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Chapter

Effective Algorithms for Detection
Outliers and Cycle Slip Repair in
GNSS Data Measurements
Igor V. Bezmenov

Abstract

The chapter describes effective algorithms that are often used in processing data
measurements in Global Navigation Satellite Systems (GNSSs). Existing effective
algorithm was developed for detection and elimination of outliers from GNSS data
measurements. It is based on searching for a so-called optimal solution for which
standard deviation and maximum absolute deviation of the measured data from
mean values do not exceed specified threshold values, and the number of the
detected outliers is minimal. A modification of this algorithm with complexity of
N log 2N is discussed. Generalization of the existing algorithm to the case when data
series included some unknown trend will be presented. The processing trend is
assumed to be described by an unknown function of time. The generalized algo-
rithm includes the outlier detection algorithm and trend searching algorithm that
has been tested using simulated data. A new algorithm will be presented for cycle
slip repair using Melbourne-Wübbena linear combination formed from GNSS data
measurements on two carrier frequencies. Test results for repair data in the case of
multiple (cascade) cycle slips in actual observation data will also be presented in
this chapter.

Keywords: global navigational satellite systems (GNSSs), GNSS measurements,
outliers, data screening, optimal solution, trend function, Melbourne-Wübbena
combination, cycle slips

1. Introduction

At present, five constellations of GNSS satellites are involved in the formation of
observational data, which serve as a source for many applications related to navi-
gation, geodesy, geodynamics, and in the performance of solving of many funda-
mental problems. These are American Global Positioning System (GPS), Russian
Global Navigation Satellite System (GLONASS), European Galileo, Chinese
BeiDou, and Japanese Quasi-Zenith Satellite System (QZSS). The satellites of each
of the operating systems transmit signals, as a rule, on two L-band carriers, which
are received by GNSS receivers. A large number of stations equipped with GNSS
receivers and located around the World are part of the International GNSS Service
(IGS) network. These stations generate observation data files and transmit them to
international databases in real time [1, 2], after which these data become available
for use by many institutions and laboratories over the World. When solving
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applications, the measurement data go through various processing steps. Significant
element of the data processing is the detection of rough measurements and removal
them from the further processing. Despite the fact that many of the laboratories use
a high-end application of the software regarding accuracy, reliability, and robust-
ness, the presence of rough measurements in the observational data excludes the
possibility of obtaining an accurate final result. In order to obtain results of unprec-
edented accuracy, the measurement data must be cleared of coarse measurements
or outliers. It should be noted that the concept of outliers is key in the measurement
processing theory [3], and there is no general definition for it. In order to distin-
guish outliers from the rest of the measured data, in some cases, the deviation of the
data series values from some average value of the data is considered. If the deviation
from the average is exceeded by a predetermined threshold value, the measured
value is considered as an outlier. Such an approach has a significant disadvantage
that the exact mean is generally unknown, and the estimate obtained by averaging a
series may be very inaccurate due to outliers. Existing iterative procedures are also
based on the idea of calculating deviation from the average and often result in the
unjustified rejection of many observations. Reducing the data involved in
processing may, in turn, result in a loss of accuracy of the final result.

This chapter describes the outliers cleaning algorithm for GNSS data. The pro-
posed algorithms are based on the search for the so-called optimal solution with the
minimum amount of invalidly rejected data. The algorithm for accelerated detection
of outliers in a large amount of measurements has been developed, as well as an
algorithm for detecting outliers in data containing an unknown trend. In conclusion,
the algorithm of jump detection in the Melbourne-Wübbena combination [3–5],
including the developed procedure of cleaning data from outliers, is considered.

In Section 2, the problem of searching for the so-called optimal solution is
formulated. Section 3 provides a search algorithm, with a common number of
arithmetic operations not exceeding �N2. Section 4 presents the test results for
actual measurements in global navigational satellite systems at two carrier frequen-
cies. The searching of outliers was performed in the Melbourne-Wübbena combi-
nation. In Section 5, the assertions that are the mathematical prerequisites for
justifying a fast outlier search algorithm are proved. In Section 6, the fast outlier
detection algorithm with the number of arithmetic operations of Nlog2N is pro-
posed. Section 7 describes the case of data with unknown trend. Iterative procedure
of outlier search is proposed based on the finding of suitable trend approximation in
polynomials class. The idea of excluding coarse measurements is based on finding a
so-called minimizing set of measurement data of a given length. This distinguishes
the proposed algorithm from known similar procedures in which outliers are
detected by exceeding a preset threshold. The test results with simulated data are
given. Sections 8 and 9 discuss the problem of detecting jumps in the Melbourne-
Wübbena combination. An algorithm is proposed that includes the outlier cleaning
procedure based on the search for the optimal solution. Section 10 shows the
numerical calculations with real data for algorithms presented in Sections 3–9.
Section 11 concludes the chapter.

2. Statement of the problem: a Melbourne-Wübbena combination

Often, measurements yj taken at moments of time j can be presented in the

form:

yj ¼ f j þ zþ ξj; j ¼ 1…N, (1)
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where f j is a trend function, depending on physical process and as a rule is
unknown, the sum zþ ξ j is unknown random variable imposed on the trend with

unknown constant z and a centered random variable ξ j.

Detection of outliers in data series expressed in Eq. (1) with unknown trend is
uncertain since the concept of measurement or outliers itself is uncertain. In many
cases, however, the trend function is known a priori.

For example, many data processing programs often use different linear combi-
nations formed of code and phase measurement data to eliminate unknown param-
eters. One such combination is the Melbourne-Wübbena combination composed of
both, carrier phase and code observables as described by Melbourne [4] and
Wübbena [5]. This combination eliminates the effect of the ionosphere, the geom-
etry, the clocks, and the troposphere [3], and it is often used to detect loss of carrier
phase capture in the preprocessing stages. The Melbourne-Wübbena combination
generated for a specific satellite-receiver pair can be presented in the form of the
sum of three terms [6]. One of the terms includes the integer wide-lane ambiguity
for the two carrier frequencies [3]; the second component accounts for the satellite
and receiver instrumental delays; and the third component is the measurement
noise, including carrier phase and code multipath. Thus, during a time interval
where the integer wide-lane ambiguity does not change, the Melbourne-Wübbena
combination can be written as formula (1) with f j ¼ const.

Another example is satellite clock correction values derived from navigation
message data, which can also be represented as in Eq. (1) with f j ¼ djþ a, where d
and a are the drift and offset parameters known from navigation data, respectively.
In the case where the trend is known, the measurement data after the trend
subtraction can be represented as, assuming N observations:

yj ¼ zþ ξj; j ¼ 1…N, (2)

with an unknown constant z, which we cannot be determined in advance,
because the random value ξ j is not known and may contain outliers.

In Sections 2–6, we consider the case where the trend is known a priori, that is,
the data can be presented as Eq. (2). A problem with an unknown trend will be
discussed in Section 7. In principle, the outlier detection procedure described below
is not affected by the measurement format expressed in Eq. (1) or (2); it can be
applied to any set of data measurements yj.

The preliminary processing task includes rejection of rough measurements or

outliers from data series (2). In other words, it is necessary to find a set YL ¼

yj1
, … , yjL

n o

of L elements, where L is the length for which the following conditions

are satisfied:

σYL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L� 1ð Þ�1
X

j∈ j1,::,jLf g
yj � z

� �2
r

≤ σmax, (3)

yj � z
�
�
�

�
�
� ≤ 3 � σmax; yj ∈ yj1

, … , yjL

n o

, (4)

L≥MINOBS, (5)

where σYL and σmax are the standard deviation (SD) and their associated
specified threshold values; MINOBS is a parameter limiting from below the length
of the required set of measured values (e.g., 10), and we will assume hereafter that
MINOBS < N.
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The values yj that are not included in the set YL are treated as coarse measure-

ments and removed from further processing. Typically, expressions in Eqs. (3)–(5)
are the only conditions considered in processing programs when screening out
rough measurements. Below we will formulate the problem of searching for a
solution, complementing the conditions expressed in Eqs. (3)–(5) with two extreme
conditions [7].

1. First, we will require that the length of the set sought be the maximum, that is,
the number of measurements deemed to be coarse is the minimum:

L ! max : (6)

Note that for the predetermined values yj, the problem solution satisfying

conditions in Eqs. (3)–(5) may not exist (e.g., when yj includes a trend, in

particular when yj is an arithmetic progression with a step greater than σmax). In

the case when the solution does exist, we will denote the value L at which the
maximum of Eq. (6) is reached as Lmax. Note that the condition expressed in
Eq. (6) does not ensure the uniqueness of the set because several sets of length
Lmax can be found that satisfy the conditions in Eqs. (3)–(5).

2. From all possible sets that satisfy conditions expressed in Eqs. (3)–(5) and (6),
we will select the one for which the variable σYL receives the smallest value:

σYL �������������!

YL¼ y
j1
, … , yjL

n o

; L¼Lmax

min : (7)

Let us define Yopt as follow:
Definition 1. For a given sequence of values y j, j = 1, 2, … N, the set of values:

Yopt ¼ yj1
, … , yjLmax

� �

, (8)

satisfying conditions in Eqs. (3)–(7), we refer to as the optimal solution of the problem
expressed in Eqs. (3)–(7). The corresponding SD value is denoted by σopt.

