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Chapter

Thermodynamics and Kinetics 
of Camellia sinensis Extracts 
and Constituents: An Untamed 
Antioxidant Potential
Douglas Vieira Thomaz

Abstract

Given the relevance of impairing reactive oxygen species (ROS) buildup in 
tissues, the use of exogenous antioxidants is highly regarded as a valid prophylaxis 
against oxidative stress and its deleterious effects on organisms. In this regard, 
Camelia sinensis uses as a remarkable antioxidant source have been reported in 
various folk and standard medicine systems around the world. In this chapter, 
the thermodynamics and kinetics of Camelia sinensis constituents is concisely 
discussed focusing on the implications of its redox profiling toward antioxidant 
capacity. Notwithstanding, the biological repercussion of ROS reduction as well as 
its therapeutic potential is also addressed to provide readers a basic background on 
the relevance of investigating the physicochemical features of medicinal plants.

Keywords: redox, black tea, electrochemistry, free radicals, reactive oxygen species

1. Introduction

1.1 The principles of antioxidant thermodynamics in biological systems

Antioxidant capacity has been described by many authors as an important prop-
erty of phytomedicines due to the extent of biological effects linked to it [1–3]. This 
key feature in plant-based drugs and nutraceuticals is widely exploited by industry 
to increase product appeal as well as to improve the health benefits allegedly prom-
ised by their consumption [3–5]. The main premise behind the antioxidant lore is 
that it counteracts the oxidative stress generated by biological systems [6, 7]. In 
this sense, the regular intake of free radical scavengers would safeguard the proper 
attunement of homeostatic balance by diminishing oxidative stress [8, 9].

The natural workings of biological systems, although quite complex at first 
glance, are based on two simple reactions which quite often occur in close con-
nection to each other [8]. These reactions are reduction and oxidation, commonly 
shortened to redox reactions. The oxidation is based on electrons (e) leaving the 
chemical species (A), as represented in Eq. (1), while reduction is based on a chemi-
cal species (A) accepting electrons (e), as represented in Eq. (2). These reactions 
can occur simultaneously, leading to a redox couple, as showcased in Eq. (3).

   A   0  →  A   +1  + 1  e   −1   (1)
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   A   +1  + 1  e   −1  →  A   0   (2)

   A   0  ↔  A   +1  + 1  e   −1   (3)

Regarding all processes which are related to the occurrence of life, redox reactions 
are deeply important since biological systems feed on the chemical energy produced 
by oxidation [8]. To a certain extent, cells behave quite like thermal power plants, 
thereby “burning” certain nutrients to obtain energy for self-sustainability. This pro-
cess is however imperfect, as oxidation byproducts may be highly reactive, therefore 
degrading functional biomolecules which come in contact with them [5, 9, 10]. These 
reactive byproducts are the often-demonized reactive oxygen species (ROS), which 
include oxygen-bearing free radicals and other reactive compounds [11, 12]. An 
overview of ROS and other reactive chemicals is showcased in Table 1.

Albeit ROS are widely known for their negative effects on organisms, these 
compounds do have remarkable importance to sustain life. Although such statement 
might be seemingly paradoxical, oxidative stress and ROS buildup are essential to 
proper inflammatory response as well as immunologic defense [8, 11, 12]. Moreover, 
the relevance of ROS in the natural workings of cell physiology is still being discov-
ered, since these compounds have been linked to many biochemical pathways and 
cell signaling processes. For instance, superoxide anion showcases affinity to sulfur 
residues bound to iron coordination complexes as the heme in cytochromes, while 
some non-radical ROS may showcase affinity to exposed sulfur-bearing amino acids 
such as cysteine, thence selectively targeting these moieties [11–13]. Therefore, the 
true concept behind antioxidants is not the full disruption of oxidative stress, but 
the balance of this natural phenomenon toward proper homeostasis.

Enzymes Nonenzymatic Proteins

Catalase Bilirubin Lactoferrin

Superoxide dismutase Uric acid Metallothionein

Glutathione peroxidase Glutathione Transferrin

Glutathione reductase Lipoic acid Ceruloplasmin

Thioredoxin reductase Melatonin Ferritin

Table 2. 
Endogenous antioxidants reported in literature.

