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Chapter

Geometric Accuracy of Digital
Twins for Structural Health
Monitoring
Ruodan Lu, Chris Rausch, Marzia Bolpagni,

Ioannis Brilakis and Carl T. Haas

Abstract

We present an exploratory analysis of the geometric accuracy of digital twins
generated for existing infrastructure using point clouds. The Level of Geometric
Accuracy is a vital specification to measure the twinning quality of the resulting
twins. However, there is a lack of a clear definition of the Level of Geometric
Accuracy for twins generated in the operation and maintenance stage, especially for
structural health monitoring purposes. We critically review existing industry appli-
cations and twinning methods. To highlight the technical challenges with creating
high-fidelity digital replicas, we present a case study of twinning a bridge using
real-world point clouds. We do not provide conclusive methods or results but
envisage potential twinning strategies to achieve the desired geometry accuracy.
This chapter aims to inform the future development of a geometric accuracy-based
evaluation system for use in twinning and updating processes. Since a major barrier
for a fully automated twinning workflow is the lack of rigorous interpretation of
‘geometric accuracy’ outside design environments, it is imperative to develop com-
prehensive standards to guide practitioners and researchers in order to achieve
model certainty. As such, this chapter also aims to educate all stakeholders in order
to minimise risk when drafting contracts and exchanging digital deliverables.

Keywords: digital twin, geometric accuracy, point clouds, bridge, structural
health monitoring

1. Introduction

In the wake of the Notre Dame Cathedral fire, digital scans collected by Dr.
Andrew Tallon [1] offer the hope for future restoration. One question raised is,
what Level of Geometric Accuracy (LOGA) can the reconstructed digital replica
achieve with respect to the physical asset? In the Architecture, Engineering and
Construction (AEC) sector, operation and maintenance (O&M) costs can range
between 60 and 80% of total life cycle costs, which is three times greater than the
cost of design and construction [2]. This demonstrates the significance of
implementing intelligent asset documentation and structural health monitoring
(SHM) approaches for existing built assets. Laser scanning has been widely used to
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document and monitor existing conditions of real-world assets in the form of point
clouds [3, 4]. A point cloud is an unstructured low-level digital representation,
which by itself does not contain any meaningful information of the documented
asset. A ‘twinning’ process is utilised to convert the low-level data into a high-level
digital representation in a structured format, namely, a geometric Digital Twin
(gDT) [5]. The gDT can be further enriched with other information, such as
semantic meanings, texture, materials, damage, energy use, maintenance data and
so forth from its physical twin using IoT technologies [6], to form an information
enriched model over time, namely, a ‘digital twin’ (DT). ‘Geometric accuracy’ is a
vital indicator that guides and describes the degree of spatial accuracy of the
resulting twin. It is conventionally deemed as the Represented Accuracy [7] that
denotes the standard deviation range to be achieved once the point cloud is twinned
into a geometric model. Twinning a real-world asset is an interpretive process,
where geometric accuracy largely depends on a modeller’s experience and discretion
[5]. While in their unstructured state, point clouds contain more geometric details
than a resulting gDT created from the point cloud. Therefore, the resulting ‘best-fit’
gDTs are highly unlikely to be as accurate as the measured data (e.g., a point cloud)
at the end of the twinning process [8]. This is also true for the automated methods
since there is a trade-off between the achieved geometric accuracy and the quantity
of information used for describing existing constructive objects in arbitrary shapes
[9]. This occurs because the process of twinning involves simplifications to create
polygon- or mesh-based primitives so that it ‘smooths’ discontinuities and gaps in
point clouds [10]. This means that almost every object is approximated in order to
transform point-cloud-based descriptors (in non-parametric formats) into para-
metric primitives [11]. Figure 1 illustrates a series of components for a bridge asset
where the point cloud is converted into bespoke gDT elements. However, since
point clouds often contain defects, such as varying point density [12] and occlusions
[13], it is difficult or often not feasible to achieve a desired LOGA for resulting gDTs
[5]. When these conditions occur, what are realistic expectations for a modeller or
of an automated method with regard to representing the reality and meeting the
required accuracies for SHM?

