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Chapter

Plant Growth-Promoting 
Bacteria as a Natural Resource for 
Sustainable Rice Production under 
the Soil Salinity, Wastewater, and 
Heavy Metal Stress
Raghad S. Mouhamad and Michael Alabboud

Abstract

Rice is a cereal plant that is consumed in a grain form; however, its prolonged 
contact with irrigation wastewater might pose a threat to the consumers despite 
the following milling processes to eliminate the grain surface contamination which 
means that it needs further cooking to be suitable for human use. Additionally, 
excessive salt levels in wastewater can cause plant toxicity. Therefore, wastewater 
disposal can be handled by farm remediation. Rhizobacteria can also be used in 
this stressful environment to alleviate the problem by triggering a plant growth-
promoting response (PGPR). The importance of promoting and biocontrol plant 
growth is based upon its long-term stability, as well as the numerous generated 
secondary metabolites, besides its ability to remove heavy metal. The current study 
revealed that PGPR allowed such toxic effects on sewage to encourage and define 
the characteristics of plant growth through urban environments.

Keywords: heavy metals, wastewater, PGPR

1. Introduction

1.1 Relationship between PGPB and rice production under nutrient and salinity

As a consequence of the continuous population growth worldwide along with 
the shortage of food sustainability [1], it is necessary to create an alternative agri-
cultural productivity systems [2, 3]. One of the sustainable alternative strategies is 
the utilization of plant growth-promoting bacteria (PGPB) in agricultural practices 
[4]. Promoting plant growth (PGP) has numerous correlation capabilities either by 
endophyte in plant tissue [5], rhizosphere in seed surface as well as plant root [6], 
symbiosis in root nodules, and phyllosphere in stem and/or leaf surface (Turner). 
PGPB involve 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase that is 
applied to seedling which could effectively stimulate plant growth by reducing plant 
ethylene rates [7] under drought, salinity [8, 9], flooding, and contaminant condi-
tion [10] and increasing phosphate solubility and availability in soil, along with the 
increase in plant biomass, root area, and total N and P contents in rice [11].
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Rice production is reduced under saline agriculture system (Figure 1); therefore, 
it is becoming increasingly important to imply plant growth-promoting traits for 
mitigation of salt stress [12–14]. Promoting plant growth was shown to enhance 
growth effectively, and the growth-stimulating effect was also suggested to be 
beneficial in crop production under stressful conditions. Mechanisms for inducing 
plant growth-promoting response (PGPR) toward abiotic stress are usually inter-
preted as the result of certain phytohormone production, including ABA, GA, or 
IAA, or lower ethylene levels in roots of the ACC, which generates systemic bacte-
rial resistance and enhances exopolysaccharides.

A wide spectrum of endophyte bacteria is well adjusted to the rice niche under 
abiotic stress condition. The emergence of rice seedlings and growth and develop-
ment parameters were previously reported to be significantly affected by many 
PGPR strains [15]. Beneduzi et al. [16] evaluated efficient bioinoculant for rice 
growth improvement by bacillus strain (SVPR30). Bisht and Mishra [17] reported 
that rice root length and shoot length increased by 9.7 and 13.9%, respectively, 
when inoculated with B. thuringiensis (VL4C); Nautiyal et al. [18] reported that 
rice inoculation with B. amyloliquefaciens (SN-13) under saline conditions in hydro-
ponic/saline soils has improved stress sensitivity due to an altered transcription 
of 14 genes, including SERK1, ethylene-responding factor EREBP, NADP-malic 
enzyme (NADP-Me2), and SOS1. Additionally, downregulated expression of 
glucose-insensitive growth (IGG) and serine–threonine (Sapk4) protein kinase in 

Figure 1. 
Schematic description of the different plant promotion processes by PGPR.
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the hydroponic setup and upregulated MAPK5 were observed in the greenhouse 
experiments [19]. The inoculation of SN13 improved the gene transcription involved 
in the sensitivity of ionic and salt stresses [20]. Endophytic bacteria can give N to 
rice without loss compared with other bacteria, because of their strong relationship 
with the plant [21]. Endophytic bacteria are a better N supplier to rice than other 
bacteria. Endophytic bacteria are the bacteria derived from the plants’ inner tissues 
or extracted from plants with a sterilized layer, which have no infection symptoms 
[22]. The rice yield achieved by N2-fixing Pseudomonas sp. was improved by 23% by 
Mäder et al. [23]. Several studies showed significantly greater K, N, and P levels with 
an increased rice output of 9.2% in co-inoculation with N2-fixing microbes relative to 
the use of prescribed amounts of fertilizers as N, P, and K [24, 25]. There have been 
detailed documentations that rice is generally infected with a large variety of endo-
phytic bacteria (Azospirillum, Herbaspirillum, Rhizobium, Pantoea, Methylobacterium, 
and Burkholderia, among others) [22]. Diazotrophs colonized effectively in the 
roots of rice may have a higher N fixation potential [26]. Endorhizosphere bacteria 
contribute far more than rhizospheric bacteria to N fixation since there is no compe-
tition with other rhizospheric microorganisms in the endorhizosphere and under low 
oxygen; carbon sources are provided [27, 28].