Non-radical ROS Radical ROS

O2 (oxygen) -.O2 (superoxide anion)

H2O2 (hydrogen peroxide) .OH (hydroxyl)

O3 (ozone) .HO2 (perhydroxyl)

Obtainable through excitation

1O2 (singlet oxygen)

Obs.: Radical ROS are obtainable by sequential single-electron oxidation of water and its oxidation products, 
namely, hydroxyl radical, hydrogen peroxide, superoxide anion, and molecular oxygen. Singlet oxygen is obtainable 
through excitation of molecular oxygen.

Table 1. 
Overview of ROS and other reactive chemicals.
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Considering that all chemicals showcase intrinsic physicochemical features 
regarding their proneness to undergo redox reactions, the feasibility of antioxidant 
capacity can be linked to the thermodynamics of selected compounds in comparison 
to endogenous antioxidants of both chemical and enzymatic nature [8, 11, 14–16]. 
Thus, the Gibbs free energy, enthalpy and entropy of alleged antioxidants can be 
compared to those of endogenous free radical scavengers and oxireductive enzymes 
in order to assess the thermodynamic feasibility of antioxidant capacity [9, 17, 18]. 
Table 2 showcases the main endogenous antioxidants reported in literature.

The activity of endogenous antioxidants is remarkably high in order to counteract 
the effect of the oxidative stress promoted by cell physiology; however, the presence of 
compounds bearing higher thermodynamic proneness to reduce ROS could safeguard 
the whole biological material in site. This antioxidant capacity can be assessed by many 
methods, such as thermodynamic evaluation through spectrophotometry, electro-
chemistry, and other approaches. However, redox reactions may be dependent on 
mass transfer through solution or other processes which reduce reaction speed, which 
thence raises the importance of also evaluating the kinetics of antioxidant capacity.

2. Basic physicochemical features of Camellia sinensis antioxidants

Camellia sinensis, also known as green or black tea according to its production 
method, is a widely commercialized herb whose therapeutic applications are highly 

Figure 1. 
Known constituents of C. sinensis, gallic acid, and caffeine, which are acknowledged to exert antioxidant 
power, and graphical rendering of HOMO-0 for each constituent. Negative charges are rendered in blue, and 
positive charges are rendered in red.
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regarded in the folk medicine of many regions around the globe [19–23]. This plant 
is acknowledged to harbor a chemically diverse metabolism, and its constituents are 
known to promote strong antioxidant action in biological systems [18, 24]. Figures 1 
and 2 showcase some major constituents of C. sinensis which are known to exert anti-
oxidant action as well as the surface rendering of the first state of their highest occupied 
molecular orbital (HOMO-0) using standard Hückel molecular orbital theory [25, 26].

Figure 2. 
Known flavonoid constituents of C. sinensis, which are acknowledged to exert antioxidant power, and 
graphical rendering of HOMO-0 for each constituent. Negative charges are rendered in blue and positive 
charges are rendered in red.
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As showcased in Figures 1 and 2, the resonance systems promoted by aromatic 
rings in both the flavonoids, as well as gallic acid and caffeine, allow the infer-
ence that the inductive effect of functional groups may be transmitted along the 
molecule [25, 26]. This assumption is supported by both Hückel molecular orbital 
theory and its implications in medicinal chemistry through the vinylogy principle 
[27]. In this sense, all these molecules could undergo redox reactions due to their 
easily excitable electrons in the conjugated aromatic systems (flavonoids) and 
single aromatic ring (gallic acid and caffeine) [25]. Notwithstanding, this interpre-
tation is further corroborated by experimental data as well as by the evaluation of 
their energy gap (ΔE) in comparison to that of other known antioxidants such as 
alpha-tocopherol, which showcase ΔE of 10.2011 eV when analyzed under the same 
method [25, 26, 28, 29]. Table 3 showcases the ΔE of major C. sinensis constituents.

