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Chapter

Robust and Adaptive Control
for Synchronous Generator’s
Operation Improvement
Jožef Ritonja

Abstract

Synchronous generators produce almost 95% of the world’s electricity. Even
a small improvement in their efficiency represents huge savings. Electromechanical
oscillations of synchronous generators are harmful—they cause losses and can even
lead to instability. An additional control system, called a power system stabilizer
(PSS), is used to damp the oscillations of synchronous generators. The commercial
realizations of the power system stabilizers are based on the use of the linear control
theory. The effectiveness of these power system stabilizers is small, because of the
nonlinear and time-varying characteristics of the synchronous generators. The
application of robust and adaptive control represents an adequate theoretical basis
for ensuring optimal damping of the electromechanical oscillations in a wide oper-
ating range. This work reviews the applicability of the advanced control theories to
develop power system stabilizers. The work is focused on selecting the appropriate
robust and adaptive control theories for the power system stabilizer implementa-
tion. The applicability and advantages are presented of the sliding mode control and
the direct adaptive control, along with an evaluation of their impact on the
operation improvement.

Keywords: sliding mode control, direct adaptive control, synchronous generator,
power system stabilizer, operation of synchronous generator

1. Introduction

Synchronous generators are the most important electrical machines. They pro-
duce the majority of the world’s electricity. In 2017, global electricity production
was 25,721 TWh [1]. Assuming that the share of solar thermal sources is negligible
compared to the share of solar photovoltaic sources, it can be estimated that about
98.2% of the total global energy is produced by electric generators. After analyzing
the data, it can be estimated that synchronous generators produce 93.8% of the
world’s electricity and induction generators 4.4% of the total production of the
world’s electricity. The estimate is based on data for 2017. These, and also the
following data, are obtained from statistics reports of the International Energy
Agency [1].

An additional important point is that electricity trading and, thus, long-distance
transmission of electricity are increasing significantly. In 2017, OECD countries
produced 11,051 TWh of electricity, with a trading volume of 408 TWh,
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representing 3.7% of total production. Even more interesting is the growth rate of
electricity trade. In the OECD, imports of electricity grew from 89 TWh in 1974 to
480 TWh in 2018, representing an average annual growth rate of 4.0%, compared
to 2.1% growth in overall electricity supply.

The facts that the majority of the world’s electricity is produced by synchronous
generators and that a large amount of the world’s electricity is transmitted over long
distances result in significant oscillations of the produced and transmitted power.
Despite the relatively small oscillations—the ratio of the amplitude of the oscilla-
tions of the transmitted power relative to the mean value of the transmitted power
is mainly smaller than 10%—the total global losses due to the extremely large
volume of production and transmission of electricity are not negligible. In terms of
saving energy, it makes sense to reduce these losses.

The amount of the transmitted power oscillations can be affected by optimizing
the topology of the new networks, by reconfiguring of the existing networks, by
selection of the better damped new synchronous generators, and by replacement of
the existing synchronous generators with the better damped ones. These solutions
are expensive, and their realization also depends on other social and ecological
factors. Therefore, it is a much more suitable solution to use a control system to
damp the power system oscillations. In power systems, control systems called
power system stabilizers (PSS) are used to suppress oscillations. PSS represent the
best and the most economical solution for damping of the power systems’ oscilla-
tions. PSS are simple to realize—they are mainly a part of the controller of the
synchronous generator’s static semiconductor excitation system. PSS, based on
information of the oscillations of the transmitted power, rotor speed, rotor angle, or
rotor acceleration, generate an additional reference signal for the rotor current
control system. This additional reference signal represents the supplementary
input to the static semiconductor excitation system, which is connected to rotor
field winding.

Conventional PSS design is based on a linear control theory. Conventional PSS is
simple to realize, but its application shows nonoptimal damping through the entire
operating range; by varying the operating point, the synchronous generator’s
dynamic characteristics also vary; the fact is that PSS, which was determined for the
nominal operating point, does not assure optimal damping in the entire operating
range. Such a PSS reduces transmission losses optimally only at the operating point
for which the PSS parameters are selected. Due to the large changes in the trans-
mitted power and the large variations in power generation of the synchronous
generators, conventional PSS are not satisfactory for use in modern power systems.
To improve PSS performance, major modern control theories have been tested in
the past decade for the purposes of PSS design. Of all the methods, robust and
adaptive control has been implemented to be the most suitable for the design of
PSS. Both control methods have been used in order to assure optimal damping
through the entire operating range of the synchronous generators. The use of
adaptive control is possible because the loading variations and, consequently, the
variations of the dynamic characteristics of the synchronous generators are, in most
cases, substantially slower than the dynamics of the adaptation mechanism [2].