Numerous specifications termed as LOX (e.g. Level of Development and Level
of Detail) have been developed to guide practitioners and researchers when creating
digital models [14]. What do the LOX mean? How to measure whether the specifi-
cations were met? What is the best practice approach to reflect when the employer

Figure 1.
Customising shapes of bridge components and fitting them to point clusters.
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requires ‘1 cm accuracy’ or ‘every element to be within a half centimetre’? This
chapter explores these questions, aiming (1) to provide a critical review of existing
specifications and twinning implementations, (2) to identify technical twinning
challenges, and (3) to inform the establishment of a geometric-accuracy-based
evaluation system for twinning and updating.

2. Background

2.1 Existing LOX

The term ‘LOD’ was initially introduced by Vico Software [15]. Ambiguity of
defining LOD stems largely from the fact that the American Institute of Architects
(AIA) later adopted this concept and kept the acronym LOD but changed it to mean
‘Level of Development’ rather than ‘Level of Detail’ [16]. It was then superseded by
the document AIA G202™ [17], which defines five progressively detailed levels of
completeness: LOD100–LOD500. Based on the AIA protocols, the BIMForum [18]
released another LOD specification, which was identical to those published in the
AIA’s Digital Practice Documents [19], but with two exceptions. First, a new LOD
was designated as LOD350. Second, the LOD500 was removed from the specifica-
tion. The geometric requirements of gDT elements of LOD300, LOD350, and
LOD400 are defined in the same way in terms of accuracy. However, this
BIMForum document does not elaborate on what is implied by ‘accurate’ or how to
measure it. Bolpagni [20–22] summarised the history of the LOX classification
system in Table 1. Various new classification systems have been developed to
accompany and complement the BIMForum’s LOD specification. For example, New
Zealand proposed a LOD specification that contains five maturity levels [23], each
of which is a sum of different aspects that define the geometry and information of
gDT elements. Among these, Level of Detail (LOD) and Level of Accuracy (LOA)
do not specify any quantitative standards. Royal Institution of Chartered Surveyors
[24] proposed a concept of building survey detail accuracy banding, which defines
accuracies to be achieved for different surveyed features when an employer
requires a customised geometric accuracy and confidence level. This banding,
however, is tailored for designing building settings consisting of cuboids defined by
length, width, and height. Similarly, Abualdenien and Borrmann [25] introduced a
multi-LOD meta scheme, taking into account the geometric uncertainties by
assigning quantitative fuzziness in cm. Again, the usefulness of this scheme in
describing the twinning quality is unknown. To this end, Banfi [26] and Banfi et al.
[27] proposed a new Grades of Generation (GoG) protocol for twinning highly
complex historic structures from point clouds. LOGA was defined as the error
resulting between the reconstructed objects and the point clouds using metrics such
as the mean distance, median distance, and standard deviation. The USIBD specifi-
cations [7] were the first to provide the means to report twinning results of existing
building conditions (from point clouds) based on standard deviation (stdev). It
articulates the ‘accuracy’ as well as the five different LOAs (Figure 2) by which to
represent real-world out-of-plumb geometries. Specifically, the Measured Accuracy
represents the stdev range that is to be achieved to acquire a point cloud, regardless
of the method used. In contrast, the Represented Accuracy represents the stdev
range that is to be achieved when a point cloud is twinned. This guideline, however,
does not indicate how to achieve and how to measure the Measured Accuracy and
Represented Accuracy. As shown, various acronyms are used across countries and
organisations. These acronyms are either identical or interchangeable, making them
very challenging to be understood or adopted.
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Country/

region

Document Year LOX Whole

gDT

gDT

element

Geometric

data/info

Non-

geometric

data/info

Denmark BIPS 2007 Information Level √ √ √ √

Australia CRC 2009 Object Data

Levels/Level of

Detail

√ √ √

USA Department

of VA

2010 Level of

Development

√ √ √

USA Vico Software 2011 Level of Detail √ √ √ √

Australia NATSPEC 2011 Level of

Development

√ √ √

Hong

Kong

HKIBIM 2011 Level of Detail √ √ √

USA NYC DDC 2012 Model Level of

Development/

Level of

Development

√ √ √ √

Model Granularity √ √ √

Penn State

University

2012 Level of

Development

√ √ √

USC 2012 Level of Detail √ √

US Army

Corps of

Engineers

(USACE)