The ΔE of chemical compounds is an important parameter to evaluate the ther-
modynamic feasibility of redox processes; hence lower values suggest easier elec-
tron transfer and therefore higher possibility of occurrence [25, 26]. Nonetheless, 
complex approaches such as density functional theory (DFT) are often employed 
to gather thermodynamic data from ab initio computational models in order to 
investigate the proneness of chemicals to undergo oxidation [28].

3. Thermodynamics of redox systems and ways to explore it

Thermodynamic data obtained through ab initio or empiric/semi-empiric 
approaches such as DFT and Hückel molecular orbital theory can also be combined 
to other physicochemical investigations in order to render more reproducible 
models regarding energy shifts in redox reactions. Among the most associated tech-
niques are quantum chemistry and electrochemistry [28], which provide relevant 
information concerning energy parameters and the kinetics of chemical processes.

When energy levels are concerned, the overall behavior of a system can be inves-
tigated by the fundamental laws of thermodynamics, as summarized in Eq. (4).

  ∆ G = ∆ H − T ∆ S   (4)

wherein ΔG stands for Gibbs free energy, ΔH stands for enthalpy, T stands 
for temperature, and ΔS stands for entropy. Note that all energy parameters are 
approached as variations between different states of the system.

Considering that Gibbs free energy can also be expressed according to Eq. (5), 
we can thence declare the dependence of energy to the equilibrium constant of 
reactions, as showcased in Eqs. (6) and (7).

Constituent HOMO-0 (eV) LUMO-0 (eV) ΔE (∣LUMO-HOMO∣)

Catechin −10.885 1.293 12.178

Epicatechin −10.938 1.254 12.192

Epigallocatechin −10.528 2.382 12.91

Epigallocatechin gallate −10.549 −3.117 7.432

Gallic acid −11.026 −3.01 8.016

Caffeine −9.26 2.047 11.307

Obs.: ΔE also displayed in eV.

Table 3. 
HOMO-0, LUMO-0, and energy gaps (ΔE) for each major C. sinensis constituent.
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  ∆ G = − RTLn  K  eq     (5)

   A  red   ↔  A  ox   + 1  e   −1   (6)

   K  eq   =    A  ox   _ 
 A  red  

    (7)

wherein R stands for the universal gas constant.
From these relations, both Van’t Hoff and Nernst equation are achievable. Taking 

Nernst equation for instance, one can clearly see how electric potential is a thermo-
dynamic parameter, as showcased in Eqs. (8) and (9).

  ∆ G = − nF ∆ E  (8)

  ∆ E = −   RT _ 
nF

   Ln    A  ox   _ 
 A  red  

    (9)

wherein n stands for the number transferred electrons in the system and F 
stands for the Faraday constant.

Considering that electric potential is a thermodynamic parameter, the anti-
oxidant capacity is therefore conditioned by both energy levels of oxidized and 
reduced forms and the reaction rate thereby associated. In this context, elec-
trochemical tests such as chronoamperometry and voltammetry can be used to 
investigate the electric potentials associated to redox reactions, as well as the kinetic 
profile they follow [8, 16].

4.  Investigating the basics of Camellia sinensis antioxidant 
thermodynamics and kinetics

Many authors reported that C. sinensis antioxidant power is remarkable due to 
the capacity of its constituents to promptly reduce standard free radicals such as 
2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) [18, 24, 30, 31]. Although results are often noteworthy, 
colorimetric tests tend to be biased due to the strong color of C. sinensis extracts, 
which may lead to imprecise results. In this regard, many authors pursued the 
exploration of the redox behavior of this plant using electrochemical methods, 
which may provide less color-biased results due to their unique dependence on 
electron transfer [17, 32, 33].

The electroanalytical investigation of plantstuff is a growing field on science 
due to its promising perspectives regarding the quality control, authenticity, 
and physicochemical characterization of plant secondary metabolites [32–34]. 
Nonetheless, most voltammetric assays can be applied to plants without 
strenuous pretreatment of the vegetal sample [32]. However, given that plant 
secondary metabolites of phenolic origin such as those of C. sinensis showcase 
electrochemical processes which are mainly controlled by mass transfer in the 
bulk solution [17], as well as proneness of oxidation products to undergo adsorp-
tion on electrode surface, a careful electrode surface renewal protocol needs to 
be adopted.