Thus, the problem consists in the creation of a search algorithm for the optimal
solution of the problem shown in Eqs. (3)–(7).

In a practical situation, the precise value z, given conditions in Eqs. (3) and (4),
is not known. We will estimate the values using the following formula:

z ¼ L�1
X

j∈ j1, … , jLf g

yj: (9)

Note that the value z depends on the required solution, which will complicate its
search.

Usually, iterative methods are used to find a solution to problem expressed in
Eqs. (3)–(5). For example, the algorithm implemented in the observation data
smoothing program (see [3]) is designed to find a set Y satisfying the conditions
given by Eqs. (3)–(5). The proposed step-by-step algorithm is based on iterations
(the index number of iteration is designated by the upper index in parentheses):

Step 1: Initialization: Y 0ð Þ ¼ y1, … , yN
	 


; Level 0ð Þ ¼ 1020; k = 0.

Step 2: Checking the length of the set Y kð Þ; if it is less than MINOBS, then the
process comes to an end and a solution is not found.
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Step 3: Calculation of the values z kð Þ and σ kð Þ on the available set Y kð Þ using
formulas (3) and (9).

Step 4: Checking the fulfillment of the inequality σ kð Þ ≤ σmax. If it is satisfied, the

set Y kð Þ is accepted as the solution, and the search process comes to an end.
Otherwise, there is a transition to Step 5.

Step 5: Definition of Level kþ1ð Þ for outlier detection:

Level kþ1ð Þ ¼ 3 � σ kð Þ;

In order to prevent an infinite loop of iterations, a required verification is carried
out:

Level kþ1ð Þ
<Level kð Þ:

If this inequality is not satisfied, then the following is assumed:

Level kþ1ð Þ ¼ Level kð Þ=2;

Step 6: Definition of a new set Y kþ1ð Þ to include those and only those y j for which

y j � z kð Þ
�
�
�

�
�
� ≤ Level kþ1ð Þ:

Step 7: Increasing k by 1: k++. Transition to Step 2.
Note that the optimal solution cannot be found in such a manner, as confirmed

by numerical calculations (see Section 4).

3. Algorithm for solving the problem

Let us formulate a statement that is the key to the creation of an effective search
algorithm for the optimal solution (Eqs. (3)–(7)).

Assertion 1. Let the set Yopt ¼ y j1
, … , y jLmax

� �

be optimal for a specified sequence

of values y j

n o

and

ymin ¼ min y j1
, … , y jLmax

� �

, ymax ¼ max y j1
, … , y jLmax

� �

,

then the interval ymin, ymax

� �

does not contain values y j that are not in the set Yopt.

Proof. In fact, let us assume the opposite: Let y j ∉ Yopt, ymin < y j < ymax and yk
and yl be values from the set Yopt for which yk = ymin and yl = ymax. One of these cases
is possible:

a. z< y j and, therefore 0< y j � z
� �

< yl � z
� �

=> y j � z
� �2

< yl � z
� �2

,

b. z≥ y j and, therefore 0 ≤ z� y j

� �

< z� yk
� �

=> y j � z
� �2

< yk � z
� �2

.
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In the first case, Case (a), we replace the value yl in the set Yopt with y j. In the

second case, Case (b), we replace yk with y j. In any of the cases, we will have

another set of the same length Lmax for which conditions expressed in Eqs. (3) and
(4) are satisfied, but the SD, as follows from Eq. (3), is less than σopt. Consequently,
the set Yopt is not optimal since requirement expressed in Eq. (7) is not satisfied.
The contradiction that is reached proves Assertion 1.

Further, note that if Yopt ¼ yj1
, … , yjLmax

� �

is the optimal solution of the prob-

lem given by Eqs. (3)–(7), then an arbitrary permutation of the numbers
yj1

, … , yjLmax

will also be the optimal solution of the problem described by

Eqs. (3)–(7). Thus, the optimal solution does not depend on the arrangement of
given numbers yj. This allows us to arrange the numbers yj in the order most

suitable for searching the optimal solution. Taking advantage of this important

circumstance, we arrange the values yj

n o

in the ascending order and we will look

for the optimal solution in the ordered sequence. For brevity, the ordered sequence

will also be denoted by yj

n o

. Thus, y1 ≤ y2 ≤ … ≤ yN. Moreover, for simplicity of

logic, we will assume that all yj are different, that is,

y1 < y2 < … < yN (10)

Note that due to the formulated Assertion 1, if Yopt is the optimal set and y j1
and

y jLmax

are its smallest and greatest values, respectively, then all values of yj from the

interval y j1
, y jLmax


 �

belong to Yopt. Consequently, considering Eq. (10), we have

yjLmax

¼ yj1þLmax�1 and

Yopt ¼ yj1
, yj1þ1, … , yj1þLmax�1

n o

Thus, the optimal solution should be sought in the ascending sequence yj among

all possible sets yk, … , ykþL�1

	 


of length L with k and L satisfying the following

conditions:

MINOBS ≤ L ≤ N, (11)

1 ≤ k ≤ N � Lþ 1: (12)

Hence, instead of searching for all possible sets of various length, numbering 2N,
for the solution of the problem described by Eqs. (3)–(7), it is sufficient to vary just
the two parameters, k and L, associated with the conditions expressed in Eqs. (11)
and (12). The number of pairs of integer numbers k and L subject to condition in
Eqs. (11) and (12) is equal to:

N�MINOBSð Þ N�MINOBSþ 1ð Þ=2:

Let L ¼ l� kþ 1 be the length of an arbitrary set yk, … , yl
	 


. We introduce the

designations:

z k; Lð Þ ¼
1

L

XkþL�1

j¼k

yj, (13)
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σ2 k; Lð Þ ¼
1

L� 1

XkþL�1

j¼k

yj � z k; Lð Þ
� �2

: (14)

We rewrite conditions given by Eqs. (3) and (4) in the new designations:

σ2 k; Lð Þ ≤ σ2max, (15)

ykþL�1 � z k; Lð Þ ≤ 3 � σmax

z k; Lð Þ � yk ≤ 3 � σmax

�

: (16)

Note that the two last inequalities directly follow from Eq. (4), monotony of yj,
and obvious inequalities: yk ≤ z k; Lð Þ ≤ ykþL�1.

Remark. In the conditions expressed in Eqs. (15) and (16), L means the length of the
set under checking, and k is the index of the smallest number included in the set. Although
“k” and “L” are also encountered as indexes in the sets we use below for monotonically
increasing sequences, we hope nevertheless that this will not lead to confusion.

The following recursive relationships are available, making it possible to find
z k; Lð Þ and σ2 k; Lð Þ through the calculated values z k; Lþ 1ð Þ и σ2 k; Lþ 1ð Þ for seven
arithmetic operations:

z k; Lð Þ ¼ z k; Lþ 1ð Þ þ ALþ1 � z k; Lþ 1ð Þ � ykþL

� �

, (17)

σ2 k; Lð Þ ¼ BLþ1 � σ
2 k; Lþ 1ð Þ � CLþ1 � ykþL � z k; Lþ 1ð Þ

� �2
, (18)

AL ¼
1

L� 1
; BL ¼

L� 1

L� 2
; CL ¼

L

L� 1ð Þ L� 2ð Þ
: (19)

The values of the fractions may be computed in advance as elements of a one-
dimensional array. Analogously, the following formulas can make it possible to
express z kþ 1; Lð Þ and σ2 kþ 1; Lð Þ through z k; Lð Þ and σ2 k; Lð Þ:

z kþ 1; Lð Þ ¼ z k; Lð Þ þ ALþ1 � ykþL � yk
� �

, (20)

σ2 kþ 1; Lð Þ ¼ σ2 k; Lð Þ þ ALþ1 � ykþL � yk
� �

ykþL � z k; Lð Þ þDLþ1 yk � z k; Lð Þ
� �� �

, (21)

DL ¼
L

L� 2
: (22)

The algorithm described below is based on the search for all possible pairs (k, L),
where L denotes the length of the set to be checked and k is the index of the smallest
of the values included in the set. At that, k and L must satisfy conditions Eqs. (11)
and (12). The set yk, … , ykþL�1

	 


corresponding to each such pair must be checked

for fulfillment conditions (15) and (16).
We organize this search according to the algorithm described below, at each step

of which we check the validation of Eqs. (15) and (16) for all possible sets of a
certain length. We start the examine process with Step 1, where we check the set of
maximum length N. Further, with each next step, we will reduce the length of the
sets to be checked by 1.

Step 1: We consider the set of length N. There is only one such set: y1, … , yN
	 


.
We check it for fulfillment conditions expressed in Eqs. (15) and (16). If they are
satisfied, this set is selected as a solution, and further search stops. Otherwise,
transit to Step 2.

