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Chapter

Modeling Inflation Dynamics with
Fractional Brownian Motions and
Lévy Processes
Bodo Herzog

Abstract

The article studies a novel approach of inflation modeling in economics.

We utilize a stochastic differential equation (SDE) of the form dXt ¼ a X, tð Þdtþ
b X, tð ÞdBH

t , where dBH
t is a fractional Brownian motion in order to model inflation-

ary dynamics. Standard economic models do not capture the stochastic nature of
inflation in the Eurozone. Thus, we develop a new stochastic approach and take into
consideration fractional Brownian motions as well as Lévy processes. The benefits
of those stochastic processes are the modeling of interdependence and jumps, which
is equally confirmed by empirical inflation data. The article defines and introduces
the rules for stochastic and fractional processes and elucidates the stochastic simu-
lation output.

Keywords: inflation, dynamics, modeling, stochastic differential equation,
fractional Brownian motion, Lévy process, jump-diffusion

1. Introduction

Modeling inflation dynamics is a tricky topic, particularly in the Eurozone. The
determinants of inflation are multifaced, including interest rates, GDP growth,
supply and demand of goods and services, exchange rates, etc. Moreover, inflation
is somehow persistent over time, such as the low inflation rates in the recent years.
In order to model the empirical pattern of inflation, we need a stochastic model
with a mean-reversion property as well as time-dependent increments. Both fea-
tures are mathematically difficult to design because all basic stochastic processes,
such as a standard Brownian motion have time-independent increments and it is
not mean-reverting.

We propose a novel approach by utilizing a fractional Brownian motion (fBm)
and a Lévy process. Both stochastic concepts are relatively new in economic appli-
cations. Yet, recent discoveries about fBm’s in mathematics already unravel striking
insights to economics and finance, such as the modeling of inflation dynamics. We
model inflation dynamics by a stochastic process, Xt. Before discussing the mathe-
matical details, we provide a brief summary of the relationship across the different
stochastic processes (Figure 1).

Each of the three stochastic processes have special properties. Interestingly, the
overlap of the three stochastic processes gives a subset of new processes with highly
interesting and uncommon properties. In this article, we study the subset of a
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fractional Brownian motion (fBm) and a Brownian motion with drift as a subclass
of Lévy processes in general. Furthermore, for the first-time, we combine both
types of stochastic processes in one model.

The standard Brownian motion is a Gaussian process with independent and
stationary increments. However, a fBm is a Gaussian process but does not have
independent increments. Similarly, a Brownian motion with drift is a subset of a
Lévy process and a Gaussian process. This group of processes belongs to infinitely
divisible distributions. We exhibit the relationships and properties between the
different types of stochastic processes in order to model the inflation dynamics of
the Eurozone.

Let us start with some preliminaries about stochastic processes in general. One
can imagine a stochastic process as a sequence of random variables over time, t. Let
Ω,F,Pð Þ be a filtered probability space and X ¼ Xt : t>0f g be a stochastic process
on the probability space. The filtration F ¼ Ft : t>0f g is an increasing flow of
information and P is defined as a standard probability measure [1].

Furthermore, we need the idea of a stochastic differential equation (SDE) [2]. A
non-linear stochastic differential equation for the inflation process, Xt, has the
form:

dXt ¼ a X, tð Þdtþ b X, tð ÞdBH
t , (1)

where a X, tð Þdt is called the trend-term and b X, tð ÞdBH
t the diffusion-term con-

tingent of a fractional Brownian motion, dBH
t . The details of fractional Brownian

motions with different “Hurst-Indices,” Hϵ 0, 1ð Þ, will be discussed in more detail in

Section 2. However, if we choose H ¼ 1
2, the fBm, B1=2

t , turns into an ordinary
Brownian Motion discovered by Robert Brown in 1827 [1, 3].