The bacterial IAA was shown in Etesami and Alikhani [29] to have significant 
roles in improving efficiency in the use of N and in increasing nitrogen-based 
substances in rice. Estrada et al. [30] also found that diazotrophic P-solubilizing 
bacteria improved the absorption of nutrients in rice, while Rangjaroen et al. [31] 
suggested that Novosphingobium diazotrophic is an important microbial tool of 
nitrogen providing for further production which renders it as a healthy biomonitor 
to improve organic rice cultivation.

De Souza et al. [32] demonstrated the decrease of in vitro phosphate solubil-
ity and minimization of acetylene (low reduction in acetylene) in rice shoots by 
bacteria, including Herbaspirillum sp., Burkholderia sp., Pseudacidovorax, and 
Rhizobium sp. Therefore, non-N2 fixation growth promotion mechanisms include 
an IAA development and improved nutrient balanced absorption. Glick [7] shows 
that if a bacterium is used to produce nitrogen-solubilizing for plants, which 
have PGP traits (IAA, ACC deaminase, siderophore, and phosphate solubility), 
it should be used, and the genetic characteristics in plants should be transferred. 
The application of P fertilizers in rice production has continuously increased [33]. 
Sahrawat et al. [34] show that the use of rice P fertilizers has been continuously 
increased since it is one of the key restrictive factors in many regions of the world 
for the production of upland rice. Othman and Panhwar [35] detected that the 
sum of nutrition provided by aerobic rice is the same as the flooded rice, but the 
abundance of P is a challenge due to its immediate immobilizing and fixing with 
calcium (Ca2+), iron (Fe3+), and aluminum (Al3+) elements. P deficiency in aerobic 
crops is also widely seen as a phenomenon [36]. The secretion of organic acids and 
the interaction of mycorrhizal fungi are among these methods that are very weak 
in rice under flooding conditions. Islam and Hossain [37] have stated that P defi-
ciency is quite normal which increases the demand for mycorrhizal fungal interac-
tions under flood conditions. Panhwar et al. [38] detected that the rice plants need 
an ancillary structure that quickly goes beyond such degraded regions and receives 
P for exorbitant neighboring soil composition through the development of a vast 
network of phosphate-solubilizing bacteria (PSB) which might satisfy some of the 
nutrient needs.

The growth of many plants including staple rice is hindered by micronutrient-
deficient soils [39]. The toxicity of Fe is also important as Fe is one of the major 
constraints on the production of lowland rice. Furthermore, the scarcity of Mn in 
upland rice is also commonly seen [40].
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A significant increase in the number of tilers provided by plan (15.1%), crop 
panicles (13.3%), overall grain intake Zn (52.5%), and a modest yield of the dry 
product by pot (12.9%) has been shown by Vaid et al. [41]. This rise was detected 
through soil solubilization of insoluble Zn, all of which as a result of the production 
of bacterial gluconic acid.

Fe, Zn, Cu, and Mn concentrations were increased by 13–16% (Brevundimonas 
diminuta PR7) and in rice co-inoculation (Providencia sp. PR3) (Ochrobactrum 
anthropi PR10); Adak et al. [42] detected that Fe absorbance was enhanced by 
13–46% using cyanobacterial inoculants and 15–41% in Zn with the use of cyano-
bacterial inoculums, in rice cultivation for various modes.

1.2  Relationship between PGPB and rice production under wastewater  
and heavy metals

Metals as zinc (Zn), molybdenum (Mo), cobalt (Co), chromium (Cr), selenium 
(Se), copper (Cu), iron (Fe), manganese (Mn), magnesium (Mg), and nickel (Ni) 
have essential nutrients necessary for a diversity of biological and physiological 
functions [43]. Biological functions that are not identified are identified as nones-
sentials: bismuth (Bi), antimony (Sb), platinum (Pt), indium (In), arsenic (As), 
beryllium (Be), mercury (Hg), barium (Ba), gallium (Ge), gallium (G), gold 
(Au), lead (Pb), barium (Be), nickel (Ni), silver (Ag), aluminum (Al), as well as 
uranium (U) [44].