Reduction of losses is not the sole and basic task of PSS. Even more important is
that the PSS improves the stability of the power system and allows the transfer of
power from the synchronous generator to the power system or between different
points in the power system as near as possible to the stability limit of the transmis-
sion. In the presented work, however, we show the results of our study, which will
show the applicability of the developed robust and adaptive PSS, mainly for the
improvement of the damping of the power system oscillations.
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For a detailed analysis of the benefits of the advanced PSS, a mathematical
model of the synchronous generator is necessary. In this work, we first present the
mathematical model of the synchronous generator connected to the power system,
which is convenient for analysis of the physical characteristics of the power system
and is appropriate at the same time for the controller design and synthesis. We
focus our work on the analysis of a system where a single synchronous generator is
connected to an infinite bus. In Section 3, we attempt to estimate the amount and
dynamics of the oscillations in the power systems. A thorough analysis is made and
presented for the first time. The conventional PSS control system is presented in
Section 4. By means of the derived mathematical model of the synchronous
generator, we estimate the improvement of the power system damping due to
implementation of the conventional PSS. From the analysis, it is evident that con-
ventional PSS does not assure optimal damping in the entire operating range.
Therefore, advanced control theories for PSS design and synthesis are presented in
Sections 5 and 6. In Section 5, the robust control system theory is used for PSS
design. The suitable direct adaptive control theory is presented in Section 6. The
PSS control system developed on the basis of the presented theories and the results
of the implementation of the advanced control theories for PSS design and synthesis
are shown in Section 7.

2. Mathematical model of the synchronous generator connected
to the power system

The seventh-order nonlinear model of the synchronous machine connected to
the infinite bus is the most detailed mathematical model of the synchronous gener-
ator connected to the large power system with constant frequency and constant
voltage (=infinite bus) through the transmission line [3]. Park’s matrix transforma-
tion is used to transform the origin windings’ equations into a model with orthogo-
nal axes. On this basis, the magnetic coupling of the stator, field, and damper
windings is represented as a function of the position of the machine’s rotor. The
seventh-order model is represented in the form of a nonlinear state-space model
[4]. The model’s inputs are mechanical torque Tm(t) and rotor excitation winding
voltage Efd(t). The model’s state-space variables are stator d-axis flux linkage λd(t),
stator q-axis flux linkage λq(t), rotor excitation winding flux linkage λF(t), rotor
d-axis damper winding flux linkage λD(t), rotor q-axis damper winding flux linkage
λD(t), mechanical rotor speed ω(t), and electric rotor angle δ(t). The seventh-order
model is described by sets of algebraic equations (Eqs. (1)–(10)) [5]:

λAD tð Þ ¼ LMD
λd tð Þ
ld

þ λF tð Þ
lF

þ λD tð Þ
lD

� �

(1)

λAQ tð Þ ¼ LMQ
λq tð Þ
lq

þ λQ tð Þ
lQ

� �

(2)

id tð Þ ¼ 1

ld
λd tð Þ � λAD tð Þð Þ (3)

iq tð Þ ¼ 1

lq
λq tð Þ � λAQ tð Þ
� �

(4)

iF tð Þ ¼ 1

lF
λF tð Þ � λAD tð Þð Þ (5)
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iD tð Þ ¼ 1

lD
λD tð Þ � λAD tð Þð Þ (6)

iQ tð Þ ¼ 1

lQ
λQ tð Þ � λAQ tð Þ
� �

(7)

vd tð Þ ¼ �
ffiffiffi

3
p

V∞ sin δ tð Þð Þ þ Reid tð Þ þ ω tð ÞLeiq tð Þ (8)

vq tð Þ ¼
ffiffiffi

3
p

V∞ cos δ tð Þð Þ þ Reiq tð Þ þ ω tð ÞLeid tð Þ (9)