Step 2: We consider the sets of length N � 1. There are two sets of length N � 1.
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y1, … , yN�1

	 


and y2, … , yN
	 


:

We test each of these sets for compliance with the conditions specified by
Eqs. (15) and (16). If none of them satisfies conditions (15) and (16), then we
transit to the next step. Otherwise, the following options are available:

• Option 1: if only one set from them is found that satisfies conditions (15) and
(16), then it will also be the solution of the stated problem; the search process
stops here, where Lmax = N � 1.

• Option 2: if both sets simultaneously satisfy conditions (15) and (16), we will
select the set corresponding to the smallest of two values σ2 1,N� 1ð Þ or
σ2 2,N� 1ð Þ, and the search process stops here, where Lmax = N � 1.

Step N� L + 1:We consider the sets of length L. If L < MINOBS, then the search
process stops, and a solution is not found. For L ≥ MINOBS, we examine N � L + 1
sets of length L:

y1, … , yL
	 


, y2, … , yLþ1

	 


, … , yN�Lþ1, … , yN
	 


: (23)

We check each of these sets for fulfillment of conditions (15) and (16). If any of
them does not satisfy these conditions, then we transit to the next step where we
consider the sets of length (L � 1). Otherwise, two options are possible:

• Option 1: if only one set from (23) is found that satisfies the conditions of (15)
and (16), then it will also be the solution of the stated problem with Lmax= L,
and the search process stops here.

• Option 2: if several sets simultaneously satisfy conditions (15) and (16), we
chose the set for which the value σ2 k, Lð Þ appears smallest as the solution, and
the search process stops here, where Lmax = L.

In order to calculate the values z k, Lð Þ and σ2 k, Lð Þ, we use the recursive formu-
las (17)–(22) in accordance with a search scheme shown in Figure 1 where only the
z k, Lð Þ is involved.

In accordance with the proposed arrangement, we calculate the values z 1;Nð Þ

and σ2 1;Nð Þ in the first step of the algorithm using formulas expressed in Eqs. (13)
and (14), and 4 N arithmetic operations are required for this arrangement. In order
to find z k, Lð Þ and σ2 k, Lð Þ on all subsequent steps, we apply the recursive formulas
(17)–(22), making it possible to calculate the values of the specified pairs of

Figure 1.
Scheme of calculations when finding the optimal solution.
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variables, each for the seven arithmetic operations, based on the results of the
calculations of the preceding step. So, for example, on the second step, proceeding
from the known values z 1;Nð Þ and σ2 1;Nð Þ, we find the values z 1;N� 1ð Þ and
σ2 1;N� 1ð Þ (vertical arrow on the diagram) by using formulas in Eqs. (17)–(19)
and the values σ2 2;Nð Þ and σ2 2;Nð Þ (horizontal arrow on the diagram) by using
Eqs. (20)–(22). In the general case, the transition to the following step in the
direction of the vertical arrows (see diagram) is carried out according to formulas
(17)–(19), and in the direction of horizontal arrows, according to formulas
(20)–(22). The number of arithmetic operations required to find the solution should
not exceed:

4Nþ 9 N� Lmax þ 2ð Þ N� Lmax þ 1ð Þ=2� 1ð Þ (24)

In the above number of computations, the computational costs of verifying the
satisfaction of inequalities (15) and (16) are also considered, which comprise from 0
to 2 arithmetic operations.

4. Results of calculations using algorithm presented in Section 3

We test the algorithms discussed above on the real data obtained by the ONSA
station that is a part of the IGS network [2]. These data are included in the distri-
bution kit of the installation software package [3] and available for usage. We
consider measurement data received from global positioning system (GPS) satellite
with system number PRN = 12 for 2010, day 207 to check the efficiency of the
proposed algorithm described in Section 3. Figure 2 plots the values of the
Melbourne-Wübbena combination over a time interval of 89.5 min (N = 180). The
index numbers j of time epochs counting from the beginning of a 24-h period with a
30-second interval are plotted on the horizontal axis. The values y j of the combina-

tion are plotted on the vertical axis and are expressed in cycles with wavelength
λ5 ≈0:86 [3]. Figure 3 shows the values of deviations from the mean of the data
cleared of outliers using the algorithms described in Sections 2 and 3. In both cases,
σmax = 0.6 and MINOBS = 10. The values y j � z are plotted on the vertical axes in

cycles with wavelength λ5 and the index numbers j of epochs on the horizontal axis.

Figure 2.
Melbourne-Wübbena combination for ONSA station (GPS satellite, PRN = 12 for 2010, day 207).
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Epochs in which the data were rejected are designated by white circles. In the first
case (see Figure 3a), 47 data of the measurements were rejected, which are 26.1% of
the total amount of data. In the second case (see Figure 3b), 14 of these measure-
ments were rejected (7.8%), which are almost 18% less than in the previous
calculation.

We also provide similar results for data obtained by TLSE station, which is also
included in the IGS network. We consider measurement data from GLONASS,
Russia satellite with system number PRN = 1 for 2010, day 207. Figure 4 shows the
values of the Melbourne-Wübbena combination over a time interval of 65.5 min
(N = 132). Figure 5 plots the values of deviations from the mean value of the data
cleared of outliers using the algorithms described in Sections 2 and 3, respectively.
Parameters σmax and MINOBS are the same as in the previous calculation example.
In the first case (see Figure 5a), 41 data of the measurements were discarded, which
are 31% of the total amount data. In the second case (see Figure 5b), 8 of these
measurements were rejected (6%), which are 25% less than in the previous
calculation.

Figure 3.
(a) Deviations of values of the Melbourne-Wübbena combination from the mean value after data cleaning
from outliers using the algorithm described in Section 2. (b) Deviations of values of the Melbourne-
Wübbena combination from the mean value after data cleaning from outliers using the developed algorithm
(see Section 3).
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Figure 4.
Melbourne-Wübbena combination for TLSE station (GLONASS satellite, PRN = 1 for 2010, day 207).

Figure 5.
(a) Deviations of values of the Melbourne-Wübbena combination from the mean value after data cleaning
from outliers using the algorithm described in Section 2. (b) Deviations of values of the Melbourne-Wübbena
combination from the mean value after data cleaning from outliers using the developed algorithm (see
Section 3).
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5. Mathematical prerequisites for modifying of existing algorithm

Note that the number of arithmetic operations required to find the optimal
solution according to the algorithm described in Section 3 depends on the Lmax,
which is the length of the solution. As can be seen from Eq. (24), the smaller the
length of the found solution (i.e., the larger the number of detected outliers), the
more arithmetic operations are required to find it. This number of arithmetic

operations is estimated to be of order Nþ N� Lmaxð Þ2. Note that the expression in
the parentheses herein is equal to the number of outliers detected. Thus, if the

number of outliers in the original data series is comparable to N, it will take �N2

arithmetic operations to find the optimal solution. In particular, to make certain

that there is no solution (e.g., in the case where the data contain a trend), �N2

arithmetic operations will also be required. In Section 6, we will modify the existing
algorithm and describe fast outlier search algorithm that requires �Nlog2N
arithmetic operations.

The necessary preparations are given in this section. Note that in this and the

next sections we are dealing with the sequence yj

n oN

j¼1
arranged in the ascending

order.

Assertion 2. Let yj

n oN

j¼1
be monotonically increasing sequence. The following

inequality is true:

σ2 k; Lþ 1ð Þ≥ min σ2 k; Lð Þ, σ2 kþ 1; Lð Þ
	 


: (25)

Proof. From the monotonicity of the sequence yj and the definition z k, Lþ 1ð Þ

[see Eq. (13)],

yk ≤ z k,Lþ 1ð Þ ≤ ykþL: (26)

One of two cases is possible:

a. 2z k, Lþ 1ð Þ ≤ ykþL þ yk, ) z k, Lþ 1ð Þ � yk ≤ ykþL � z k, Lþ 1ð Þ,

b. 2z k, Lþ 1ð Þ> ykþL þ yk, ) z k, Lþ 1ð Þ � yk > ykþL � z k, Lþ 1ð Þ.

Suppose, for example, the case (a) holds. Let us show that in this case

σ2 k; Lþ 1ð Þ≥ σ2 k; Lð Þ: (27)

At first, we will show that:

∣yj � z k, Lþ 1ð Þ∣ ≤ ykþL � z k, Lþ 1ð Þ; j ¼ k, … , kþ L: (28)

Truly, inequalities:

yk ≤ yj ≤ ykþL; j ¼ … , kþ L,

and the above inequality derived in Case (a) implies:

z k, Lþ 1ð Þ � yj ≤ z k, Lþ 1ð Þ � yk ≤ ykþL � z k, Lþ 1ð Þ, (29)
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yj � z k, Lþ 1ð Þ ≤ ykþL � z k, Lþ 1ð Þ: (30)

These inequalities, in turn, imply Eq. (28). Next let us prove (27). This inequal-
ity is expanded as follows:

1

L

XkþL

j¼k

yj � z k; Lþ 1ð Þ
� �2

≥
1

L� 1

XkþL�1

j¼k

yj � z k; Lð Þ
� �2

:

Substituting here of the expression (17) in place of z k; Lð Þ and writing for
brevity, z instead of z k; Lþ 1ð Þ, we get inequality:

L� 1ð Þ
XkþL

j¼k

yj � z
� �2

≥L
XkþL�1

j¼k

yj � z�
z� ykþL

L

� �2

: (31)

Transform the right-hand side of this inequality:

RHS 31ð Þ ¼ L
XkþL

j¼k

yj � zþ
ykþL � z

L

� �2

�
Lþ 1ð Þ2

L
ykþL � z
� �2

¼ L
XkþL

j¼k

yj � z
� �2

þ
Lþ 1ð Þ

L
ykþL � z
� �2

�
Lþ 1ð Þ2

L
ykþL � z
� �2

:

Here we take into account the equality:
PkþL

j¼k yj � z
� �

¼ 0. Next, we have:

RHS 31ð Þ ¼ L
XkþL

j¼k

yj � z
� �2

� Lþ 1ð Þ ykþL � z
� �2

:

Substituting this expression in Eq. (31), we get inequality

XkþL

j¼k

yj � z
� �2

≤ Lþ 1ð Þ ykþL � z
� �2

,

that is true due to Eq. (28). Thus, Eq. (27) is proved for case (a). Analogously,
case (b) is considered.