Ma and Takahashi [45] demonstrate that the rice PGPB ability can be used to 
resolve deficits in micronutrients and to biofertilize (Table 1 and Figure 1). Rice is 
a plant that accumulates Si and considered an Si accumulator as silicon content in 
dry weight of the shoots may reach up to 10%, and therefore, the plants require high 
Si content. Rice is associated with Si depletion in its unit area; due to the removal 
from the earth of 100 kg of Si for brown rice (about 20 kg/hm2 SiO2) and exports 
to the farm by the extraction of straw residues during harvest and the conniving for 
exogenous use of Si in rice growing, Si in paddy field is available [66].

Bocharnikova et al. [67] and Ning et al. [68] previously reported that Si-deficient 
paddy soils may be needed to generate an economically sustainable rice crop capable 
of producing high yield and disease resistance. Si fertilizers are being used for 
growing rice production in many countries and have positive effects. Vasanthi et al. 
[69] detected that the Bacillus globisporus, B. crustacea, B. flexus, B. megaterium, 
Pseudomonas fluorescens, and Burkholderia eburnean can activate K and Si in feldspar, 
muscovite, and biotite silicate mineral resources. Specific pathways are used to gen-
erate disproportionate protons, organic ligand, organic acid, anion, hydroxyl, EPS, 
and enzymes. However, the solubilizing Si, K, and P in soil might be accompanied by 
an increased supply of Fe and Mn metals in plants by interacting with P-fixing sites.

Gandhi and Muralidharan [19] show that the rice growth, development, yield, 
and Zn solubility from ZnO and ZnCO3 to Acinetobacter sp. have been greatly 
increased.

This gene recombination processing was also extended to rice, which produces 
rice transgenics generated via a partial weapon bombardment containing a 250 
lM HgCl2-resistant merA gene [65]. Recently, mercury toxicity has been identi-
fied as a triggering factor in aromatic amino acid biosynthesis (tryptophan and 
phenylalanine), aggregation of calcium, and activation of MAPK in rice [70]. The 
synthesis and accumulation of the Glybet were stimulated by Pseudomonas alkaline 
inoculation in rice plants [64]. Chakrabarty et al. [63] detected that the As (III)-
treated rice seedlings proposed signal transduction regulation and hormonal and 
crop defense signaling mechanisms (ABA metabolism). Comparative rice-treated 
transcriptomic study showed explicitly the shifts in plant reaction to metal pressure 



5

Plant Growth-Promoting Bacteria as a Natural Resource for Sustainable Rice Production…
DOI: http://dx.doi.org/10.5772/intechopen.92344

in the rates of phytohormones: As and Pb resistant by Bacillus spp. There are vari-
ous PGPR features that contribute to the bioremediation and rice cultivar growth 
promotion; Cd-resistant Ochrobactrum sp. was first reported by Pandey et al. [62]. 
The presence of CDPKs was demonstrated by Cr pressure as their activity increased 
with increasing Cr (VI) concentration. Huang et al. [61] showed that rice roots 
have long- and short-term stress transcription profiling. Yeh et al. [59] have demon-
strated Cd-induced gene transcription of OsMAPK2 and MBP kinase in rice plant. 
The activation of heavy metal mediated MAPK by ROS production, build-up, and 
alteration of the antioxidant system in the rice; ROS is well-rated for its disruption 
specific pathways such as auxin, ethylene, and jasmonate (JA) phytohormone. 
However, exposure to JAs has shown that antioxidant reaction has been enhanced 
due to rice stress sensitivity of Cd [60]. However, an extensive study on heavy metal 
in plants has shown great interest in the extensive study of the plant microbial-
metal relationship due to its direct impact on enhanced production of biomass and 
improved metal tolerances [50].