2012 Level of

Development

√ √ √

Singapore BCA 2013 Level of Detail √ √ √

UK PAS 1192–2 2013 Level of Model

Definition

√ √ √

Level of Model

Detail

√ √

Level of Model

Information

√ √

UK CIC BIM

Protocol

2013 Level of Detail √ — — —

Germany BMVBS 2013 Level of

Development

√ √ √

Netherland BIM 2014 Information Level √ √ √ √

Canada AEC 2014 Level of

Development

√ √

France Le Moniteur 2014 Level of Detail/

Level of

Development

√ √ √

Australia BCPP 2014 Level of

Development

√ √ √

Level of Detail √ √

Level of Accuracy √ √ √

Level of

Information

√ √

Level of

Coordination

— — — —
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2.2 Industry applications

Leading software vendors provide advanced commercial twinning solutions, which
are currently semi-automated processes at best.ClearEdge3D Edgewise software can
automatically extract geometric features for industrial constructive elements and basic
architectural elements using cross-sections in user-cropped regions followed by fitting
3D shapes froma library of preloaded features [28, 29]. Thismeans, the current practice
can achieve a high degree of automation of twinning if the resulting geometries are
assumed to be generic or pre-defined.However, in the context of SHM, this assumption

Country/

region

Document Year LOX Whole

gDT

gDT

element

Geometric

data/info

Non-

geometric

data/info

China CBC 2014 Level of Detail √ √ √ √

Belgium ABEB-VBA 2015 Level of

Development

√ √ √

Germany D&R 2015 Level of

Development

√ √

USA BIMForum 2015 Level of

Development

√ √ √

Element Geometry √ √

Associated

Attribute

Information

√ √

UK NBS BIM

Toolkit

2015 Level of Detail √ √

Level of

Information

√ √

UK AEC (UK) 2015 Level of Definition

Level of

Information

Grade/Level of

Detail

√ √ √

√ √

√ √

China SZGWS

(Shenzhen)

2015 LOD √ √ √

Table 1.
Comparison of the LOX classification system across countries.

Figure 2.
Measured and represented accuracy [7].
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is unrealistic if a millimetre twinning accuracy is required. Twinning arbitrary geome-
tries using point clouds is quite challenging [30].Most authoring tools are designed to
model orthogonally, or along local coordinate axes. They employ the use of rigid-body
parameters to design construction elements by defining cross-sectional shapes, length,
width and height parameters, whereas in the real world, as-is components are often
warped, off-plumb, or contain deflections [31].While finite element analysis and
multi-physics engines can be used to predict elastic and plastic distortions inmaterials
[32], current digitization workflows that produce parametric objects cannot capture
distortion such as bowing in a beam or welding distortion in steel frames. Errors are
introducedwhen the as-is geometries are twinned as being plumb and subjected to
rigid-body physics [33]. In this case, geometry deviation analysis is important because
unfitted geometries would potentially reduce the reliability of the gDT to be used for
structural analysis and defect detection for SHMpurposes. Current authoring applica-
tions are not capable of carrying out geometry deviation analysis for point clouds. The
actual geometry deviation analysis requires third-partymiddleware software to inter-
pret and investigate. FARO BuildIT Construction [34] is themost recent verification
software for dimensional quality control (QC) process. Measured data collected
from laser scanners can be compared against a gDT to analyse geometric deviations
(Figure 3). However, it is worth noting that the nature and origin of a deviation is not
identified in the analysis directly. Specifically, the analysis itself is often in the formof a
‘heat map’, where deviations are plotted in colours that correspond to a specific mag-
nitude and direction from a perfect state (i.e. 0mmdeviation). However, point clouds
contain voids and sparse measurements, which as directly classified deviations. These
false positive measurements make it difficult to interpret the deviation analysis results.
Users must manually inspect datasets to observe and detect gross errors ormissing
components. Currently, there are no available automated solutions for this in existing
middleware. In addition, once deviations are identified through deviation analysis and
manual interpretation, usersmust alsomanually apply changes to update the authoring
gDTs. This is currently a large challenge since there is very little research into auto-
mated updating of gDT from point clouds [35, 36].

2.3 Existing research methods

Automated methods have been proposed to streamline the twinning process
(Table 2) [37, 38]. However, user intervention was still required for some crucial

Figure 3.
Deviation analysis of a pipe assembly (point cloud data courtesy of FARO Technologies, Inc.).
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Point cloud authenticity

real (R) or synthetic (S)

Manual (�)/automated

(√) twining process

Structure

completeness

LOGA

assessment

availability

Manual (�)/

automated (√)