We introduce the notation:

σ2min Lð Þ ¼ min
1 ≤ k ≤ N�Lþ1

σ2 k, Lð Þ: (32)

Assertion 3. The following inequalities hold:

σ2min Nð Þ≥ σ2min N� 1ð Þ≥ … ≥ σ2min MINOBSð Þ: (33)

That is, the sequence σ2min Lð Þ monotonically decreases when L decreases from N to
MINOBS.

Proof. Assertion 2 and definition of σ2min Lð Þ expressed in Eq. (32) imply:

σ2 k, Lþ 1ð Þ≥ min σ2 k, Lð Þ, σ2 kþ 1, Lð Þ
	 


≥ σ2min Lð Þ:
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Since k is chosen arbitrarily, then for all L = MINOBS, … , N � 1 the following
inequalities hold:

σ2min Lþ 1ð Þ≥ σ2min Lð Þ,

which proves Assertion 3.
Assertion 3 implies the following corollary.
Corollary 1. If the inequality

σ2min L0ð Þ> σ2max: (34)

holds for some L0, then for existence of the solution YL ¼ yk, ykþ1, … , ykþL�1

	 


for

the problem expressed in Eqs. (3)–(7), it is necessary that the length L of the set YL

satisfies the condition L < L0.

Proof. Let us assume that L ≥ L0. Assertion 3 on account of monotony of σ2min �ð Þ,

expressed in Eq. (33) implies the following inequalities σ2min Lð Þ≥ σ2min L0ð Þ> σ2max for

all L≥L0. From this, it follows that for any set YL ¼ yk, ykþ1, … , ykþL�1

	 


we will

have σ2 k, Lð Þ≥ σ2min Lð Þ> σ2max. Thus, any of sets YL of length L ≥L0 does not satisfy
the condition in Eq. (15) and, therefore, cannot be a solution of the problem,
expressed in Eqs. (3)–(7).

In particular, we have come to the next important result. If, for example, the
inequalities σ2min MINOBSð Þ> σ2max are fulfilled, then the solution for the problem
described in Eqs. (3)–(7) does not exist.

In the above-described procedure for solving problem (3)–(7), it takes �N2

arithmetic operations to make certain that the solution not exists. Taking into
account Assertion 3 and Corollary 1, the search procedure may begin by checking
the conditions.

σ2min Nð Þ ¼ σ2 1,Nð Þ ≤ σ2max and σ2min MINOBSð Þ ≤ σ2max:

This will require approximately �N arithmetic operations. If none of these
conditions are fulfilled, the solution search must stop because the solution does not
exist. As a result, only �N arithmetic operations are required to ensure that there is
no solution.

6. Fast outlier search algorithm

The above proposed search procedure consists in the calculating values of z k, Lð Þ

and σ2 k, Lð Þ using recurrent formulas (17)–(22) and checking at every k and L the
fulfillment of the inequalities (11) and (12). The algorithm complexity is estimated

by value of � NþN2
Outlier

� �

, where NOutlier is the number of outliers found. If it is
known a priori that there are few outliers in the measurement data, then the search
algorithm for the optimal solution that described in Section 3 can be applied. If the
measurement data contain an N-comparable number of outliers, the complexity of

such an algorithmwill be estimated by about N2. It is namely for such type of data we
below describe a modified outlier search algorithmwith complexity of about Nlog2N.

First of all, note one property that is the key to the construction of a fast outlier
search algorithm. Note that if the inequality (15) holds for some set of length L + 1,
then there exists a set of length L for which the inequality (15) is valid too. Truly, let
assume for some k the inequality σ2 k, Lþ 1ð Þ ≤ σ2max holds. This inequality and
Eq. (25) imply
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min σ2 k; Lð Þ, σ2 kþ 1; Lð Þ
	 


≤ σ2max:

From this, it follows that

σ2 k; Lð Þ ≤ σ2max and=or σ2 kþ 1; Lð Þ ≤ σ2max: (35)

This means that at least one of these sets yk, … , ykþL�1

	 


and ykþ1, … , ykþL

	 


with length of L satisfies conditions expressed in Eq. (15).
However, this property is not true when checking the conditions expressed in

Eq. (16). In other words, if these conditions are fulfilled for any set of length L + 1,
it might happen that none of the sets of length L may satisfy them. This fact is a
significant obstacle to increasing the rate of outlier detection that is necessary
when processing a large amount of data with a large number of rough measure-
ments. To overcome this obstacle, we will make the condition expressed in
Eq. (16) weaker.

First of all, note that if for some set yk, … , ykþL�1

	 


, the both conditions

expressed in Eq. (16) are fulfilled, then the following inequality will hold:

ykþL�1 � yk ≤ 6σmax: (36)

Consider a problem with condition expressed in Eq. (36) instead of conditions
expressed in Eq. (16).

Remark. Recall that in this condition L means the length of the set under checking,
and k is the index of the smallest number included in the set. Although “k” and “L” are
also encountered as indexes in the sets we use hereinafter, we hope nevertheless that this
will not lead to confusion.

It is easily seen that condition expressed in Eq. (36) for an arbitrary set
yk, … , ykþL

	 


of length L + 1 implies the fulfillment this condition for each of the

sets yk, … , ykþL�1

	 


and ykþ1, … , ykþL

	 


of length L. In fact, the fulfillment condi-

tion (36) for the set yk, … , ykþL

	 


means the fulfillment of inequality ykþL �

yk ≤ 6σmax from which due to monotony of yj, the inequalities imply ykþL �

ykþ1 ≤ 6σmax and ykþL�1 � yk ≤ 6σmax.

Thus, we have established the validity of the following assertion.
Assertion 4. If the set yk, … , ykþL

	 


of length L + 1 satisfies conditions (15) and (36),

then at least one of the two sets yk, … , ykþL�1

	 


or ykþ1, … , ykþL

	 


of length L also

satisfies conditions (15) and (36).
Based on this statement, we can formulate the following:
Assertion 5. Solution for the problem (15) + (36) can be found for �N log 2N

arithmetic operations.
Proof. Let us consider the sequence of steps.

Step 0: Consider the segment N
0ð Þ
Left,N

0ð Þ
Right

h i

of numerical axis, where N 0ð Þ
Left =

MINOBS, N 0ð Þ
Right = N. In this step, there is one set y1, … , yN

	 


of length N. We check

it for fulfillment of the conditions expressed in Eqs. (15) and (36) with k = 1, L = N.
If they are satisfied, this set is the solution, and our search stops. Otherwise, we pass
to considering of N�MINOBS� 1ð Þ sets of length MINOBS. We check each of
these sets for fulfillment of conditions expressed in Eqs. (15) and (36). If none of
them satisfy these conditions, then we stop the search process and conclude that the
solution does not exist. Otherwise, once we find the set of length MINOBS satisfy-
ing conditions (15) and (36), we transit to Step 1.
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Step 1: Step 1 is the same as Step k described below for k = 1
…

Step k: On the kth step, where (k ≥ 1), we consider a segment N
k�1ð Þ
Left ,N

k�1ð Þ
Right

h i

,

which we halve, as a result we receive two segments N
k�1ð Þ
Left ,N

k�1ð Þ
Mid

h i

and

N
k�1ð Þ
Mid þ 1,N k�1ð Þ

Right

h i

, where N k�1ð Þ
Mid = N

k�1ð Þ
Left + N

k�1ð Þ
Right �N

k�1ð Þ
Left

� �

=2
h i

, [�] designate

integral part of a number. Next, we check the sets of length N
k�1ð Þ
Mid and N

k�1ð Þ
Mid + 1 for

fulfillment of conditions (15) and (36). The following three cases are possible,
schematically shown in Figure 6. The sign “�” above the point means that for none
of the sets of the corresponding length the conditions (15) + (36) are satisfied, the
sign “+” vice versa, that is, there is at least one set of the corresponding length

satisfying (15) + (36). In the case of (a), we set N kð Þ
Left= N

k�1ð Þ
Mid + 1, N kð Þ

Right = N
k�1ð Þ
Right and

transit to the (k + 1)-th step; in the case of (c), we set N
kð Þ
Left= N

k�1ð Þ
Left , N

kð Þ
Right = N

k�1ð Þ
Mid

and transit to the (k + 1)-th step; in the case of (b), we search the solution

(15) + (36) with minimal value of σ2 k,Lð Þ with L = N
k�1ð Þ
Mid ; the algorithm is

terminated.
The search process will continue until either case (b) or until the length of the

segment N
kð Þ
Left,N

kð Þ
Right

h i

is less than or equal to 1. In either case, the total number of

steps will not exceed the number of log 2 N �MINOBSð Þ. Since �N operations are
performed in each step, the search process is guaranteed to be terminated in
�N log 2N arithmetic operations.