Te tð Þ ¼ 1

3
iq tð Þλd tð Þ � id tð Þλq tð Þ
� �

(10)

and differential equations (Eqs. (11)–(17)):

_λd tð Þ ¼ ωs �Rsid tð Þ � ω tð Þλq tð Þ � vd tð Þ
� �

(11)

_λq tð Þ ¼ ωs �Rsiq tð Þ þ ω tð Þλd tð Þ � vq tð Þ
� �

(12)

_λF tð Þ ¼ ωs �RFiF tð Þ þ Efd tð Þð Þ (13)

_λD tð Þ ¼ ωs �RDiD tð Þð Þ (14)

_λQ tð Þ ¼ ωs �RQ iQ tð Þ
� �

(15)

_ω tð Þ ¼ 1

2H
Tm tð Þ � Te tð Þð Þ (16)

_δ tð Þ ¼ ωs ω tð Þ � 1ð Þ (17)

where id(t) and iq(t) are stator d- and q-axis currents [pu]; iF(t) is field current
[pu]; iD(t) and iQ(t) are damping d- and q-axis currents [pu]; vd(t) and vq(t) are
stator terminal d- and q-axis voltages [pu]; λAD(t) and λAQ(t) are d- and q-axis
mutual flux linkages [pu]; Re and Le are transmission line resistance and reactance
[pu]; V∞ is infinite bus voltage [pu]; Te(t) is electromagnetic torque [pu]; LMD,
LMQ , LAD, and LAQ are mutual inductances [pu]; ld, lq, lF, lD, and lQ are leakage
inductances [pu]; RS, RF, RD, and RQ are stator, field, d-axis damping, and q-axis
damping winding resistances [pu]; H is an inertia constant [s]; and ωs is electric
synchronous speed [rad s�1]. All variables are normalized on the base quantities
except the electric rotor angle δ(t) having unit [rad].

The seventh-order model is the superior one; although, on the other hand, it is
too complicated to gain insight into the physical characteristics of the controlled
plant [5]. It is also not suitable for the design and synthesis of control systems, since
many control methods require linear mathematical models for the development of
the control system. Many simplified models are derived from this seventh-order
nonlinear model [6]. For a synchronous generator analysis and for the design of the
PSS control system, a simplified linearized third-order model is still the most pop-
ular. It was presented for the first time in 1952 [7] and is, therefore, also called the
Heffron-Phillips model.

The Heffron-Phillips model is obtained from the seventh-order nonlinear model
by means of linearization for an every steady-state operating point (i.e., an equilib-
rium point). The Heffron-Phillips model describes the synchronous generator’s
dynamics in the proximity of the selected equilibrium point. The Heffron-Phillips
model has two inputs and three state-space variables. The inputs are mechanical
torque TmΔ(t) and rotor excitation winding voltage EfdΔ(t) deviations; the state-
space variables are rotor angle δΔ(t), rotor speed ωΔ(t), and voltage behind tran-
sient reactance E0

qΔ tð Þ deviations. Additional outputs are electric power PeΔ(t) and

terminal stator voltage VtΔ(t) deviations. All the inputs and the state-space variables
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denote the deviations (subscript Δ) from the equilibrium state. The model is written
as follows:

_δΔ tð Þ
_ωΔ tð Þ
_E
0
qΔ tð Þ

2

6

6

4

3

7

7

5

¼

0 ωs 0

� K1

2H
� D

2H
� K2

2H

� K4

T0
d0

0 � 1

K3T
0
d0

2

6

6

6

6

4

3

7

7

7

7

5

δΔ tð Þ
ωΔ tð Þ
E0
qΔ tð Þ

2

6

4

3

7

5
þ

0 0

1

2H
0

0
1

T0
d0

2

6

6

6

6

4

3

7

7

7

7

5

TmΔ tð Þ
EfdΔ tð Þ

� �

(18)