LOGA

assessment

Micro (I)/macro

(A) levels

LOGA

assessment

LODGA assessment method/metrics

[39] R � � √ � A Minimum Euclidian distance and thresholding

[40] S √ √ � — — —

[41] S √ √ √ √ A Hausdorff distance

[42] R √ � √ √ I Centroid Euclidean distance, area difference

(width and length), angular difference

[38] R √ √ √ � A Visual assessment

[43] R √ √ √ √ A/I Plane fitting/orientation/dimensional error,

positioning/sizing error

[44] R � � √ √ A Mean point-surface distance

[45] R � √ √ � A Progressive densification

[37] R √ � √ � I Cylinder radius and orientation

[46] R � √ √ � A/I CloudCompare

[47] R √ � � — — —

[11] R √ √ √ �/√ A/I Control points and point-to-gDT

[27] R � � √ √ A Standard deviation

[48] R � � √ √ A Standard deviation

[49] R — � √ √ I Thresholding

[50] — � √ � — — —

[5] R √ √ √ √ A Cloud-to-cloud distance

Table 2.
Twinning methods and evaluation metrics.
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steps [44]. Zhang et al. [40] and Laefer and Truong-Hong [47] produced gDTs for
bridges and industry plants, but without a geometric deviation assessment. Anil
et al. [39] were among the pioneers who discussed in depth the problem of geo-
metric deviation. They suggested using minimum Euclidean distance and thresholding
[49] as metrics to evaluate the fitting quality (CAD model against point clouds).
The deviation analysis at macro level (for the whole structure) was performed using
a commercial software application (i.e. Polyworks v9). Bonduel et al. [46]
suggested assessing the twinning results at both macro and micro levels. They used
CloudCompare to analyse the deviations between a point cloud and a manually
generated building floor gDT. They also discussed the achieved represented accu-
racy using LOAs provided by USIBD. Then, Hausdorff distance was proposed to
measure the fitting deviation of a mesh-based building gDT reconstructed from a
synthetic point cloud [41]. Thomson and Boehm [42] suggested using Euclidean
distance and area difference based on the width and length, and angular difference to
measure the fitting quality of walls. Although these measurements can assess
elementwise quality, they are tailored for generic building walls in cuboid shapes.
Similarly, Valero et al. [43] assessed fitting deviations of individual furniture
objects and walls using orientation, dimension, positioning, and sizing metrics, assum-
ing these objects consist of planar surfaces. Lu et al. [5] proposed an automated
fitting method to twin bridge components. They gauged the fitting accuracy using
Cloud-to-Cloud (C2C) distance metrics—a similar metric used by Shirowzhan et al.
[51]. However, the geometric deviation evaluation was performed only at the macro
level. NURBS-based methods [27, 44, 45, 48] were employed to reconstruct geo-
metric surfaces for building, industry plant, and historic building elements. Note
that the generation of compound pipes requires user intervention to group a set of
cylindrical segments followed by automatically fitting surfaces [44]. Likewise,
highly complex historic structures require manual surface generation, although
extremely high twinning accuracy was reported [27]. Point-to-surface distance met-
rics were used to evaluate the fitting quality [44, 48]. In contrast, Barazzetti [45]
used the commercial package Geomagic Studio to evaluate the fitting accuracy of
the NURBS curves through a progressive densification (i.e. multi-resolution)
approach. As shown, there is no fully automatic method to produce geometrically
highly accurate twins for existing assets. Also, more comprehensive evaluation
metrics need to be established for assessing twinning quality.

3. Case study

Previous sections have discussed that twinning existing assets using point
clouds is restricted by current software tools which are limited in their ability to
represent out-of-plumb conditions and non-rigid formations. It is also restricted by
the limits of the data itself. This section discusses this problem in detail through a
case study.

Laser scanning can sample an object’s surface as it exists with highly accurate
spatial measurements in the form of 3D points. If the documented object is not
straight or plumb, the scanner can capture its geometric status. Theoretically, a
terrestrial laser scanner such as the FARO Focus 3D X330 [52] has a ranging
error of �2 mm at 10 m, equating to a systematic measurement error at around
of 1σ at 10 m. However, the measured accuracy is affected by many factors,
including the standard deviation of the sensor, registration methods, material
type being scanned, low temperature, bad weather, and strong sunlight [53]. The
overall twinning error ET can be expressed as a combination of three primary
sources of error:
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ET ¼ ERA þ EM þ ER, (1)

where ERA is the ranging error associated with the laser scanner, EM is the
measured error introduced during scanning and registration, and ER is the
represented error resulting from the process of scan-to-gDT. It is important to
specify the error associated with each source independent of each other since they
are assumed to be mutually exclusive. In this chapter, we only focus on discussing
the represented error ER, which is independent of the sensor, or parameters of the
documented object, or scanning and registration methods. It is related to the man-
ner with which the measured point cloud is being transformed into the outcome, i.e.
a gDT and describes the extent the gDT matches the acquired points.