7. Search an unknown trend in the power polynomial class

The need to process GNSS measurements including a trend on which noise and
outliers are superimposed arises at different processing stages of the application
process. As already stated above, satellite clock corrections contain a linear trend. In
some cases, it may not be known, and then, one has to search for it, for example, by
the least square method. The presence of outliers in the measurement data is a
significant obstacle to accurate determination of drift and offset parameters of
satellite clocks. Other examples are linear combinations of code and phase data on
two carriers [3]. To obtain high accuracy results, it is necessary to detect outliers
against an unknown trend and remove them from further processing. This is the
subject of this section.

Figure 6.
Three possible cases for the proposed search. In case (a) we go to the right-hand side range (range for length of
sets) to find a solution, in case (c) we go to the left-hand side range to find a solution, in case (b) we look for a

solution with length L = N
k�1ð Þ
Mid and the search ends.
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7.1 Statement of the problem

Consider the problem of outlier detecting in data presented in the form of
Eq. (1), recall that:

yj ¼ f j þ zþ ξj; j ¼ 1…N:

The procedure described above for finding the optimal solution in an ordered
series of numbers may not produce an adequate result if applied to data containing
an unknown trend. For example, there may be no solution, and all data will be
defined as outliers. In order to detect outliers in a series of numbers with a trend
using the algorithm described above, it is necessary to find a suitable approximation
of an unknown function f j and subtract it from the data set. Searching for this
approximation is usually done by selecting functions from some functional class.
The choice of the functional class depends on the task. In some cases, these may be
power polynomial, in other cases, trigonometric polynomial, etc. The presence of
outliers in the data measurements makes it much more difficult to find such an
approximation. In this section, we will describe the general approach to solving the
problem and look for suitable approximations of trend f j in the class of power
polynomial with real coefficients:

Pn,j a
!

� �

¼ an j=Nð Þn þ an�1 j=Nð Þn�1 þ … þ a0, (37)

where n is the polynomial degree, and a
!
¼ a0, … , anf g is vector of coefficients.

Thus, the problem consists in the creation of an algorithm for searching the
trend in the class of power polynomial and detecting outliers in specified data series
yj represented in Eq. (1).

7.2 Minimizing set of specified length L

Before we turn to the trend search algorithm construction, we will define the so-
called minimizing set of given length L, which plays an essential role in the trend
search. In addition, in Section 7.3, we will describe a search algorithm for such set
based on the recurrent formulas (17)–(19) and (20)–(22).

Let YL ¼ yj1
, … , yjL

n o

be an arbitrary set of length L, composed of the values of

a numerical series yj

n oN

j¼1
, the monotony is not supposed. The mean and the SD

values for it are denoted by zYL
and σYL . These values are calculated by standard

formulas:

zYL ¼ L�1
X

j∈ j1, … , jLf g

yj, (38)

σ2YL
¼ L� 1ð Þ�1

X

j∈ j1, ::, jLf g

yj � zYL

� �2
: (39)

Definition 2. Given L for a specified sequence of values yj

n oN

j¼1
the set of values:

YL,min ¼ yj1
, … , yjL

n o

,
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at which the minimum value of σ2YL
defined in Eq. (39) is reached will be called the

minimizing set of length L. The corresponding mean and SD values are denoted by zYL,min

and σYL,min .

According to this definition, we have

zYL,min ¼ L�1
X

j∈ j1, … , jLf g

yj, (40)

σ2YL,min
¼ L� 1ð Þ�1

X

j∈ j1, … , jLf g

yj � zYL,min

� �2
¼ min

YL

σ2YL

n o

: (41)

Minimum in Eq. (41) is searched by all kinds of sets of length L composed of

numbers of series yj

n oN

j¼1
.

Note that the numbers yj are not supposed to be in the ascending order.

Next, we will formulate and prove a statement similar to Assertion 1, which will
allow us, when searching for a minimizing set, to proceed from the original series to
its ordered permutation.

Assertion 6. Let YL,min ¼ yj1
, … , yjL

n o

be a minimizing set of length L for a

given sequence of values yj

n oN

j¼1
and

ymin ¼ min yj1
, … , yjL

n o

, ymax ¼ max yj1
, … , yjL

n o

,

then the interval ymin, ymax

� �

does not contain values yj that are not in the set YL,min .

Proof. Let us assume the opposite: Let yj ∉ YL,min , ymin < yj < ymax. Let

yk, … , ykþL�1 is a permutation of the numbers yj1
, … , yjL

in the ascending order;

then yk ¼ ymin and ykþL�1 ¼ ymax. One of these cases is possible:

a. yj < zYL,min and therefore subject to inequality yk < yj, we have

zYL,min � yk
� �

> zYL,min � yj

� �

) zYL,min � yk
� �2

> zYL,min � yj

� �2

) zYL,min � yj

� �2
� zYL,min � yk
� �2

<0 (42)

b. yj ≥ zYL,min and therefore subject to inequality ykþL�1 > yj, we have

ykþL�1 � zYL,min

� �

> yj � zYL,min

� �

) yj � zYL,min

� �2
� ykþL�1 � zYL,min

� �2
<0

(43)

In the first case, Case (a), we replace the value yk in the set yk, … , ykþL�1

	 


with

yj. In the second case, Case (b), we replace the value ykþL�1 with yj. We want to

show that doing such replacement, the value σ2YL,min
expressed in Eqs. (40) and (41)

will decrease. This will mean that YL,min is not a minimizing set.
Suppose Case (a). For brevity, we will write below z instead of zYL,min and σ2

instead of σ2YL,min
. Denote ~z and ~σ2, the similar values obtained after replacement yk

with yj. We have:

z ¼ L�1 yk þ … þ ykþL�1

� �

, (44)
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σ2 ¼ L� 1ð Þ�1 yk � z
� �2

þ … þ ykþL�1 � z
� �2

� �

, (45)

and

~z ¼ L�1 ykþ1 þ … þ ykþL�1 þ yj

� �

, (46)

~σ2 ¼ L� 1ð Þ�1 ykþ1 � ~z
� �2

þ … þ ykþL�1 � ~z
� �2

þ yj � ~z
� �2


 �

: (47)

We want to show that

~σ2 < σ2: (48)

Eqs. (44) and (46) imply:

~z ¼ zþ L�1 yj � yk

� �

: (49)

Modify ~σ2 expressed in Eq. (47) taking account of Eq. (49):

~σ2 ¼ L� 1ð Þ�1 ykþ1 � z� L�1 yj � yk

� �� �2
þ …




þ ykþL�1 � z� L�1 yj � yk

� �� �2
þ yj � z� L�1 yj � yk

� �� �2
�

:

After simplification with taking into account Eq. (45), we get from here:

~σ2 ¼ σ2 þ L� 1ð Þ�1 yj � z
� �2

� yk � z
� �2

� L�1 yj � yk

� �2
� �

:

From (42), it follows (recall that we write z instead of zYL,min ) that the expression
in the square brackets is strictly less than zero. Thus, inequality (48) is proven.
From this follows that the set YL,min is not minimizing one because the condition
(41) is not met. Thus, we have arrived at a contradiction that proves the validity of
the formulated Assertion 6. Case (b) is considered similarly.

7.3 YL,min search algorithm

Assertion 6 is much like Assertion 1, which made it possible to go from an
arbitrary numerical series to an ordered one for the optimal solution search (see
Section 3). Similarly, Assertion 6 makes it possible to go to an ordered number
series to find the minimizing set of numbers of a given length. In our case, consid-
erations similar to those presented in Section 3 may be made when searching for a

minimizing set. Namely, if YL,min ¼ yj1
, … , yjL

n o

is the minimizing set of length L,

then an arbitrary permutation of the numbers yj1
, … , yjL

will also be the minimizing

set. Thus, the process for searching of YL,min does not depend on the arrangement
of given numbers yj. This allows us to arrange them in the order most suitable for

searching the minimizing set. We arrange the values yj

n o

in the ascending order,

and we will look for the minimizing set in the ordered sequence. As in Section 3, for

brevity, the ordered sequence will also be denoted by yj

n o

. For simplicity of logic,
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we will assume that all yj are different, that is, Eq. (10) holds. Rewrite it for

convenience:

y1 < y2 < … < yN

Note that due to Assertion 6, if YL,min is the minimizing set and yj1
and yjL

are its

smallest and greatest values, respectively, then all values of yj from the interval

yj1
, yjL

� �

belong to YL,min . Consequently, considering Eq. (10), we have yjL
¼

yj1þL�1 and therefore

YL,min ¼ yj1
, yj1þ1, … , yj1þL�1

n o

:

Thus, in order to find a minimizing set of length L, it is sufficient for us to check
N � L + 1 sets

y1, … , yL
	 


, y2, … , yLþ1

	 


, … , yN�Lþ1, … , yN
	 


:

and choose from them the one that has minimal SD value. In the minimizing set
searching procedure, we use the appropriate designations z k, Lð Þ and σ2 k, Lð Þ
expressed by Eqs. (13) and (14) to denote mean and square SD in the case of sets
composed of the ascending ordered values.