PeΔ tð Þ
VtΔ tð Þ

� �

¼
K1 0 K2

K5 0 K6

� �

δΔ tð Þ
ωΔ tð Þ
E0
qΔ tð Þ

2

6

4

3

7

5
þ

0 0

0 0

� �

TmΔ tð Þ
EfdΔ tð Þ

� �

(19)

where TmΔ(t) represents mechanical torque deviation [pu], PeΔ(t) is electrical
power deviation [pu], ωΔ(t) is rotor speed deviation [pu], δΔ(t) is rotor angle
deviation [rad], E’qΔ(t) is the voltage behind the transient reactance [pu], EfdΔ(t) is
field excitation voltage deviation [pu], VtΔ(t) is the terminal voltage [pu], H is an
inertia constant [s], D is a damping coefficient representing total lumped damping
effects from damper windings [pu/pu], ωs is rated synchronous speed [rad s�1],Tdo

0

is a d-axis transient open circuit time constant [s], and K1 through K6 are lineariza-
tion parameters. All parameters and variables in a Heffron-Phillips model are nor-
malized, except for electric rotor angle δΔ(t).

3. Analysis of the impact of the oscillations on the power system quality

The oscillations in the power system are due to the physical properties of the
synchronous generator that operates parallel to the network. These properties are
reflected in the dynamical mathematical model of the synchronous generator and
appear as poorly damped dominant eigenvalues. Therefore, any changes in the syn-
chronous generators’ inputs (rotor field voltage and mechanical torque), in the net-
work loads (changes in bus voltages) and disturbances, cause oscillations with
relatively high amplitude and low damping. Oscillations in the power system are
visible in several physical quantities of the system: in the synchronous generators’ rotor
speed, rotor angle, stator voltage, stator current, and produced power and in the power
system’s voltages, currents, frequency, and transmitted powers. These oscillations
reduce the quality of the electricity and increase the stability risk of the power system.

It is very difficult to estimate the impact of oscillations on actual losses in a power
system. In a real power system operation, it is problematic to evaluate how much of
the losses is due to the rotor angle oscillations and how much of the losses are due to
other factors. Therefore, in the first subsection, the influence of the amplitude and
frequency of the oscillations on the amount of the losses in the transmission line and
on the constancy of the transmitted power is discussed in more detail. The thor-
oughly steady-state analysis was made for this purpose. The dynamic analysis is
presented in the second subsection. Dynamic analysis shows the vulnerability of the
synchronous generator on the different input changes in different operation points.

3.1 Steady-state analysis

An analysis of the impact of the oscillations on losses and on the constancy of the
transmitted power is made numerically. In the case of constant rotor speed, the
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induced voltage in the stator winding is sinusoidal, with constant amplitude and
frequency. The swinging of the rotor speed results in induced voltage with variable
frequency and amplitude. From the solution of the swing equation, it is evident that
the swinging of the rotor is sinusoidal [8]. Therefore, in a steady-state analysis, we
suppose that the rotor’s speed oscillates about the constant synchronous speed with
sinusoidal oscillations. This results in the stator’s induced voltage, which varies
sinusoidally in amplitude and frequency. The amplitude increases when the fre-
quency increases, and vice versa. For such input signal, there is no transparent
analytical solution for the evaluation of the losses and constancy of the transmitted
power. Therefore, the numerical solution that is based on an equivalent circuit of
the synchronous generator connected by transmission line to the infinite bus is used
for the analysis. The equivalent circuit is shown in Figure 1.

where V1e denotes the effective value of the generator’s internal voltage [pu],
V2e is the effective value of the infinite bus voltage [pu], φ1 is the generator’s
internal voltage angle [rad], φ2 is the infinite bus voltage angle [rad], Rs is stator
(armature) resistance [pu], Xs is synchronous reactance [pu], Re is transmission line
resistance [pu], and Xe is transmission line reactance [pu]. The equivalent circuit
presented in Figure 1 is a balanced symmetrical three-phase system. The impedance
in any one phase is equal to that in either of the other two phases. Three voltages on
the generator side are displaced 120° electrical degrees in time as a result of the
phases being displaced 120° in space. Also, the three voltages on the infinite bus side
are displaced 120° electrical degrees in time, so that the resulting phase currents are
equal in amplitude and displaced in phase from each other by 120°. v1a(t), v1b(t),
and v1c(t) denote instantaneous values of the synchronous generator’s internal
phase voltages; vIBa(t), vIBb(t), and vIBc(t) denote instantaneous values of the infi-
nite bus phase voltages; and ia(t), ib(t), and ic(t) denote instantaneous values of the
transmission line phase currents. Unless otherwise specified, PIB(t) represents the
instantaneous three-phase power flow to the infinite bus [pu]; PIBa(t), PIBb(t), and
PIBc(t) represent instantaneous power flow to the infinite bus for different phases
[pu]; and PIB represents the mean value of the instantaneous three-phase power
flow to the infinite bus [pu]. PL(t) denotes instantaneous three-phase power losses