As mentioned earlier, existing authoring software packages are by nature ortho-
graphic modelling tools. The challenge with using these software packages becomes
how to represent a structure’s up-to-date conditions. To complicate matters further,
the as-weathered, as-damaged, or as-deviated information of existing assets further
increases the representation difficulty. Fitting deviations will be generated and
propagated if these conditions are represented in an over-simplified fashion. In
addition, sparseness, hidden, or concealed conditions are often encountered in
point clouds, making it difficult or impossible to twin constructive objects with
certainty. Thus, ER is the accumulated error from the geometric deviations and the
propagation of data uncertainty.

Figure 4 demonstrates current efforts on parametric bridge design [54]. The
essential feature for bridges is the horizontal and vertical alignments, which control
the parametric relationships and dependencies between assembly systems and all
components. The deck cross-sections are then driven by the bridge alignment
curves. They are profiles that are used in conjunction with the alignment to derive
the overall 3D shape of the bridge deck.

When SHM and retrofit planning is being performed, accurate as-is condition
data is required regardless of the availability of the as-designed parametric infor-
mation. Point clouds can depict the as-is geometries of an asset using thousands of
data points. However, maintaining the dimensional accuracy and geometric fidelity
of a given bridge point cloud is challenging because the usefulness of topological
and geometric constraints is limited to very simple geometric shapes and spatial
relationships. As-is geometries do not exhibit a parametric pattern with respect to
the initial primitives used to create the as-designed model. Figure 5 illustrates the
non-orthogonal geometries of a real-world bridge point cloud cannot be fitted using

Figure 4.
Parametric cross section design of a slab-beam bridge with user-defined geometric constraints [54].
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generic shapes, such as cuboids, in an orthogonal fashion. The modelled slabs do not
follow the point cloud and produce fitting deviations when they are joined at sharp
angles (Figure 5a). These deviations become smaller if the cross-sections are
outlined with as-is 2D shapes. However, the bridge gDT does not necessarily close
better and become manifold as the fitting quality is improved at the expense of
broken or clashing connections (Figure 5b). This is especially true when twinning
point clouds of pipes with sags, beams and columns with welding distortion or walls
that are skewed. Adjacent components do not fit to properly watertight connections
unless they are joined at right angles. For example, Figure 6 illustrates part of a
piping system generated using point clouds. The local deviation is reduced from
30 to 1 mm when watertight connections are not used. Given the challenge with the
mediation of non-parametric real-world deviations to parametric model primitives,
modellers are often forced to leave objects ‘slightly off-axis’ or perform ‘unnatural
shape editing’ by eliminating or ignoring as many overlapping and joint warnings as
possible in order to match the points.

When facing occlusions and damage conditions, the geometric accuracy has a
reliance on human perception followed by inferring the hidden information based
on assumptions. For example, a bearing plays an important role in a bridge, but its
surface is less than 1% of that of the deck slab and has a complex composition. These
characteristics make it difficult to be fully captured by a laser sensor (Figure 7a).
In addition, point clouds need to be down sampled before feeding into in-memory-
system-based authoring tools or automated algorithms that cannot handle huge
datasets. The down sampling is often performed using a third-party processing

Figure 5.
Fitting geometric shapes to bridge point clouds. (a) Point clouds fitted by cuboids; (b) point clouds fitted by
best-fit shapes.
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software application, which applies generic filters to evenly down sample the points
without considering local geometric context. While this is certainly helpful and
creates beneficial data compression, the resulting datasets often lose information
along the way (i.e. sparse areas or smaller objects will have little to measurements).
Thus, only a few points are retained for the bearing surface which does not provide
enough information to support the twinning task and result in geometry uncer-
tainties (Figure 7b). The interpretation of bearing shapes largely depends on

Figure 6.
Fitting cylinders to piping point clouds (point cloud data courtesy of FARO Technologies, Inc.).