Regarding the basic background on voltammetric studies, these tests involve the 
interpolation of two functions, namely, electric potential versus time (E × t) and 
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electric current versus time (I × t). When graphically displayed, a voltammogram is 
the plot of electric current versus the applied electric potential following a specific 
signal pattern during a defined time interval (I × E). Therefore, any change in elec-
tric current which is non-capacitive by nature can be attributed to redox processes 
taking place in the electrochemical cell [35–37].

During voltammetric investigation, the scanning of electric potential toward 
positive values, aka anodic scan, leads to the visualization of oxidative processes, 
while the reverse scan, aka cathodic scan, leads to the visualization of reduction 
processes [35, 37]. Taking these concepts into account, the redox profiling and elec-
trochemical characterization of both isolated plant constituents and vegetal extracts 
can be elucidated by varying the kind of scan which is being performed [10, 17, 
33, 34]. Figure 3 showcases an example of a cyclic voltammogram presenting a 
response which could be attributed to a reversible redox reaction, while Figure 4 
depicts an overview of the main mechanisms which are involved in the electrooxi-
dation of C. sinensis constituents [7, 27, 38–40].

Literature reports that C. sinensis extracts showcase anodic peaks at electric 
potentials bellow 0.5 V when analyzed under voltammetry [17, 18, 30, 31, 41], 
which is nonetheless a remarkable feature. Considering that most of the endog-
enous antioxidant arsenal operates at electric potentials close to this value, the 
reductive power of C. sinensis constituents is noteworthy, since they could undergo 
oxidation thereby stabilizing ROS or restituting endogenous antioxidants  
[8, 10, 27, 42].

Notwithstanding, many authors showcased evidence of redox reversibility in 
the processes which take place at 0.5 V in C. sinensis extracts, which suggests that 
the antioxidant compounds could undergo followed redox reactions to promote the 
reduction of ROS in biological systems [32, 33]. When compared to voltammetric 
profiles of isolated compounds, C. sinensis voltammograms evidence the richness 
of electroactive compounds which are present in this plant, which further corrobo-
rates to the appeal of this plant in the development of therapeutic and nutraceutical 
products to balance oxidative stress in biological systems.

Figure 3. 
Example of a cyclic voltammogram presenting a response which could be attributed to a reversible reaction.
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5. Conclusions

This chapter aimed to provide readers with a basic background on the relevance 
of investigating the physicochemical features of Camelia sinensis, as well as concisely 
discuss the implications of the redox profiling in the understanding of antioxi-
dant capacity. It was observed that several methods can be used to investigate the 
underlying thermodynamic and kinetic features which are intrinsically linked to 
the antioxidant power of phytomedicines. Moreover, literature extensively reports 
the remarkable antioxidant power of C. sinensis extracts and constituents, therefore 
highlighting the relevance of this plant as an important asset for the development of 
therapeutic and nutraceutical formulations.

Figure 4. 
Main mechanisms involved in the electrooxidation of phenolic compounds which are occurrent in C. sinensis. 
Note that catechol oxidation is reversible, while phenol undergoes irreversible oxidation, leading to both 1,2 and 
1,4 catechol and an electro-polymerized product.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



9

Thermodynamics and Kinetics of Camellia sinensis Extracts and Constituents: An Untamed…
DOI: http://dx.doi.org/10.5772/intechopen.92813

[1] Boots AW, Haenen GRMM, 
Bast A. Health effects of quercetin: 
From antioxidant to nutraceutical. 
European Journal of Pharmacology. 
2008;585(2-3):325-337. DOI: 10.1016/j.
ejphar.2008.03.008

[2] Krishnamurthy P, Wadhwani A. 
Antioxidant enzymes and human 
health. Antioxidant Enzyme. 2012; 
32(8):595-603. DOI: 10.5772/48109