Figure 1.
Equivalent circuit of the synchronous generator connected by transmission line to the infinite bus used for the
steady-state analysis.

6

Automation and Control



in the transmission line [pu]; PLa(t), PLb(t), and PLc(t) represent instantaneous
power losses for different phases [pu]; and PL represents the mean value of the
instantaneous three-phase power losses in the transmission line [pu]. pL indicates
the relative value of the mean value of the three-phase power losses (PL) compared
to the mean value of the three-phase power flow to the infinite bus (PIB) in [%].
Stator voltage amplitude and frequency oscillations resulting from rotor speed
swing are described with the amplitude and frequency of both oscillations. Aao and
Fao denote amplitude and frequency of amplitude oscillations. Afo and Ffo denote
the amplitude and frequency of frequency oscillations.

For the presented results, the impedances of the synchronous generator and
transmission line are shown in Table 1.

Figures 2–5 show the time responses of the electrical quantities if there are no
oscillations in rotor speed. The parameters of the generator’s internal voltage and
infinite bus voltage are shown in Table 2.

Figure 2 shows the instantaneous values of the synchronous generator’s internal
voltages for all three phases. Currents in the transmission lines are shown in
Figure 3. Power flow to the infinite bus for all three phases separately and the sum
of the phases’ power flow are shown in Figure 4. As expected, the total three-phase
power flow is constant. Figure 5 shows power losses in the transmission line for all
three phases separately and the three-phase power losses. Again, the total
three-phase power losses are constant.

Figures 6–10 show the time responses of the electrical quantities if oscillations
occur in the rotor speed. The parameters of the generator’s internal voltage and
infinite bus voltage are shown in Table 3.

Ra = 0.0011 [pu] Xs = 0.9 [pu]

Re = 0.02 [pu] Xe = 0.4 [pu]

Table 1.
The synchronous generator’s and transmission line’s impedances.

Figure 2.
Synchronous generator’s internal voltages for all three phases: v1a(t), v1b(t), and v1c(t).
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For better insight, Figure 6 shows the instantaneous values of the synchronous
generator’s internal voltage for phase a. The oscillations are visible in amplitude and
in frequency.

Figure 7 shows the instantaneous values of the synchronous generator’s internal
voltages for all three phases. Currents in the transmission lines are shown in
Figure 8. Power flow to the infinite bus for all three phases separately and the
instantaneous value of the three-phase power flow are shown in Figure 9. In this
case, due to oscillations in rotor speed, and, consequently, oscillations in the inter-
nal voltages, the total three-phase power flow is not constant. Figure 10 shows
power losses in the transmission line for all three phases separately and the three-
phase power losses. Again, total three-phase power losses are not constant.

Figure 4.
Instantaneous three-phase power flow to the infinite bus PIB(t) (constant), and instantaneous power flow to the
infinite bus for different phases PIBa(t), PIBb(t), and PIBc(t).

Figure 3.
Transmission line currents for all three phases: ia(t), ib(t), and ic(t).
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Figure 5.
Instantaneous three-phase power losses in the transmission line PL(t) (constant) and instantaneous power losses
in the transmission line for different phases PIBa(t), PIBb(t), and PIBc(t).

V1e = 1.0 [pu] φ1 = 40 [°]

V2e = 1.0 [pu] φ1 = 0 [°]

Aao = 0.0 [pu] Fao = 0 [Hz]

Afo = 0.0 [pu] Ffo = 0 [Hz]

Table 2.
The parameters of the internal voltage and infinite bus voltage, without oscillations.