Figure 7.
Bearing gDT generation under uncertainty. (a) Original point cloud; (b) down-sampled point cloud;
(c) bearing shapes and connection problem; (d) (e) geometry uncertainty in point clouds.
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modeller’s knowledge and discretion, which could introduce connection problems
(e.g., clashing/gaps) (Figure 7c). Uncertainty increases when working with point
clouds containing skewness and noise (Figure 7d and e). Although methods have
been suggested to work under occlusions and sparseness [5, 55], the certainty of the
resulting models is rarely investigated.

Figure 8 shows an example of a bridge where little-to-no measurements were
captured in the girder areas due to a limited line of sight [56]. Like many existing
works, both the manual and the automated method inferred specific girder profiles
and produced gDTs with detailed dimensions using engineering knowledge. Then,
Cloud-to-Cloud (C2C) distance could be used [5] to compute the deviation between
the point clouds sampled from the manually generated gDTs (Manual) and the
automated ones (Auto), and the real point clouds (Real):

C2C ¼ max distManual or Auto=Real, distReal=Manual or Auto

� �

, (2)

where dist is the estimated distance between a compared point cloud (i.e.
Manual or Auto) and a reference point cloud (i.e. Real). Non-trivial fitting devia-
tions occurred and raised the overall macro-level deviation (C2CAuto—12.5 cm and
C2CManual—5.7 cm) [5]. These significant fitting deviations were due to the
occluded areas, as no measurements were available to compare against, resulting in
an incorrect gDT from a geometric accuracy standpoint. This solution is straight-
forward since it does not take the modelling uncertainties into account. It simply
takes uncertain areas as errors. Figure 9 illustrates that the fitting deviation was
drastically reduced by approximately 70% (C2CAuto—4.2 cm) if we replace the
complete girder profiles with unclosed mesh-based gDTs while other parts remain

Figure 8.
Geometric deviation with complete girder profiles in occluded areas.
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unchanged. Yet still, the improved accuracy only aligns with USIBD’s LOA 20
(lower range: 15 mm, and upper range: 5 cm, at 2σ) [7], corresponding to a rela-
tively low accuracy standard. USIBD provides different represented accuracy levels,
but it does not specify how to measure it. For example, we can only use a couple of
reference points to estimate the accuracy. It is the averaged fraction between pair
reference-point distances in the registered scan data and the corresponding pair on-
site or gDT point distances:

acc ¼
1

M

X

M

i¼1

pair reference� point distance

pair on� site or gDT point distance

� �

i

, (3)

where M is the number of investigated pair-wise distance. Then, it is possible to
acquire acc that aligns with a higher LOA in USIBD. By contrast, unlike acc, C2C is
an estimation using thousands of calculated points. Therefore, the resulting C2C-
based accuracy is almost surely not going to achieve an expected ‘high accuracy’
level (e.g., �10 mm or USIBD’s LOA 30 onwards). The C2C comparison between
the Auto and Real revealed that points sampled from bottom flanges of girders were
well matched with the original points while the mismatched points were mainly
from the central part of the deck slab where points were not evenly distributed. This
is attributed to the undulating-surfaces of the gDT generated using the proposed
ConcaveHull alpha-shape algorithm (Figure 9). Local indentations or bumps are
generated when alpha value is too small to smooth out the surface affected by
unavoidable noise, raising the fitting deviations. However, optimising the alpha
value is difficult because an indentation, for instance, could be due to a defect or a
hole but could also due to localised sparse and unevenly distributed points. In
addition, although the ConcaveHull alpha-shape algorithm can describe slab geome-
tries in a 2D space, it oversimplifies a 3D space.

Figure 9.
Geometric deviation with incomplete girder profiles in occluded areas.
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4. Prospective twinning methods and deviation analysis