The calculation of z k, Lð Þ and σ2 k, Lð Þ when searching YL,min can be carried out
in the manner similar to that of the optimal solution according to the schematic, in
which only the σ2 k, Lð Þ is shown:

At first, we carry out the transitions in the direction of the vertical arrows
(see diagram in Figure 7) and calculate sequential values
σ2 1,Nð Þ, σ2 1,N� 1ð Þ, … , σ2 1, Lð Þ using formula (17)–(19). Finally, we go
in the direction of the horizontal arrows and calculate values of
σ2 1, Lð Þ, σ2 2, Lð Þ, … , σ2 N� Lþ 1, Lð Þ using formula (20)–(22) and choose from
them the minimal one.

7.4 Trend search algorithm

In order to correctly detect outliers in measurement data that include an
unknown trend, it is necessary to find and remove trend from the original data. The
problem in determining of unknown trend is to find a suitable profile for the
measurement data by adjusting the fitting parameters. This implies, in turn, the

needs to select from the specified series y j the “right” reference values yj1
, … , yjL

n o

used for fitting. If the data do not contain coarse measurements, all N values of the
original data can be treated as reference ones and used for fitting. If the data contain

Figure 7.
Scheme of calculations when finding the minimizing set of length L.
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rough measurements, the participation all or some of those values in the fit will
result in a fatal distortion of the trend function and, as a result, an incorrect
determination of the outliers. Thus, when determining the trend, it is necessary to
exclude rough measurements from the number of reference values used for fitting
and by which the trend approximations are built. We have the vicious circle. To
determine outliers, it is necessary to find a proper trend approximation, and to find
an exact trend approximation, we need to find all outliers and remove them from
the values used for fitting. Another vicious circle is obtained when trying to choose
the number of values for fitting. If we take it too small to minimize the possibility
for outliers to be included into the subset of values for fitting, the data fit may not
be accurate enough for the rest values of the data outside of the subset. If, on the
contrary, we take rather large number of points for fitting, the outliers may be
among them, and we will also get a bad approximation of the trend.

We describe herein a strategy for finding an unknown trend and detecting outliers.
This strategy assumes that the number of outliers in the series presented by Eq. (1)
does not exceed a certain value Nmaxout known a priori. Thus, we can suppose that the
number of “right” values suitable for fitting in the series y j is not less than N�Nmaxout.

Below L is supposed to be fixed and associated with the number of the reference
values of the series (1) used for fitting, and L ≤ N � Nmaxout.

Let us consider the following algorithm. It contains internal iterations, which we
will denote with the upper index “s” in parentheses.

Step 0: n = 0. We set some L, satisfying the condition L ≤ N � Nmaxout.

Step 1: n++; s = 0; flag 0ð Þ
j ¼ 1.

Step 2: s++. We fit polynomial to the data set and find fitting coefficients a
! sð Þ

¼

a
sð Þ
0 , … , a

sð Þ
n

n o

:

a
! sð Þ

¼ arg min
a0, … , an�1, an

Φ s�1ð Þ a
!

� �

, (50)

Φ s�1ð Þ a
!

� �

≜
XN

j¼1

yj � Pn,j a
!

� �� �2
� flag s�1ð Þ

j : (51)

Step 3: Consider the values ŷ
sð Þ
j obtained after subtraction from yj the polynomial

values with coefficients found in Step 2:

ŷ sð Þ
j ¼ yj � Pn,j a

! sð Þ
� �

: (52)

Using the algorithm described in Section 7.3, we find from the numbers ŷ sð Þ
j

n oN

j¼1

defined in Eq. (52) a minimizing set Y
sð Þ
L,min ¼ ŷ

sð Þ

j
sð Þ
1

, … , ŷ
sð Þ

j
sð Þ

L

� �

of length L. For this

set, we calculate the corresponding values of the mean z
Y

sð Þ

L,min

and SD σ
Y

sð Þ

L,min

according to the formulas (40) and (41) in which j1, … , jL
	 


is replaced by

j sð Þ
1 , … , j sð Þ

L

n o

. We redefine the reference points for the next fit process (Step 2) by

marking them with flag
sð Þ
j :

flag sð Þ
j ¼

1, if j∈ j sð Þ
1 , … , j sð Þ

L

n o

0, otherwise

(

: (53)
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We transit to Step 2 and do so until the convergence of the σ
Y

sð Þ

L,min

, s = 1,2, … , is

achieved. Note that we will consider the issue of convergence further in Section 7.5.
After reaching convergence of values σ

Y
sð Þ

L,min

, we transit to Step 4 for outlier detection.

Step 4: Searching the optimal solution for data set ŷ sð Þ
j ¼ yj � Pn,j a

! sð Þ
� �

, j = 1, … , N.

We find the optimal solution for values ŷ sð Þ
j using the algorithm of Section 3 and

determine the number Nout of outliers detected. If it turns out that Nout≤Nmaxout,

then solution is considered found; searching process stops: f j ¼ Pn,j a
! sð Þ

� �

. Other-

wise, if Nout>Nmaxout, then we transit to Step 1.
We do this until we find a solution or until n reaches some preset value Nmax

(e.g., 10). In this case, probably, we may need to select a different functional class
to search for a trend.

Example. Let us consider the data simulated in accordance with formula:

y j = 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jþ 10
p

þ 2random j, where j ¼ 1…N, random j—pseudorandom numbers,

evenly distributed in the segment [0,1]. Let us set N = 150 and model 10 outliers at
points j ¼ 6:::10 and j ¼ 140:::144 (see Figure 8). Further, let us set σmax = 0.6,
MINOBS = 10 and search for outliers as described above with L = 130. If n = 1, we
get Nout = 88; if n = 2, we get Nout = 33; if n = 3, we get Nout = 17; if n = 4, we get Nout

= 10. Thus, a suitable trend approximation turned out to be a fourth degree poly-
nomial. Figure 9 shows values for fourth degree polynomial fitted to the data set on

Figure 9.
Simulated data and fourth degree polynomial after the eighth iteration.

Figure 8.

Data simulated using: y j = 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jþ 10
p

þ 2random j and fourth degree polynomial after the first iteration.
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the eighth iteration after the convergence discussed above is reached. In Figure 10,

the differences ŷ j ¼ y j � P4,j a
!

� �

are plotted. Positions of detected outliers are

marked with white circles. Note that the trend was modeled by a function that does
not belong to the class of power polynomials.

7.5 Convergence of iterations in trend search algorithm

This section explains the convergence of the iterations described in the trend
search algorithm (see previous section).

Assertion 7. The SD sequence σ
Y

sð Þ

L,min

of values calculated in the trend search algo-

rithm monotonically decreases at s = 1, 2, … :

σ
Y

sð Þ

L,min

≥ σ
Y

sþ1ð Þ

L,min

≥ … (54)

and therefore converged.
Proof. We start our consideration with Step 3 and sth iteration, s = 1, 2, … In

Step 3, for the sequence ŷ sð Þ
j

n oN

j¼1
, we find a minimizing set of length L: Y sð Þ

L,min ¼

ŷ
sð Þ

j
sð Þ
1

, … , ŷ
sð Þ

j
sð Þ

L

� �

. Write the expressions for the mean and the square of SD

corresponding to this set. We have due to Eqs. (40) and (41):

z
Y

sð Þ

L,min

¼ L�1
X

j∈ j
sð Þ
1 , … , j

sð Þ
Lf g

ŷ
sð Þ
j , (55)

σ2
Y

sð Þ

L,min

¼ L� 1ð Þ�1
X

j∈ j
sð Þ
1 , … , j

sð Þ
Lf g

ŷ
sð Þ
j � z

Y
sð Þ

L,min


 �2

: (56)

Transform the expression on the right side of Eq. (56). Substitution here instead

of ŷ
sð Þ
j expression in Eq. (52) gives:

σ2
Y

sð Þ

L,min

¼ L� 1ð Þ�1
X

j∈ j
sð Þ
1 , … , j

sð Þ
Lf g

yj � Pn,j a
! sð Þ

� �

� z
Y

sð Þ

L,min


 �2

:

Figure 10.

The differences ŷ j ¼ y j � P4,j a
!