The origin and idea of fractional processes or fractional calculus is likewise of
interest in general. Indeed, fractional calculus is a subfield in mathematics, which
deals with integrals and derivatives of arbitrary order. Fractional calculus is both an
old and new field at the same time. It is an old topic since some issues have been
discovered by Leibniz and Euler. In fact, the idea of generalizing the notion of a

Figure 1.
Overview and Relation of Stochastic Processes. Source: B Herzog (2020).
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derivative to non-integer order, in particular d1=2, is already in the correspondence
of Leibniz with Bernoulli and L'Hospital. Laplace, Fourier, Abel and recently up to
Riesz Feller and Mishura [4] contributed to the development of fractional calculus
as it is of today.

The interest to fractional calculus has to do with its relationship to dynamics and
stochastic processes in general. In the past decade, the field of fractional calculus is
growing anew due to new discoveries in mathematics and theoretical physics. The
first book on fraction calculus is by [5]. Considerable interest in fractional calculus
has been stimulated by the many applications in different fields of sciences, such as
physics, biology, engineering, economics and finance.

Now, let us compute a fractional derivative of a concrete example: What is the

semi-derivative of d1=2x0

dx1=2
¼ d1=21

dx1=2
? This example is a semi-derivative or half-derivative

of a constant. From standard calculus, we know that the derivative of a constant is
zero. Yet, the half-derivative is not zero as we will see soon. In general, you can
compute fractional derivatives by the following formula:

Dmxp ¼ Γ 1þ pð Þ
Γ 1þ p�mð Þ x

p�m, (2)

where Γ (x) is the Gamma function. Similarly, you can compute the fractional
derivatives and fractional integrals by the Riemann-Liouville formula. For simplifi-
cation, we do not introduce the Riemann-Liouville calculus here. The interested
reader is referred to [5]. For m ¼ 1

2 and p ¼ 0, we obtain from Eq. (2)

D
1
2x0 ¼ Γ 1þ 0ð Þ

Γ 1þ 0� 1
2

� � x0�
1
2 ¼ 1

ffiffiffiffiffiffi

πx
p : (3)

The result is perhaps the most remarkable result in this brief discussion of
fractional calculus. It cannot be embraced too much and deserves a special place in
the hall of fame in fractional calculus. Note, the semi-derivative of a constant is
surprisingly dependent on π and on the variable x. Indeed, this result is utilized
repeatedly in fractional calculus in order to simplify solutions.

The chapter is organized as follows: Section 2 studies the modeling with
fractional Brownian motions. We introduce the concept by defining a fractional
Brownian motion in more detail. Section 3 defines a Lévy process and relates it to a
Brownian motion. Finally, in Section 4, we start the simulation exercise. We study
the stylized facts of inflation rates in the Eurozone from 1997 to 2020. Subse-
quently, we specify a stochastic differential equation with a fractional Brownian
motion and a Lévy process and run several numerical simulations. Section 5
concludes the chapter.

2. Inflation modeling with fractional Brownian motion (fBm)

In this section, we define a “fractional Brownian Motion” (fBm). First of all, a
fBm is not a (semi-)martingale. Thus, Ito's calculus does not apply anymore. Con-
sequently, the lack of the martingale property has major implications in stochastic
calculus. Indeed, one have to develop – similar to Ito’s Lemma – completely new
stochastic integration and differentiation rules for fractional Brownian motions.

We define an ordinary Brownian motion as a special case of a fractional
Brownian motion. Indeed, Mandelbrot and van Ness [6] defined a fractional

Brownian motion, BH
t , as a Brownian motion together with a Hurst-Index, Hϵ 0, 1ð Þ,
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in the exponent. The parameter H is a moving average of the past increments dBH
t

weighted by the kernel t� sð ÞH�1=2. Consequently, fractional Brownian motions
have the feature that increments are interdependent. The latter property is known
as self-similarity, which displace an invariance of the stochastic process with respect
to changes of time scale. Almost all other stochastic processes, such as the ordinary
Brownian motion or Lévy process have time-independent increments (at least
almost surely). They create the famous class of Markov processes.

Empirically, however, there is evidence that economic and particularly financial
time-series have a spectral density with a sharp peak. Additionally, we observe the
phenomena of extremely long interdependence of certain trends over time in eco-
nomics and finance. This presence of interdependence between past increments,
directly speaks for the modeling with fractional Brownian motions. A standard
Brownian motion is defined by the following properties:

1.Bt is almost surely continuous; Bt¼0 ¼ 0;

2.The increments Bt � Bs for t> s have mean zero and variance t� s;

3.The increments Bt � Bs are independent over time and stationary.