[3] Devasagayam TPA, Tilak JC, 
Boloor KK, Sane KS, Ghaskadbi SS, 
Lele RD. Free radicals and antioxidants in 
human health: Current status and future 
prospects. The Journal of the Association 
of Physicians of India. 2004;52:794-804

[4] Pham-Huy LA, He H, Pham-Huy C. 
Free radicals, antioxidants in disease 
and health. International Journal of 
Biomedical Sciences. 2008;4(2):89-96

[5] Pandey KB, Rizvi SI. Plant 
polyphenols as dietary antioxidants in 
human health and disease. Oxidative 
Medicine and Cellular Longevity. 
2009;2(5):270-278. DOI: 10.4161/
oxim.2.5.9498

[6] da Cunha CEP, Rodrigues ESB, 
Fernandes Alecrim M, Thomaz DV, 
Macêdo IYL, Garcia LF, et al. 
Voltammetric evaluation of diclofenac 
tablets samples through carbon black-
based electrodes. Pharmaceuticals. 
2019;12(2):83-94. DOI: 10.3390/
ph12020083

[7] Procházková D, Boušová I, 
Wilhelmová N. Antioxidant and 
prooxidant properties of flavonoids. 
Fitoterapia. 2011;82(4):513-523. DOI: 
10.1016/j.fitote.2011.01.018

[8] Jomova K, Valko M. Thermodynamics 
of free radical reactions and the redox 
environment of a cell. ACS Symposium 
Series. 2011;3:71-82. DOI: 10.1021/
bk-2011-1083.ch003

[9] Thomaz DV. How phytocomponents 
may be valuable against oxidative 
stress in brain tissue? Global Drugs and 
Therapeutics. 2020;1:1-3. DOI: 10.31487/j.
gdt.2020.01.04

[10] Thomaz DV, Peixoto LF, de 
Oliveira TS, Fajemiroye JO, da Silva 
Neri HF, Xavier CH, et al. Antioxidant 
and neuroprotective properties of 
Eugenia dysenterica leaves. Oxidative 
Medicine and Cellular Longevity. 
2018;1:1-11. DOI: 10.1155/2018/3250908

[11] Kapoor D, Singh S, Kumar V,  
Romero R, Prasad R, Singh J. 
Antioxidant enzymes regulation in 
plants in reference to reactive 
oxygen species (ROS) and reactive 
nitrogen species (RNS). Plant Gene. 
2019;19:100182. DOI: 10.1016/J.
PLGENE.2019.100182

[12] Lu H, Hu H, Yang Y, Li S. The 
inhibition of reactive oxygen species 
(ROS) by antioxidants inhibits the 
release of an autophagy marker in 
ectopic endometrial cells. Taiwanese 
Journal of Obstetrics & Gynecology. 
2020;59:256-261. DOI: 10.1016/J.
TJOG.2020.01.014

[13] Huihui Z, Xin L, Yupeng G, Mabo L, 
Yue W, Meijun A, et al. Physiological 
and proteomic responses of reactive 
oxygen species metabolism and 
antioxidant machinery in mulberry 
(Morus alba L.) seedling leaves to NaCl 
and NaHCO3 stress. Ecotoxicology and 
Environmental Safety. 2020;193:110259. 
DOI: 10.1016/J.ECOENV.2020.110259

[14] Jabeen H, Saleemi S, Razzaq H, 
Yaqub A, Shakoor S, Qureshi R. 
Investigating the scavenging of reactive 
oxygen species by antioxidants 
via theoretical and experimental 
methods. Journal of Photochemistry 
and Photobiology B: Biology. 
2018;180:268-275. DOI: 10.1016/J.
JPHOTOBIOL.2018.02.006

References



Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health

10

[15] Aqeel S, Naheda A, Raza A, 
Khan K, Khan W. Differential status 
and significance of non-enzymatic 
antioxidants (reactive oxygen 
species scavengers) in malaria and 
dengue patients. Acta Tropica. 
2019;195:127-134. DOI: 10.1016/J.
ACTATROPICA.2019.04.033

[16] Chen Y, Xiao H, Zheng J, 
Liang G. Structure-thermodynamics-
antioxidant activity relationships of 
selected natural phenolic acids and 
derivatives: An experimental and 
theoretical evaluation. PLOS One. 
2015;10(3):e0121276. DOI: 10.1371/
journal.pone.0121276