Figure 6.
Synchronous generator’s internal voltages for phase a: v1a(t).
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From Figures 2–10, it is seen clearly that the rotor speed oscillations cause the
oscillation in the transmitted power. The sum of the transmitted powers of the
individual phases is no longer constant (Figure 9), as is the case for the balanced
three-phase symmetric systems without oscillations (Figure 4). These oscillations
reduce the transmission capability and quality. To ensure the power transmission
with minimal power oscillations, it is necessary to reduce the rotor speed oscilla-
tions.

A thorough numerical analysis was performed to estimate the influence of the
rotor speed oscillations on the power system losses. Some results are presented in
Tables 4 and 5. Table 4 shows the impact of the rotor speed oscillations on the

Figure 7.
Synchronous generator’s internal voltages for all three phases: v1a(t), v1b(t), and v1c(t).

Figure 8.
Transmission line currents for all three phases: ia(t), ib(t), and ic(t).
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Figure 10.
Three-phase power losses in the transmission line PL(t) (violet) and instantaneous power losses in the
transmission line for different phases PIBa(t), PIBb(t), and PIBc(t).

V1e = 1.0 [pu] φ1 = 40 [°]

V2e = 1.0 [pu] φ1 = 0 [°]

Aao = 0.1 [pu] Fao = 2 [Hz]

Afo = 0.1 [pu] Ffo = 2 [Hz]

Table 3.
The parameters of the internal voltage and infinite bus voltage, with oscillations in internal voltage.

Figure 9.
Three-phase power flow to the infinite bus PIB(t) (violet) and instantaneous power flow to the infinite bus for
different phases PIBa(t), PIBb(t), and PIBc(t).
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losses by active power generation. The results are presented in two different oper-
ating points. In the first one, the electric angle between generator internal voltage
and infinite bus voltage was 10°, and, in the second one, the angle amounts to 40°.
The results of the rotor speed oscillations’ variations are presented in the amplitude
range from 0 to 20% of the synchronous speed by frequencies 1 and 2 [Hz]. From
the obtained results, it is evident that there is no influence of the oscillations on
power losses in the transmission line.

Table 5 shows the impact of the rotor speed oscillations on the losses by reactive
power generation. The results are presented at two different operating points. In the
first one, the generator’s internal voltage was 10% bigger than the infinite bus
voltage, and, in the second one, the difference amounts to 50%. The results of rotor
speed oscillations’ variations are presented in the amplitude range from 0 to 20% of
the synchronous speed by frequencies 1 and 2 [Hz]. From the results, it is obvious

V1e V2e φ1 φ2 Aao Afo Fao Ffo PIB PL pL

1.0 1.0 10 0 0.0 0.0 0 0 0.40 1.1�10�3 0.3

1.0 1.0 10 0 0.1 0.1 1 1 0.40 1.5�10�3 0.4

1.0 1.0 10 0 0.1 0.1 2 2 0.40 1.5�10�3 0.4

1.0 1.0 10 0 0.2 0.2 1 1 0.40 2.6�10�3 0.6

1.0 1.0 10 0 0.2 0.2 2 2 0.40 2.5�10�3 0.6

1.0 1.0 40 0 0.0 0.0 1 1 1.47 1.8�10�2 1.2

1.0 1.0 40 0 0.1 0.1 1 1 1.47 1.8�10�2 1.2

1.0 1.0 40 0 0.1 0.1 2 2 1.46 1.9�10�2 1.3

1.0 1.0 40 0 0.2 0.2 1 1 1.46 1.9�10�2 1.3

1.0 1.0 40 0 0.2 0.2 2 2 1.46 1.9�10�2 1.3

Table 4.
Mean values of three-phase transmitted power to the infinite bus (PIB) and three-phase power losses in the
transmission line PL as a function of the angle between the generator’s internal voltage and infinite bus voltage
(φ1-φ2) by different amplitudes (Aao, Afo) and frequencies (Fao, Ffo) of amplitude and frequency oscillations
in the generator’s internal voltage by active power transmission.