Indeed, we know that the variance of the increment is of Var Bt � Bs½ � ¼

 Bt � Bsð Þ2
h i

¼  dB2
t

� �

. Likewise, the standard deviation is: σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Bt � Bs½ �
p

¼
ffiffiffiffiffiffiffiffi

dB2
t

q

� dt1=2. This is often referred to as the t1=2-law. Now, we are ready to define a

fractional Brownian motion:
Definition “Fractional Brownian Motion (fBm).” Let the Hurst-Index, H , be

0<H< 1, then we call BH
t a fractional Brownian Motion with parameter H, such as

BH
t¼0 ¼ B0

and;

BH
t � BH

0 ¼ 1

Γ H þ 1
2

� �

ð0

�∞
t� sð ÞH�1

2 � �sð ÞH�1
2

h i

dBt þ
ðt

0
t� sð ÞH�1

2dBt

� �

:

Part two of the definition is the so-called Weyl fractional integral. Equivalently,
you can use the more intuitive Riemann-Liouville fractional integral, defined by

BH
t � BH

0 ¼ 1

Γ H þ 1
2

� �

ðt

0
t� sð ÞH�1

2dBs (4)

where Γ H þ 1
2

� �

is the Gamma function. The rules about fractional integration
and fractional differentiation are discussed in detail in [5]. It trivially follows that
for H ¼ 1=2, we obtain the ordinary Brownian Motion, Bt. For other values of H,

such as 0<H< 1=2 and 1=2<H< 1 the fractional Brownian Motion BH
t is a frac-

tional derivative or integral. Note, if 0<H< 1=2 we say it has the property of
counter persistent or short memory. This is associated with negative correlation.
Vice versa for 1=2<H< 1, we say it is persistent. This is associated with positive
correlation. Thus, modeling with fractional Brownian motions display the property
of short- and long-term memory, a property very common in economic and
financial time-series.
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There exists an alternative definition of a fractional Brownian motion:

Proposition. Let the Hurst-Index, H, be 0<H< 1, and BH
t be fractional Brownian

motion. The covariance of a fractional Brownian motion is

Cov BH
t ,B

H
s

� �

¼ 1

2
t2H þ s2H � t� sð Þ2H
h i

:

Proof. To prove that the covariance for a fractional Brownian motion is correct,
we remind the reader that the variance of a fractional Brownian motion is defined as

Var Bt � Bs½ � ¼ t� sð Þ2H. Note, for H ¼ 1=2 the variance simplifies to the variance of
ordinary Brownian motion. Thus, the covariance can be rewritten as

Cov Bt,Bsð Þ ¼  BH
t B

H
s

� �

¼ 1

2
 BH

t

� �2
h i

þ  BH
s

� �2
h i

�  BH
t � BH

s

� �2
h ih i

¼ 1

2
t2H þ s2H � t� sj j2H
h i

:

A trivial corollary is that if H ¼ 1=2, we obtain for the covariance Cov Bt,Bsð Þ ¼
min t, s½ �, the result of a standard Brownian motion. Similarly, by trivial computa-
tion, you can show that the increments of a fBm have mean zero and variance of

t� sj j2H: Finally, you can demonstrate that two non-overlapping increments of
fractional Brownian motions have the property that they are not independent. In
fact, they are interdependent!

In summary, a fBm has novel properties following empirical observations in
economics, yet different to ordinary stochastic processes. Indeed, a fBm has sta-
tionary and interdependent increments. Additionally, a fBm is H-self similar,

meaning that BH
at ¼ aHBH

t .
The rules of fractional integration and fractional differentiation are more

sophisticated than the Ito-stochastic calculus. Details about those rules are in [4]. In
the remaining part of this section, we demonstrate the empirical patterns of a
fractional Brownian motion for different Hurst-Indices over time (Figure 2).