� �

, approximation of unknown trend with fourth degree polynomial.
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Using the flag sð Þ
j defined in Eq. (53), rewrite the last equality as follows:

σ2
Y

sð Þ

L,min

¼ L� 1ð Þ�1
XN

j¼1

yj � Pn,j a
! sð Þ

� �

� z
Y

sð Þ

L,min


 �2

� flag
sð Þ
j ¼

¼ L� 1ð Þ�1
XN

j¼1

yj � Pn,j b
!� �� �2

� flag sð Þ
j ¼ L� 1ð Þ�1

Φ sð Þ b
!� �

: (57)

Here we introduce the designation b
!
¼ a

sð Þ
0 þ z

Y
sð Þ

L,min

, a
sð Þ
1 , … , a

sð Þ
n

� �

and take into

account the definition of Pn,j a
!

� �

expressed by Eq. (37) and the definition of

functional Φ sð Þ a
!

� �

given in Eq. (51). From Eq. (57), we get:

σ2
Y

sð Þ

L,min

¼ L� 1ð Þ�1
Φ sð Þ b

!� �

(58)

We transit to Step 2; s is incremented by 1. We find a vector a
! sþ1ð Þ

of polynomial

coefficients, which minimizes the functional Φ sð Þ a
!

� �

:

a
! sþ1ð Þ

¼ arg min
a
!

Φ sð Þ a
!

� �

:

Thus,

Φ sð Þ a
! sþ1ð Þ

� �

¼ min
a
!

Φ sð Þ a
!

� �n o

(59)

From the definition of the extremum of functional, it follows:

Φ sð Þ a
! sþ1ð Þ

� �

≤ Φ sð Þ b
!� �

: (60)

Taking into account Eq. (58), we have:

σ2
Y

sð Þ

L,min

≥ L� 1ð Þ�1
Φ sð Þ a

! sþ1ð Þ
� �

: (61)

The extremum condition (one of n + 1) of functional Φ sð Þ a
!

� �

is as follows:

∂

∂a0
Φ sð Þ a

!
� �

�
�
�
�
a
!
¼a

! sþ1ð Þ
¼ 0:

From here, we derive:

XN

j¼1

yj � Pn,j a
! sþ1ð Þ

� �� �

� flag sð Þ
j ¼ 0:

Taking into account the designation for ŷ sþ1ð Þ
j given by Eq. (52), we can write

this equality in the form.

XN

j¼1

ŷ
sþ1ð Þ
j � flag

sð Þ
j ¼ 0 or

X

j∈ j
sð Þ
1 , … , j

sð Þ
Lf g

ŷ
sþ1ð Þ
j ¼ 0: (62)
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Consider the set Y sþ1ð Þ
L ¼ ŷ sþ1ð Þ

j
sð Þ
1

, … , ŷ sþ1ð Þ

j
sð Þ
L

� �

. The mean and SD values for it are

calculated using formulas (38) and (39). Taking into account Eq. (62), we get:

z
Y

sþ1ð Þ
L

¼ L�1
X

j∈ j
sð Þ
1 , … , j

sð Þ

Lf g

ŷ sþ1ð Þ
j ¼ 0,

and

σ2
Y

sþ1ð Þ
L

¼ L� 1ð Þ�1
X

j∈ j
sð Þ
1 , … , j

sð Þ

Lf g

ŷ sþ1ð Þ
j � z

Y
sþ1ð Þ

L

� �2
¼ L� 1ð Þ�1

X

j∈ j
sð Þ
1 , … , j

sð Þ

Lf g

ŷ sþ1ð Þ
j

� �2
¼

¼ L� 1ð Þ�1
XN

j¼1

yj � Pn,j a
! sþ1ð Þ

� �� �2

� flag
sð Þ
j ¼ L� 1ð Þ�1

Φ sð Þ a
! sþ1ð Þ

� �

:

Thus,

σ2
Y

sþ1ð Þ
L

¼ L� 1ð Þ�1
Φ sð Þ a

! sþ1ð Þ
� �

: (63)

We transit to Step 3. In this step, for sequence ŷ sþ1ð Þ
j

n oN

j¼1
, we find a minimizing

set of length L: Y
sþ1ð Þ
L,min ¼ ŷ

sþ1ð Þ

j
sþ1ð Þ
1

, … , ŷ
sþ1ð Þ

j
sþ1ð Þ

L

� �

. The SD square σ2
Y

sþ1ð Þ

L,min

for this set does

not exceed the same magnitude for any other set, particularly for Y sþ1ð Þ
L ¼

ŷ sþ1ð Þ

j
sð Þ
1

, … , ŷ sþ1ð Þ

j
sð Þ
L

� �

:

σ2
Y

sþ1ð Þ
L

≥ σ2
Y

sþ1ð Þ

L,min

: (64)

Finally, from Eqs. (61) and (63) and the last inequality (64), we get

σ2
Y

sð Þ

L,min

≥ L� 1ð Þ�1
Φ sð Þ a

! sþ1ð Þ
� �

¼ σ2
Y

sþ1ð Þ

L

≥ σ2
Y

sþ1ð Þ

L,min

that is, σ2
Y

sð Þ

L,min

≥ σ2
Y

sþ1ð Þ

L,min

, that proves Assertion 7.

8. Detection and repair cycle slips in the Melbourne-Wübbena
combination algorithm

In this and the following section, we describe cycle slip repair algorithm for
observers represented in the form of Melbourne-Wübbena combination, which is
often used in modern GNSS measurement data processing programs. Loss by the
receiver of the carrier phase capture results in jumps in the code and phase mea-
surement data. In the absence of jumps, as we already discussed in Section 2, the
values of the combination consist of measurement noise superimposed on an
unknown constant value dependent on a specified satellite-receiver pair.

In case of temporary loss of carrier phase capture by the receiver, jumps occur in
a series of values representing the Melbourne-Wübbena combination. The proce-
dure of detecting jumps and eliminating them from the values of the combination,
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called cycle slip repair, is one of the most important steps of preprocessing GNSS
data. The main difficulty in detecting jumps is that neither the exact size of jumps
nor their epochs are known. A number of algorithms, descriptions of which can be
found, for example, in Refs. [3, 6, 8] are proposed for the detection of jumps.
Although differing in detail, they are based on a common idea, that is, comparison
of the SDs of the time series of measurement data obtained from one of the bounds
of the time interval to an arbitrary moment, an epoch. If the differences of the SDs
corresponding to two adjacent epochs exceed a predetermined threshold value, then
a jump is declared in one of these two epochs. A drawback of similar algorithms is
the frequent false detection of jumps during epochs containing rough measure-
ments (outliers) since the values of outliers can exceed the sizes of a jump itself. On
the other hand, an attempt to increase the threshold value leads to the opposite
effect, an inability to recognize jumps that are small in magnitude.

Below, we propose a robust cycle slip repair algorithm that allows, more reliably
than similar known algorithms, to detect jumps and determine their sizes. The
proposed algorithm is based on search for so-called clusters consisting of epochs, in
which the values of the combination are grouped about corresponding predefined
values. Besides, this algorithm implements the above-described method of cleaning
data from outliers based on the search for the optimal solution. This method,
combined with Springer’s algorithm used in Ref. [3], allows for the reliable deter-
mination of multiple (cascade) jumps in the Melbourne-Wübbena combination.

The Melbourne-Wübbena combination LM�W can be presented in the form of
the total of three terms [6]:

LM�W ¼ λ5n5 þ Bþ ν, (65)

where λ5 is the formal wavelength (for all GPS satellites λ5 = 86.16 cm and for
GLONASS satellites λ5 = 84.0 ÷ 84.36 cm); n5 is an unknown integer, the so-called
wide lane ambiguity [3]; B is the residual systematic error caused by instrumental
delays relative to the specific receiver-satellite pair and, as assumed, not time-
dependent; and ν is a random component. Both parts of the equality in (65) are
expressed in meters. At the same time, the LM�W combination is often expressed in
cycles of wavelength λ5. Let us divide both parts of Eq. (65) by λ5. We introduce the
designations y ¼ LM�W=λ5, β ¼ B=λ5, and ξ ¼ ν=λ5 and derive for each of the epochs
associated with indexes j ¼ 1, … ,N:

y j ¼ n5j þ β þ ξ j: (66)

where n5j is an unknown piecewise-constant function of a discrete argument,
regarding which it is only known that it takes integer values and can undergo
integer jumps; β is an unknown constant value; and ξ j is a random variable. The

problem consists in the development of an algorithm for automatic processing of
the informational data y j of form of Eq. (66), making it possible to effectively

determine integer-valued jumps against the noise component and outliers.

9. Description of the proposed algorithm

Let us present the proposed algorithm as the following sequence of steps.
Step 0:We introduce parameter Δ by specifying its value as Δ ¼ 2 � σmax. We

mark the indexes of epochs with function flagj as nulls: flagj ¼ 0; j = 1, … , N.

Arrange the array y j in the ascending order and renumber it by placing the

indexes in the ascending order. Denote the resulting array as Y j. For simplicity of
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logic, we suppose that all Y j are different. Therefore, we have: Y1 <Y2 < … <YN .
Denote the corresponding permutation of the values of function flagj as FLAGj.

Step 1: On this step, we are looking for the maximum density of array values y j.

We consider the segments Y j,Y j þ Δ
� �

of length Δ and look for the one that

contains the largest number of Y i values. Here, only those indexes i and j from the
range of 1 ≤ i, j ≤ N are considered for which FLAGi ¼ FLAG j= 0. The purpose of
the ordering of the original array consists in improving the effectiveness of the
maximum density search procedure. It can be shown that the number of compari-
sons required when searching for the above segment does not exceed 2 N in the case
of the ordered array. For an unordered array, the number of comparisons is evalu-

ated as N2.