V1e V2e φ1 φ2 Aao Afo Fao Ffo PIB PL pL

1.1 1.0 0 0 0.0 0.0 0 0 3.7�10�3 3.7�10�4 10

1.1 1.0 0 0 0.1 0.1 1 1 3.6�10�3 7.9�10�4 22

1.1 1.0 0 0 0.1 0.1 2 2 3.6�10�3 7.7�10�4 21

1.1 1.0 0 0 0.2 0.2 1 1 3.3�10�3 2.0�10�3 61

1.1 1.0 0 0 0.2 0.2 2 2 3.3�10�3 2.0�10�3 61

1.5 1.0 0 0 0.0 0.0 0 0 1.9�10�2 9.4�10�3 50

1.5 1.0 0 0 0.1 0.1 1 1 1.9�10�2 1.0�10�2 54

1.5 1.0 0 0 0.1 0.1 2 2 1.9�10�2 1.0�10�2 54

1.5 1.0 0 0 0.2 0.2 1 1 1.8�10�2 1.2�10�2 66

1.5 1.0 0 0 0.2 0.2 2 2 1.8�10�2 1.2�10�2 66

Table 5.
Mean values of three-phase transmitted power to the infinite bus (PIB) and three-phase power losses in the
transmission line PL as a function of the generator’s internal voltage (V1e) by different amplitudes (Aao, Afo)
and frequencies (Fao, Ffo) of amplitude and frequency oscillations in the generator’s internal voltage by reactive
power transmission.
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that the influence of the oscillations on power losses in the transmission line
is negligible.

3.2 Dynamic analysis

The Heffron-Phillips model described in Section 2 is used for the analysis of the
dynamic characteristics of the synchronous generator. The impact of the inputs’
variations on the oscillations is studied on the synchronous generator with the
following data [4]:

New parameters in Table 6 are as follows: SN is nominal power [MVA], VN is
nominal voltage [kV], cos φN is a nominal power factor, and x’d is unsaturated
d-axis transient reactance [pu].

From the data in Table 6, the equilibrium state for the Heffron-Phillips model is
calculated by means of a phasor diagram. Phasor equations permit the solution of
the initial conditions that exist prior to the application of the inputs’ variations. The
linearization coefficients of the Heffron-Phillips model are calculated for the syn-
chronous generator with data in Table 6 and for the calculated equilibrium state’s
data. The linearization coefficients for nominal operating point (PN = 1 [pu], cos
φN = 0.85), and eigenvalues of the Heffron-Phillips model (λ1, λ2, and λ3) are
presented in Table 7.

The linearized Heffron-Phillips model of a synchronous generator has three
eigenvalues. The damping ratio and frequency of rotor angle oscillation are seen
directly from the dominant conjugate complex eigenvalues. Therefore, it is very
transparent to investigate the dependence of the synchronous generator’s oscillation
dynamics from the operating point by means of eigenvalue analysis. By changing
the operating point, the Heffron-Phillips model’s eigenvalues also change.

Transient response of the synchronous generator with data in Table 6 and
nominal operating point with data in Table 7 are shown in Figures 11–13. Step
changes are simulated in both generator’s inputs. Figure 11 shows the simulated

SN = 160 [MVA] VN = 15 [kV] cos φN = 0.85

ωs = 377 [rad s�1]

T’d0 = 5.9 [pu] H = 2.37 [s] D = 2.0 [pu]

Re = 0.02 [pu] Le = 0.4 [pu] VIB = 1.0 [pu]

Rs = 0.0011 [pu] RF = 0.0007 [pu] x’d = 0.245 [pu]

Ld = 1.700 [pu] Lq = 1.640 [pu] LF = 0.101 [pu]

LD = 0.055 [pu] LQ = 0.036 [pu] LAD = 1.550 [pu]

ld = 0.150 [pu] lq = 0.150 [pu] LAQ = 1.490 [pu]

Table 6.
Data of the synchronous generator used for dynamic analysis [4].

PN = 1.0 [pu] QN = 0.62 [pu] cos φN = 0.85

K1 = 1.4478 K2 = 1.3174 K3 = 0.3072

K4 = 1.8052 K5 = 0.0294 K6 = 0.5257

λ1 = �0.3502 + 10.7270i λ2 = �0.3502 � 10.7270i λ3 = �0.2732

Table 7.
Linearization parameters and eigenvalues of the Heffron-Phillips model in the nominal operating point.
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trajectory of the turbine mechanical torque and rotor excitation voltage. Step
changes are selected in order to maximize the excitation of oscillations.