Figure 2.
Simulation of fBm for different Hurst-Index. H ¼ 0:1 (top panel), H ¼ 0:5 (middle panel), H ¼ 0:9 (bottom
panel). Source: B Herzog (2020).
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For H ¼ 0:1, we obtain in the top-panel a time-series with short-term memory
(Figure 2). Contrary in the bottom panel (H ¼ 0:9), we observe a strong
interdependence or a non-stationary stochastic process. This process reflects long-
term memory. The middle panel (H ¼ 0:5) denotes a standard Brownian motion. It
is interesting that a fractional Brownian motion is a generalization of a standard
Brownian motion. Figure 2 summarizes the different empirical patterns in rela-
tionship to the H-Index.

3. Inflation modeling with Lévy processes

On first encounter, a Poisson process and a Brownian motion seem to be con-
siderably different. Firstly, a Brownian motion has continuous paths whereas a
Poisson process does not. Secondly, a Poisson process is a non-decreasing process
and thus has paths of bounded variation over finite time horizons, whereas a
Brownian motion does not have monotone paths. In fact, the Brownian motion has
unbounded variation over finite time horizons.

Yet, both stochastic processes have a lot in common. Both processes are right
continuous with left limits (so-called càdlàg). Consequently, we use these common
properties to define a general class of stochastic processes, which are so-called Lévy
processes. The class of Lévy processes is rather rich, and the Brownian motion or
Poisson process are two prominent subcases.

In general, Lévy processes play a major role in several fields of sciences, such as
physics, engineering, economics and mathematical finance. Lévy processes are
becoming fashionable to describe the observed reality of financial markets more
accurately than models based on a Brownian motion alone. Lévy processes result in
a more realistic modeling because it captures the empirical reality of jump-
diffusions. Indeed, asset prices have jumps and spikes and thus risk managers have
to consider Lévy processes in order to hedge the risks appropriately. Similarly, the
pattern of implied volatility or incomplete markets is reliant to Lévy processes too.

3.1 Introduction to Lévy processes

The term Lévy process honors the work of the French mathematician Paul Lévy
in the 1940s. He pioneered the understanding and characterization of stochastic
processes with stationary and independent increments.

Definition ‘Lévy Process.” A process X ¼ Xt : t>0f g defined on a probability
space Ω, F,Pð Þ is said to be a Lévy process if it possesses the following properties:

P X0 ¼ 0ð Þ ¼ 1:

1.The paths of X are P-almost surely right continuous with left limits.
Mathematically, X is stochastically continuous for every 0< t<T and ε>0
such as log s!tP Xt � Xs > εð Þ ¼ 0.

2.For 0< s< t, the increments Xt � Xs are stationary and equal in distribution to
Xt�s, i.e. the increment have the same distribution whenever time elapses.

3.For 0< s< t, the increment Xt � Xs is independent of Xu : u> sf g or we say the
increment is independent of filtration Fs.

The definition does not immediately make visible the richness of the class of
Lévy processes. One simple Lévy process is a Brownian motion with drift. Other
examples of Lévy processes are the Poisson process. Or a Brownian motion
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combined with a compound Poisson process. The last process is labeled a jump-
process because it exhibits random jumps.

In order to identify Lévy processes, we use the property of infinitely divisible
distributions. As soon as you can show that a process belongs to the class of infi-
nitely divisible distributions, you immediately say that this process is a Lévy pro-
cess. Indeed, there is an intimate relationship of Lévy processes to infinitely
divisible distributions in general.

Definition “Infinitely divisible distribution.” A real-valued random variable X
has an infinitely divisible distribution if for each n ¼ 1, 2, … there exist a sequence of
independent, identical distributed random variables X1,n, X2,n, …Xn,n, such that

X≔X1,n þ X2,n þ … þ Xn,n

the process X has the same distribution as the processes of X1,n, X2,n, …Xn,n.
One way to establish whether a given random variable has an infinitely divisible

distribution is via the study of the exponent of the characteristic function. This idea
is summarized by the rather sophisticated concept of the Lévy-Khintchine formula
(e.g. in [7]).