Step 2: Let Y Jmax
,Y Jmax

þ Δ
� �

be the segment found in the previous step, containing
Nmax values of Y j (see Figure 11). We calculate the mean m of these numbers Y j.

m ¼ N�1
max �

X
JmaxþNmax�1

j¼Jmax

Y j, (67)

Y j ∈ Y Jmax
,Y Jmax

þ Δ
� �

: (68)

Step 3: Cluster searching. The values y j that are clustered about the mean m

found in the previous step can pertain to the epochs scattered along the time axis
in chaotic order. The task of this step is to define an accumulation of such points,
a so-called cluster, which we define as follows:

Definition 3. We designate as an m,Δð Þ cluster the set of points (epochs) of the time
axis, the indexes j of which belong to the segment [k,l] (1 ≤ k< l ≤ N) and for which the
following requirements are satisfied:

a. all points of the segment [k, l] are marked by the same value: flagk = … = flagl.

b. at the points j= k, l of the left and right boundaries of the segment, this inequality
is satisfied:

y j �m
�
�
�

�
�
� ≤ Δ: (69)

c. the amount of points at which (69) is satisfied is no less than the present value of
MINOBS;

d. the number of consecutive points in which (69) is not satisfied does not exceed the
predefined value MAXGAP (e.g., 5);

Figure 11.
Searching for the maximum of the density of values of the array Y j.
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e. the value of k cannot be reduced while maintaining the requirements of
a–d; and

f. the value of l cannot be incremented while maintaining the requirements
of a–d.

This definition illustrates in Figure 12.
It is understood that for specified values ofm and Δ, there might be one, several,

or no (m, Δ) clusters. Searching for clusters is performed by sequential checking of
the satisfaction of inequality (69) for all j = 1, … , N for which flagj = 0. Note that
inequality (69) is satisfied for at leastNmax values of j. In fact, from expressions (67)
and (68), we derive the following equations:

Y Jmax
≤ m ≤ Y Jmax

þ Δ, (70)

and since the arrays y j and Y j differ only by permutation, it follows from

Eq. (68) that the inequalities

Y Jmax
≤ y j ≤ Y Jmax

þ Δ: (71)

are fulfilled forNmax index j. Inequality (69) is satisfied also for all these indexes,
as follows from Eqs. (70) and (71).

If cluster was found, then we mark all points of it as 1, and then, we repeat the
cluster search procedure. If even just one cluster has been found at this step, we
transfer to Step 1. If not even one cluster has been found, then the search for
clusters is complete and we transfer to Step 4.

Step 4: If even just one cluster has been found, we transfer to Step 5, and
otherwise: (a) all points of the segment 1;N½ � are marked as outliers and removed
from further processing and (b) the operation of the algorithm terminates.

Step 5: Search for individual jumps in clusters. Let us assume that n ≥ 1 clusters
have been found:

1: k1, l1½ � is the m1,Δð Þ cluster

…

n: kn, ln½ � is the mn,Δð Þ cluster:

In each of the clusters that are found, outliers and 1-size jumps are possible.
This follows immediately from the inequalities in (69) and the preestablished value
Δ ¼ 1.2.

Figure 12.
Epochs with indexes k ≤ j ≤ l form m,Δð Þ cluster.
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Substep 5.1: In detecting a 1-size jump in a cluster, we use modified Springer
algorithm (see Refs. [9, 10]) combined with the proposed in Section 3 algorithm that
executes a search for the optimal solution with a minimum quantity of defective data.

Substep 5.2: We find all epochs Jp and values Δn5,Jp ≜ n5,Jp � n5,Jp�1 (p = 1, … , n)

of the jumps inside the clusters. The possible values for Δn5,Jp are 0, � 1.

Substep 5.3:We repair the data by the value of each found jump, using the formula

y
pð Þ
j ¼

y
p�1ð Þ
j ; j< Jp

y
p�1ð Þ
j � Δn5,Jp ; Jp ≤ j<N

8

<

:
; p ¼ 1, ::, n, (72)

where y 0ð Þ
j ¼ y j.

Substep 5.4: We rename: y j ¼ y
nð Þ
j .

Step 6: Marking of points outside clusters. All points outside of the found clus-
ters (if any) are marked as outliers.

Step 7: Ordering of clusters. We renumber the clusters so that they are placed
left to right on the time axis. For the ordered set of clusters [kp, lp], p = 1, … , n, the
conditions 1 ≤ k1 < l1 < k2 < l2 < … < kn < ln ≤ N are satisfied.

Step 8: Data screening within clusters and improving the mean values of y j.

Substep 8.1: In accordance with the algorithm proposed in Section 3, we perform
screening from outliers in each of the n clusters.

Substep 8.2: For each of the clusters cleaned of outliers, we determine the
modified mean values m ∗

p .

Step 9: Jumps between clusters. It follows from the description presented above
that the remaining jumps in the data y j are on boundaries between clusters. If only

one cluster is found, the algorithm is terminated: no additional jumps are detected,
and the data are cleaned of outliers. If more than one cluster is found (n > 1), then
the epochs j1, … , jn–1 of the jumps will be the coordinates of the left-hand bound-
aries of clusters, beginning from the second: jl = k2, … , jn–1 = kn. The values of jumps
Δn5, jp are found in this case as rounded to the nearest integer of the difference of

mean values of adjacent clusters:

Δn5, jp ¼ NINT m ∗
pþ1 �m ∗

p

� �

, p ¼ 1, … , n–1: (73)

Step 10: Repair data. We delete the jumps between clusters using formula anal-
ogous to (72):

y
pð Þ
j ¼

y
p�1ð Þ
j ; j< jp

y
p�1ð Þ
j � Δn5,Jp ; jp ≤ j<N

8

<

:
; p ¼ 1, … , n� 1, (74)

where y 0ð Þ
j ¼ y j.

We rename: y j ¼ y
n�1ð Þ
j . The algorithm is terminated.

10. Numerical calculations using algorithms presented
in Sections 8 and 9

We present here the results of testing the proposed algorithm using real data
obtained by the JOZ2 station, which is part of the IGS network [2]. These data are
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included in the distribution set of the installation software package [3]. Testing was
carried out for data obtained from GPS satellite with number PRN = 13 for 2010,
day 207. Figure 13 shows the Melbourne-Wübbena combination values in the

Figure 13.
Values of the Melbourne-Wübbena combination for the JOZ2 station (PRN = 13 for 2010, day of year = 207).

Figure 14.
(a) Deviations of the values of the Melbourne-Wübbena combination from the mean after detection and
elimination of jumps from the data using the algorithm from Ref. [3]. (b) Deviations of the values of the
Melbourne-Wübbena combination from the mean after detection and elimination of jumps from the data using
the proposed algorithm in Section 9.
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107 min time interval (N = 215). The number j of time epochs counted from the
beginning of 24-h day with interval of 30 seconds is plotted along the horizontal
axis. The combination values y j expressed in cycles with wavelength λ5 are plotted

along the vertical axis.
Figure 14a and b presents the values of the deviations from the mean value z of

data after cycle slip repair procedure, by using the algorithm applied in Ref. [3] (see
Figure 14a) and the proposed algorithm (Figure 14b). The values y j–z in cycles of

λ5 are plotted along the vertical axes, and the number j of epochs is plotted along the
horizontal axis. Epochs in which the measurement data were rejected are marked by
light circles. In the first case (see Figure 14a), 111 of the conducted measurements
or 51% of the total number of data was discarded. In the second case (see
Figure 14b), 29 of these measurements were rejected (13%), which are almost 38%
less than in the previous computation. The epochs of detected jumps are marked by
daggers.

11. Conclusion

This chapter presents several effective and stable algorithms for processing data
received from GNSS receivers. These data form the basis of almost all engineering
applications in the field of computational geo-dynamics and navigation and cadas-
tral survey and in numerous fundamental research works as well. The accuracy of
the results obtained is significantly influenced by the quality of the data used in the
calculations. In particular, the presence of rough measurements (outliers) in the
observation data can significantly reduce the accuracy of the calculations carried
out. One of the tasks at the preliminary stage of data processing is reliable detection
and removal of rough measurements from the series of measured data with mini-
mum amount of rejected data. The so-called optimal solution, introduced in the
chapter, made it possible to detect and eliminate outliers from observed data min-
imizing the number of rejected measurements. In addition, it is assumed that the
data may contain a trend as an unknown function of time. The strategy for deter-
mining of the trend is depending on the physical process in question under an
assumption that the trend is a continuous function of time. The efficiency of the
search is definitely influenced by the choice of the function class from which the
trend is searched. In this chapter, we considered the class of power polynomials, but
in some cases, this choice may not lead to the expected result. It may require, for
example, a class of trigonometric functions to find a suitable trend. The automatic
search for the best functional class, together with the strategy of effectively finding
an unknown trend, against the background of random noise and outliers, is a
complex task for future research.
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