[17] Thomaz DV, Leite KC de S, 
Moreno EKG, Garcia LF, Alecrim MF, 
Macêdo IYL, et al. Electrochemical 
study of commercial black tea 
samples. International Journal 
of Electrochemical Science. 
2018;13(2018):5433-5439. DOI: 
10.20964/2018.06.55

[18] Novak I, Šeruga M, Komorsky- 
Lovrić Š. Characterisation of 
catechins in green and black teas 
using square-wave voltammetry and 
RP-HPLC-ECD. Food Chemistry. 
2010;122(4):1283-1289. DOI: 10.1016/j.
foodchem.2010.03.084

[19] Gramza A, Korczak J. Tea 
constituents (Camellia sinensis L.) as 
antioxidants in lipid systems. Trends 
in Food Science and Technology. 
2005;16(8)351-358. DOI: 10.1016/j.
tifs.2005.02.004

[20] Chan EWC, Lim YY, Chew YL. 
Antioxidant activity of Camellia sinensis 
leaves and tea from a lowland 
plantation in Malaysia. Food Chemistry. 
2007;102(4):1214-1222. DOI: 10.1016/j.
foodchem.2006.07.009

[21] Boehm K, Borrelli F, Ernst E, 
Habacher G, Hung SK, Milazzo S, et al. 
Green tea (Camellia sinensis) for 
the prevention of cancer. Cochrane 

Database of Systematic 
Reviews. 2009;1:14651858. DOI: 
10.1002/14651858.CD005004.pub2

[22] Namita P, Mukesh R, Vijay KJ. 
Camellia sinensis (green tea): A review. 
Global Journal of Pharmacology. 
2012;6(2):52-59

[23] Patel SH. Camellia sinensis. Journal 
of Agromedicine. 2005;10(2):57-64. 
DOI: 10.1300/j096v10n02_08

[24] Veljković JN, Pavlović AN, 
Mitić SS, Tošić SB, Stojanović GS, 
Kaličanin BM, et al. Evaluation of 
individual phenolic compounds and 
antioxidant properties of black, green, 
herbal and fruit tea infusions consumed 
in Serbia: Spectrophotometrical and 
electrochemical approaches. Journal 
of Food and Nutrition Research. 
2013;52(1):12-24

[25] Matito E, Feixas F, Solà M.  
Electron delocalization and  
aromaticity measures within the 
Hückel molecular orbital method. 
Journal of Molecular Structure: 
THEOCHEM. 2007;811(1-3):3-11. DOI: 
10.1016/j.theochem.2007.01.015

[26] Yates K. Hückel molecular 
orbital theory. In: Hückel Molecular 
Orbital Theory. Vol. 1. Academic 
Press; 1978. pp. 1-384. DOI: 10.1016/
b978-0-12-768850-3.50005-5

[27] Thomaz DV. Flavonoid chemistry 
and neuroprotection. Frontiers 
in Drug, Chemistry and Clinical 
Research. 2020;3:1-3. DOI: 10.15761/
FDCCR.1000140

[28] Rodrigues ESB, de Macêdo IYL, 
da Silva Lima LL, Thomaz DV, da 
Cunha CEP, de Oliveira MT, et al. 
Electrochemical characterization 
of central action tricyclic drugs by 
voltammetric techniques and density 
functional theory calculations. 
Pharmaceuticals. 2019;2(3):116. DOI: 
10.3390/ph12030116



11

Thermodynamics and Kinetics of Camellia sinensis Extracts and Constituents: An Untamed…
DOI: http://dx.doi.org/10.5772/intechopen.92813

[29] Zinola CF. Density functional 
theory. In: Electrocatalysis: 
Computational, Experimental, 
and Industrial Aspects. Vol. 1. 
CRC Press; 2010. p. 664. DOI: 
10.1201/9781420045451