The analysis provided in the previous section demonstrates that real-world
conditions are seldom orthogonal and perfect, rendering it extremely difficult to
perform high-fidelity twinning with a geometric accuracy on the millimetre scale.
Commonly used representation models include but are not limited to: implicit
representation such as mathematical formula-based methods [57], Boundary Rep-
resentation such as polygon- and mesh-based methods [41], Constructive Solid
Geometry [58], Swept Solid Representation [47], and NURBS representation
[45, 48]. Depending on the nature of defects, the as-damaged geometries may be
represented in different ways. Figure 10 illustrates the vision of the concept of an
as-damaged bridge gDT implemented for the inspection work. The method pro-
posed by Hüthwohl et al. [59] can be used to integrate superficial defects such as
cracks, efflorescence, corrosion, and slight spalling [Figure 10a—(3) and (4)] to
the affected element using the back-project technology [59] (Figure 10b). In con-
trast, major defects, such as severe spalling, cavity and pothole [Figure 10a—(1)
and (2)], are significantly different in geometry compared to their surrounding
healthy (i.e. good condition) surfaces. The method proposed by Lu et al. [5] can be
used to represent healthy elements; however, it cannot describe the unhealthy areas
precisely, due to the extrusion-based twinning nature. Finer representation, such
as mesh-based and NURBS-based twinning techniques [50], can be employed to
handle the geometry complexity of significant defects in a precise manner
(Figure 10b). The more variable the defect, the greater the geometric twinning
needs to rely on non-parametric representation such as mesh format. One promis-
ing solution to produce a gDT that takes the as-damage information into account is
to first detect unhealthy areas [60], followed by twinning these unhealthy areas
using finer twinning techniques based on their type and size. However, the mesh
polygon resolution should not degrade the rendered presentation. This requires an
intelligent a priori scheme to resample the point clouds based on the geometric
complexity of a sampled surface [61, 62].

Construction elements with different scales may require different twinning
techniques. For example, extrusions could be efficient for twinning slab segments;
however, they cannot be directly applied to bearings. This means a gDT is highly
likely to contain more than one data representation type in order to balance its
resolution and the LOGA, which very few works have covered in depth. In addition,

Figure 10.
Vision of the concept of an as-damaged bridge gDT applied for inspection. (a) actual damages or defects;
(b) digital representations.
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C2C

(cm)

Macro [5]

(bridge wise)

Micro (element wise)

Bridge 1 4.3 Deck

slab

Pier

cap 1

Pier

cap 2

Pier

cap 3

Pier 11 Pier 12 Pier 13 Pier 21 Pier 22 Pier 23 Pier 31 Pier 32 Pier 33 — — — — — — —

6.3 2.8 2.7 2.3 2.2 2.1 1.9 1.8 2.1 2.2 2.2 2.2 1.9 — — — — — — —

Area 88.0% 2.2% � 3 0.6% � 9 — — — — — — —

Bridge 4 9.4 Deck

slab

Pier 11 Pier 12 Pier 13 Pier 14 Pier 15 Pier 16 Pier 21 Pier 22 Pier 23 Pier 24 Pier 25 Pier 26 — — — — — — —