Plants have developed a number of defense mechanisms to resist heavy metal 
stresses and toxicities such as reducing heavy metal consumption, sequestering 
metal into vacuoles, binding phytochelatins or metallothionein, and antioxidant 
activation [51]. The toxic substances As, Pb, Cd, and Hg are considered by Disease 
Registry Agency as the most toxic metals (Figure 1) for their toxicity frequency 
and above all their flora and fauna exposure potential. Pb toxicity leads to ATP 

Results of bacteria added to plants References

Mutation Physicochemical [3]

PGPR; Novosphingobium Optimize rice cultivation [31]

Bioindicator Wastewater irrigation [43, 44, 46, 47]

Indicators Sustainable rice cultivation [2]

Plant microbiome and Herbaspirillum seropedicae 

and Bacillus amyloliquefaciens

Plant growth [1, 4, 5, 11, 18, 

28, 48]

Seed endosphere; PGPR and ACC Deaminase and 

Corynebacterium and diazotrophic spp.

Plant growth [7, 15, 21, 22, 25, 

26, 49]

Soil Rhizobacteria Heavy metals [50–54]

Azospirillum N2 fixing [55]

Arbuscular mycorrhizal symbiosis and 

Pseudomonas putida

Salinity stress; biological 

control; drought stress

[20, 29, 56, 57]

PGPR Cu-contaminated [43, 58]

Exogenous application Cd-contaminated [10, 59, 60]

Genomic rice Cr-contaminated [61]

Ochrobactrum sp. and Bacillus spp. and 

biofortification

Heavy metals [40, 62]

Ar-contaminated [63]

Endophytic and PGPR and Bacillus safensis Salt stress [8, 9, 12, 64]

Genetically engineered Hg [65]

Acinetobacter sp. and PGPR Zinc solubilizing [19, 39, 41]

Bacterial species Si solubilization [42, 45, 66–69]

Phosphate-solubilizing bacteria Phosphate solubilization [33–38]

Table 1. 
Plant growth-promoting Rhizobacteria used in rice production.
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inhibition, lipid peroxidation, and damage to DNA through the production of 
ROS [43].

In recent decades there has been rapid progress in the area of plant reactions 
and the tolerance of stress of metal when related bacteria are present with plants. 
The activation of these genes, which are crucial to heavy metal stress signaling, also 
suggests dynamic crosspieces of stress and resistance between plant, microbes, and 
heavy metals [52]. Heavy metal remediation is necessary to protect and preserve 
the environment. There are only a small number of evidence that heavy metals are 
remediated by extracellular capsules, heavy metal precipitation, and oxidation 
reduction [53].

It will be used in the immediate future for remediation of contaminated soils, 
as shown by the beneficial effects of microbe causes and the planned interconnec-
tion between heavy metal resistance and plant growth abilities [58]. Additionally, 
arbuscular mycorrhizal fungi (AMF) ecological species and ecotypes, metal and 
edaphic conditions of its availability, and soil and water, including soil fertilizer 
and requirements of plants for growing under light or root conditions, depend on 
various factors of exposure to heavy metals in the environment [56].

AMF changes salt stress toxicity. AMF exists due to enhanced mineral nutrition 
and as a result of various physiological processes such as photosynthesis, water 
usage efficiency, osmoregulator production, higher K+/Na + ratio, and molecular 
changes caused by the expression of genes [57].

The synergistic effects on plant growth, particularly in growth restrictions, of 
the co-inoculation with PGPR and AMF, have shown that the growth responses are 
significant when rice plants are inoculated with AMF and Azospirillum. All of these 
findings thus show that rice mycorrhization is important [55].

The methods employed by PGPB to promote plant remediation cycle include 
enhancing plant metal resistance and increasing plant growth as well as altering 
plant metal accumulation; however, the recent PGPB studies in metal phytoreme-
diation showed that plant inoculation with plant-building bacteria-induced metal 
phytotoxicity can be alleviated and the production of plant biomass produced in 
metal-contaminated soils can be strengthened [48, 49, 54]. The reuse of wastewater 
as a strategy to adjust to climate change is shown in Vietnam. Chung et al. [46] 
illustrated that rice wastewater effluents can be irrigated for at least 22,719 ha (16% 
of the urban rice area) in plants annually. Additionally, Jang et al. [47] found that 
there is no significant environmental risk to rice paddy agroecosystems that were 
associated with wastewater irrigation (Table 1 and Figure 1).

2. Conclusion

The main limiting factors for cultivation worldwide are water stress conditions 
[71]. Wastewater water has a negative effect on the production and yield of rice. 
Selected PGPR might be the perfect candidate for heavy metal pollution and related 
surface constraints for growth and yields of rice plants irrigated with wastewater 
as PGPR extracted wastewater strains of bioremediation products show positive 
results in the literature.
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