3.2 A Brownian motion is a Lévy process

In this subsection, we briefly show that a Brownian motion is a Lévy process.
Suppose a Gaussian random variable with distribution X � N μ, σ2ð Þ and the char-

acteristic function of ϕXt
tð Þ ¼ eiμ�

1
2t
2σ2 . We know that the increments of a Brownian

motion follow a Gaussian process. By the characteristic function, we show that the
increments of the Brownian motion are stationary and independent. Thus it strat-
ifies the Lévy process properties:

ϕn
Xt

¼ e
iμ
n�1

2
t2σ2

n

� �n

(5)

ϕXtþs
¼ ϕXt

∗ϕXs
: (6)

Eq. (5) demonstrates that the Brownian motion is an infinitely divisible distribu-
tion. Eq. (6) shows that the Brownian motion has independent and stationary incre-
ments. Thus, we find that the random variable X is Lévy by computing the sum of n-

random variables X ¼ Xn
1 þ … þ Xn

i þ … þ Xn
n with each Xn

i � N μ

n ,
σ2

n

	 


. Therefore,

we obtain X � N μ, σ2ð Þ and Xn
1 � N μ

n ,
σ2

n

	 


. Hence, the Brownian motion is infinitely

divisible by n and it consists of independent, identical distributed (i.i.d) increments.
Consequently, a Brownian motion satisfies the properties of a Lévy process.

Remark.Markov processes are the best-known family of stochastic processes in
mathematical probability theory. Informally, aMarkovprocesshas theproperty that the
future behavior of the process depends on the past only. One can show that Lévy
processes are related toMarkov processes and even simplify the theory significantly.
The link between both stochastic processes is so-called random-stopping times.One can
show that a random-stopping time on a Lévy process has theMarkov property. Conse-
quently, Lévyprocesses concernmany aspects of probability theory and its applications.

4. Numerical simulation

In this section, we simulate different fractional Brownian motions and Lévy
processes. The simulation reveals different new patterns of inflation dynamics. Our
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model is calibrated to the monthly frequency of the past inflation dynamics in the
Eurozone from 1997 to 2020.

The simulation follows a mean-reverting stochastic differential equation driven
by a fractional Brownian motion and a Lévy process. Suppose Xt denotes the
inflation process over time t. We model the inflation dynamics by a stochastic
differential equation of the form

dXt ¼ α� β ∗Xtð Þdtþ σdBH
t þN μ, γð ÞdN λð Þ (7)

where α and β are the mean-reversion trends and σ denotes the volatility coming

from the fractional Brownian motion, BH
t . The parameter H reflects the Hurst-Index

of the fractional Brownian motion. The last term is a jump-process modelled by a
Poisson process, N μ, γð Þ, with parameters μ and γ. The jump-frequency is of λ.

The numerical simulation is computed over 1000 time steps and over 1000
different stochastic processes. The Eurozone inflation data are downloaded from
the ECB Statistical Data Warehouse. We calibrate the model to the aggregate infla-
tion dynamics of the Eurozone (Figures 3 and 4).

Figure 3 represents the Harmonized Index of Consumer Price (HICP) of the
Eurozone on monthly frequency from 1997 to 2020. One clearly sees the sharp drop
in inflation rates during the global financial crisis of 2008–2009. Subsequently
inflation rebounded, however, afterwards with low inflation rates, partly deflation,
in the years of 2013–2016. In recent years, inflation rates were in the range of 1.0–
2.0%. Thus, the inflation rate in the Eurozone is following Article 127 TFEU and the
definition of price-stability by the European Central Bank [8]: “… inflation rates
below, but close to 2% over the medium term.”

Based on the inflation data, we compute the histogram of Eurozone inflation
rates in Figure 4. The distribution displays particularly a right-skewedness. Indeed,
the mean is of 1.66, the median of 1.80 and the modus is of 2.10. Moreover, the
standard deviation is of 0.77, the variance of 0.60, the skewness of �0.22 and the
kurtosis of �0.06 is almost zero. These parameters characterize the Eurozone’s
inflation rate properties over time.

Next, we choose the following parameters in our stochastic differential equation
(Eq. (7)): α ¼ 1:7, β ¼ 1:0, σ ¼ 0:4, μ ¼ �2:0, γ ¼ 0:5, λ ¼ 0:01 and H ¼ 0:2. We
run the simulation model for 1000-time steps. Figure 5 represents the result of one
simulation, where the mean is of 1.60, the median of 1.73, the variance of 0.81 and

Figure 3.
Eurozone HICP-Inflation Rate. Data from ECB Data Warehouse. Source: B Herzog (2020).
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the skewness of �0.42. This demonstrates that the simulation is following the
distribution properties of inflation data, particularly the right-skewedness.

