20(03):307-356

[30] Aldhalaan A, Menasc, e DA. Near-
optimal allocation of VMS from iaas
providers by saas providers. In: 2015
International Conference on Cloud and
Autonomic Computing (ICCAC); IEEE.
2015. pp. 228-231

[31] Singh A, Chatterjee K. Cloud
security issues and challenges: A survey.
Journal of Network and Computer
Applications. 2017;79:88-115

Cloud Computing Security - Concepts and Practice

22

[32] Hon K, Millard C. Eu data
protection law and the cloud.
International Association of Privacy
Professionals; 2020. Available from:
https://iapp.org/resources/article/
[Accessed: February 2020]

[33] Google. Google cloud platform and
the eu data protection directive. Google
Inc.; 2020. Available from: https://
cloud.google.com/security/compliance/
eu-data-protection/ [Accessed:
February 2020]

[34] Ochei LC, Bass J, Petrovski A.
Degrees of tenant isolation for cloud-
hosted software services: A cross-case
analysis. Journal of Cloud Computing:
Advances, Systems and Applications.
2018;7(22)

[35] Ochei LC, Bass JM, Petrovski A. A
novel taxonomy of deployment patterns
for cloud-hosted applications: A case
study of global software development
(gsd) tools and processes. International
Journal on Advances in Software.
2015;8(3-4):420-434

[36] Ochei LC, Petrovski A, Bass JM.
Optimal deployment of components
of cloud-hosted application for
guaranteeing multitenancy isolation.
Journal of Cloud Computing. 2019;8(1):1

[37] Walraven S. Middleware and
methods for customizable SaaS [PhD
thesis]. KU Leuven: Department of
Computer Science; 2014, 2014. p. 6

[38] Walraven S, Van Landuyt D,
Truyen E, Handekyn K, Joosen W.
Efficient customization of multi-tenant
software-as-a-service applications with
service lines. Journal of Systems and
Software. 2014;91:48-62

[39] Ochei LC, Petrovski A, Bass J. An
approach for achieving the required
degree of multitenancy isolation
for components of a cloud-hosted
application. In: 4th International IBM
Cloud Academy Conference (ICACON
2016). 2016