12.0 3.8 3.6 3.6 3.5 3.7 3.9 3.9 4.3 3.7 3.7 3.9 3.9 — — — — — — —

Area 89.6% 1% 0.8% � 4 1% 1% 0.8% � 4 1% — — — — — — —

Bridge 6 4.6 Deck

slab

Pier 11 Pier 12 Pier 21 Pier 22 Pier 31 Pier 32 — — — — — — — — — — — — —

6.9 3.2 3.1 3.4 3.6 2.9 3.3 — — — — — — — — — — — — —

Area 92.8% 1.2% � 6 — — — — — — — — — — — — —

Bridge 7 12.5 Deck

slab

Pier Girder

11

Girder

12

Girder

13

Girder

14

Girder

15

Girder

16

Girder

17

Girder

18

Girder

19

Girder

21

Girder

22

Girder

23

Girder

24

Girder

25

Girder

26

Girder

27

Girder

28

Girder

29

6.6 3.0 14 14 13 12 15 17 16 13 13 13 13 14 17 17 12 16 12 13

Area 54.2% 6.2% 2.1% � 9 2.3% � 9

Bridge 9 5.6 Deck

slab

Pier 11 Pier 12 Pier 21 Pier 22 Pier 31 Pier 32 — — — — — — — — — — — — —

5.2 3.2 3.0 3.4 3.6 3.9 4.0 — — — — — — — — — — — — —

Area 84.4% 2.6% � 6 — — — — — — — — — — — — —

Table 3.
Macro- and micro-level C2C geometric deviation analysis.
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as previously mentioned, occlusions and sparseness increase the uncertainty of the
resulting gDT. These problems require a more intuitive geometric deviation analysis
system. The macro-level deviation analysis can provide an overview of the twinning
quality whereas it does not reflect a detailed comparison at the component- or
feature-level. Therefore, the dimensional QC system of geometric deviation analysis
should consist of both macro- and micro-level analysis. The former, can be used to
quickly localise uncertain areas, or areas with major deviations (Figures 8 and 9)
while the latter can provide detailed deviation analysis at the component-level,
indicating a more meaningful LOGA of specific elements. Table 3 shows an
example of the C2C-based geometric deviation analysis of five bridge gDTs using an
automated twinning method. The micro-level numerical indications show that the
deck slab takes the bigger part of the overall deviation whereas the other compo-
nents such as pier caps, piers, and girders take the smaller part. Specifically, for all
these bridges except Bridge 7, the deviations stemming from deck slabs are 2.9, 3.2,
2.1, and 1.5 times bigger than that of the averaged value for the remaining compo-
nents, respectively. Bridge 7 initially appears misleading since the slab deviations are
only 48.8% of that of its girders. However, these abnormal deviations are due to
significant occlusions in the raw data. The distribution of the deviations is not
necessarily proportional to the LOGA. This can be demonstrated through the
coverage area of components. The deck slab takes most of the sampled surface
compared to that of the pier caps and piers, which are much smaller in size and in
covered area. Specifically, pier caps, piers, and girders take 12, 10.4, 7.2, 31.7, and
15.6% of the overall sampled surface of each bridge, respectively. This means
although the absolute twinning accuracy of smaller components is higher than
larger ones, their relative accuracy is not necessarily better. A deviation analysis
system that combines both macro- and micro-level information can better interpret
the twinning accuracy.

5. Conclusions

This chapter presents an exploratory analysis of the LOGA of geometric twin-
ning for existing assets using point clouds. Twinning existing assets for monitoring
the structural health is a daunting task since the as-is geometric conditions can
differ from the designed status due to geometric anomalies, physical damages,
deflections, and the complexity, ambiguities, and defects in the measured point
cloud data. Section 2.1 reviews existing LOX systems that lack a clear elaboration on
geometry accuracy. They share the same acronym but do not necessarily carry the
same meaning. They are tailored for basic assumptions made in the design phase or
at the beginning of a generative process, making them useless to interpret the as-is
geometries of gDTs delivered for SHM purposes. Section 2.2 reviews on industry
applications and reveals that there remains a gap between the accuracy require-
ments placed on gDTs and the capabilities of underlying twinning processes. Spe-
cifically, there are practical limitations of authoring tools with respect to the context
of orthogonal (i.e. idealised parametric primitives) and real-world deviations (i.e.
non-parametric data formats such as point clouds and meshes). Their ability to twin
or capture non-rigid-body deformations is extremely limited. Likewise, limitations
are also revealed for the deviation evaluation tools with respect to geometric accu-
racy interpretations. Despite the growing state of the art (Section 2.3), a fully
automated twinning and updating process is still in its infancy. A major bottleneck
for complete automation of the workflow is the definition of LOGA of the
documented asset that covers all geometric deviations and data uncertainties.
This requires a development of comprehensive LOGA-based evaluation metrics for
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gDTs generated in the post-construction stage. The case study (Section 3) demon-
strates the technical challenges of the twinning process. High-fidelity twinning
within millimetre-level geometric accuracy is challenging to achieve because each
step introduces errors. This requires in-depth research on the level of the model
certainty. LOGA is closely related to the tools, techniques, and process used to
represent the specific object being documented. In the end, the twinning method
and LOGA depend highly on what the gDT will be used for (Section 4), on the
specific needs and goals of the project, and what kind of metadata is required when
providing information about the geometric accuracy.

Parameterising point cloud data results in a loss of geometric accuracy along
with a decrease of model certainty. This requires practitioners and researchers to
effectively communicate the LOGA through a universal consensus before develop-
ing, evaluating, and using gDTs. Until there is a consensus and a universal system
for describing geometric accuracy of gDTs, the following recommendations are
provided. In the case where geometric accuracy requirements are very strict, such
as in the O&M stage, it may be useful to store and link the initial as-is captured data
along with the resulting gDT. The purpose for this is two-fold. First, it allows for an
end-user to view the initial dataset that was used to create the gDT, for conducting
its own unique accuracy or structural analysis. Storing the initial raw point cloud
data will provide a level of confidence to an end-user when they use the geometric
information from a gDT. It also alleviates some of the burden placed on individuals
who create the gDT to provide a subjective global accuracy figure (which can have
legal impacts depending on end-use of such gDTs). Secondly, linking the initial data
capture avoids loss of geometric data. Since point cloud data contains much rawer
geometric information than a resulting surface-based or solid-based gDT, data
fidelity can be preserved. As twinning processes and algorithms continue to develop
and improve (both in accuracy but also in computational efficiency) it will be
possible to build, update, manage, and exploit gDTs in a progressive manner.
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