It turns out that the simulation replicates the distributional properties quite well,
except for the kurtosis. Nonetheless, we clearly see in the bottom panel of Figure 5
that the distribution is right-skewed with more tail events on the left-hand side.

If we run the same model with the Gaussian assumption, by using a standard
Brownian motion, H ¼ 0:5, we obtain a somewhat different result. The mean is of
0.94, the median of 0.85, the variance of 1.23, the skewness of 0.45 and the kurtosis
of 2.64. This distribution is not right-skewed and has higher variance than the
stylized facts. Hence, we conclude that a fractional Brownian motion with a Lévy
process provide a better approach in order to model the inflation dynamics of the
Eurozone.

Finally, we discuss the results of the simulation exercise with 1000 runs. In this
simulation, we have specified our stochastic differential equation (Eq. (7)) as fol-
lows: α ¼ 1:7, β ¼ 0, σ ¼ 0:3, μ ¼ �2:0, γ ¼ 0:1, λ ¼ 0:00 and H ¼ 0:2. Figure 6
represents in the top-panel the stochastic paths of all stochastic processes and in the
bottom-panel the respective histogram. The numerical simulation yields a mean and
median of approximately 1.7, a variance of 1.4 and negative skewness of �1.71.

Figure 4.
Histogram of Eurozone Inflation Rates. Data from ECB Data Warehouse. Source: B Herzog (2020).

Figure 5.
Simulation of Inflation Dynamics according to equation (7). Top panel denotes the inflation rate and bottom
panel the histogram. Source: B Herzog (2020).
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Last but not least, by running several simulations we find that inflation dynamics
is with high likelihood in a range of [�2, 5] in the Eurozone. Hence, even with severe
positive or negative shocks the inflationary process is stable and anchored around
the target level of 2%. Finally, in a scenario analysis, we set the mean-reverting level
to the target rate of 4% as proposed by Blanchard et al. [9]. We find inflation
dynamics is more volatile and still face deflationary levels during severe negative
shocks. In that regard, a higher inflation target does not eliminate deflation events as
with the target level of 2% today. Of course, the buffer towards deflation is greater if
the inflation target is 4%. But economically, we proclaim that a higher inflation
target creates a higher volatility and de-anchor inflation expectations subsequently.
Consequently, increasing the inflation target is not free of any risk due to growing
uncertainty about inflation expectations and price-stability in general.

5. Conclusion

This article models the inflation dynamics of the Eurozone with a novel
approach. We utilize a stochastic differential equation driven by fractional
Brownian motions and a Lévy process. Empirical inflation data show that the
distribution is right-skewed. Thus, any standard approach using the normality
assumption in econometrics fails. Therefore, we propose the use of fractional
Brownian motions and Lévy processes in order to model time-dependence and
jumps. Those processes cover short- and long-term phenomena, which is a prereq-
uisite for empirical distributions.

We find that our modeling and numerical simulation provide good results to the
calibrated inflation data. Inflation dynamics of the Eurozone is according to 1000

Figure 6.
Simulation of equation (7) with calibrated parameters. Top panel denotes all inflation processes and bottom
panel the histogram. Source: B Herzog (2020).
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runs of our simulation stable and strongly anchored at the 2.0% inflation target.
Even in the worst negative or positive shock, inflation numbers do not reach levels
persistently below 0 or above 4%.

That said, the stable and low inflation rates of the Eurozone are highly contin-
gent of the inflation target defined by the European Central Bank. Currently,
inflation expectations are well anchored below the 2% level. Yet, our model simu-
lation demonstrates that proposals to increase the inflation target, such as by
Blanchard et al. [9], are highly risky because it leads to a de-anchoring of inflation.
In the end, you might have higher volatility and the risk of de-anchored inflation
expectations. The latter can create a strong upward bias in inflation rates out of the
control of a central bank.
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