[30] Bhattacharyya R, Tudu B, Das SC, 
Bhattacharyya N, Bandyopadhyay R, 
Pramanik P. Classification of black tea 
liquor using cyclic voltammetry. Journal 
of Food Engineering. 2012;109(1):120-
126. DOI: 10.1016/j.jfoodeng.2011.09.026

[31] Kilmartin PA, Hsu CF. 
Characterisation of polyphenols in 
green, oolong, and black teas, and in 
coffee, using cyclic voltammetry. Food 
Chemistry. 2003;82(4):501-512. DOI: 
10.1016/S0308-8146(03)00066-9

[32] Thomaz DV, Couto RO, Roberth 
A de O, Oliveira LAR, Leite KC de S, 
Bara MT de F, et al. Assessment of 
noni (Morinda citrifolia L.) product 
authenticity by solid state voltammetry. 
International Journal of Electrochemical 
Science. 2018;13(2018):8983-8994. DOI: 
10.20964/2018.09.390

[33] Moreno EKG, Thomaz DV, 
Machado FB, Leite KCS, Rodrigues ESB, 
Fernandes MA, et al. Antioxidant study 
and electroanalytical investigation 
of selected herbal samples used 
in folk medicine. International 
Journal of Electrochemical Science. 
2019;14(2019):838-847. DOI: 
10.20964/2019.01.82

[34] Leite KC de S, Garcia LF, 
Lobón GS, Thomaz DV, Moreno EKG, 
de CMF, et al. Antioxidant activity 
evaluation of dried herbal extracts: 
An electroanalytical approach. 
Brazilian Journal of Pharmacognosy. 
2018;28(3):325-332. DOI: 10.1016/j.
bjp.2018.04.004

[35] Tien HT. 715—Cyclic voltammetry 
of electron-conducting bilayer lipid 
membranes. Bioelectrochemistry and 
Bioenergetics. 1984;13:299-316. DOI: 
10.1016/0302-4598(84)87033-6

[36] Popov BN, Popov BN. Basics of 
corrosion measurements. Corrosion 
Engineering. 2015:181-237. DOI: 
10.1016/B978-0-444-62722-3.00005-7

[37] Brainina KH, Bond AM. In: 
Smyth MR, Vos JG, editors. Analytical 
Voltammetry. Elsevier, Amsterdam; 
1992. (xxvi + 578 pages), Dfl. 495.00. 
ISBN: 0-444-88938. TrAC Trends in 
Analytical Chemistry 1993;12(6):13-14. 
DOI: 10.1016/0165-9936(93)87068-9

[38] Hodnick WF, MllosavljeviĆ EB, 
Nelson JH, Pardini RS. Electrochemistry 
of flavonoids: Relationships between 
redox potentials, inhibition of 
mitochondrial respiration, and 
production of oxygen radicals 
by flavonoids. Biochemical 
Pharmacology. 1988;37:2607-2611. DOI: 
10.1016/0006-2952(88)90253-5

[39] Hendrickson HP, Kaufman AD, 
Lunte CE. Electrochemistry of catechol-
containing flavonoids. Journal of 
Pharmaceutical and Biomedical 
Analysis. 1994;12:325-334. DOI: 
10.1016/0731-7085(94)90007-8

[40] Rice-Evans CA, Miller NJ, 
Paganga G. Structure-antioxidant 
activity relationships of flavonoids and 
phenolic acids. Free Radical Biology & 
Medicine. 1996;20(7):933-956. DOI: 
10.1016/0891-5849(95)02227-9

[41] Nagles E, García-Beltrán O. 
Determination of rutin in black tea by 
adsorption voltammetry (AdV) in the 
presence of Morin and quercetin. Food 
Analytical Methods. 2016. DOI: 10.1007/
s12161-016-0538-y

[42] de Oliveira TS, Thomaz DV, da 
Silva Neri HF, Cerqueira LB, Garcia LF, 
Gil HPV, et al. Neuroprotective effect 
of Caryocar brasiliense Camb. Leaves 
is associated with anticholinesterase 
and antioxidant properties. 
Oxidative Medicine and Cellular 
Longevity. 2018;2018:1-12. DOI: 
10.1155/2018/9842908