The responses of the generated electrical power and the stator voltage are shown
in Figure 12. The oscillations are seen clearly from the response of the generated
electrical power.

Figure 13 shows the response of the rotor speed and rotor angle on the inputs’
trajectories shown in Figure 11.

Figure 11.
Synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation voltage Efd(t)
[pu], nominal operating point P = 1.0 [pu] and Q = 0.62 [pu].

Figure 12.
Synchronous generator outputs’ trajectories: Generated electrical power Pe(t) [pu] and stator terminal voltage
Vt(t) [pu], nominal operating point P = 1.0 [pu] and Q = 0.62 [pu].
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To evaluate the influence of the operating point on the synchronous generator’s
dynamics, the Heffron-Phillips model was calculated, and simulations were
performed at different operating points for different types of generators with dif-
ferent nominal values. From the obtained results, it was obvious that the dynamics
of the synchronous generator vary significantly.

In this text, results for the synchronous generator with data in Table 6 are
presented for the two most distinctive operating points:

• The operating point with high active power and low reactive power: P = 1.0
[pu] and Q = 0.1 [pu]. This point represents the strongly damped operating
point and, therefore, the less problematic case for testing of the PSS.

• The operating point with low active power and high reactive power P = 0.1
[pu] and Q = 1.0 [pu]. This point represents the weakly damped real operating
point and, therefore, the worst case for testing of the PSS.

Table 8 shows the linearization data and Heffron-Phillips model eigenvalues for
the operating point where active power is generated with very high power factor
cos φ.

The results of the simulation of the synchronous generator at operating point
P = 1 [pu] and Q = 0.1 [pu] are shown in Figures 14–16.

P = 1.0 [pu] Q = 0.1 [pu] cos φ = 0.995

K1 = 1.2506 K2 = 1.5867 K3 = 0.3072

K4 = 2.2164 K5 = �0.0730 K6 = 0.3693

λ1 = �0.4493 + 9.9715i λ2 = �0.4493 � 9.9715i λ3 = �0.0750

Table 8.
Linearization parameters and eigenvalues of the Heffron-Phillips model at operating point P = 1.0 [pu] and
Q = 0.1 [pu].

Figure 13.
Synchronous generator outputs’ trajectories: Rotor speed ω(t) [pu] and rotor angle δ(t) [degrees], nominal
operating point P = 1.0 [pu] and Q = 0.62 [pu].

15

Robust and Adaptive Control for Synchronous Generator’s Operation Improvement
DOI: http://dx.doi.org/10.5772/intechopen.92558



Table 9 shows the linearization data and Heffron-Phillips model eigenvalues for
other interesting operating points. In this case, almost only reactive power is gen-
erated—Power factor cos φ is very small.

The results of the simulation of the synchronous generator in operating point
P = 0.1 [pu] and Q = 1.0 [pu] are shown in Figures 17–19.

Figure 14.
Synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation voltage Efd(t)
[pu], operating point P = 1.0 [pu] and Q = 0.1 [pu].

Figure 15.
Synchronous generator outputs’ trajectories: Generated electrical power Pe(t) [pu] and stator terminal voltage
Vt(t) [pu], operating point P = 1.0 [pu] and Q = 0.1 [pu].
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P = 0.1 [pu] Q = 1.0 [pu] cos φ = 0.099

K1 = 1.2614 K2 = 0.1631 K3 = 0.3072

K4 = 0.1219 K5 = 0.0185 K6 = 0.6207

λ1 = �0.2123 + 10.0141i λ2 = �0.2123 � 10.0141i λ3 = �0.5490

Table 9.
Linearization parameters and eigenvalues of the Heffron-Phillips model at operating point P = 0.1 [pu] and
Q = 1.0 [pu].

Figure 16.
Synchronous generator outputs’ trajectories: Rotor speed ω(t) [pu] and rotor angle δ(t) [degrees], operating
point P = 1.0 [pu] and Q = 0.1 [pu].

Figure 17.
Synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation voltage Efd(t)
[pu], operating point P = 0.1 [pu] and Q = 1.0 [pu].
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From the analysis of the effect of different loadings on the synchronous genera-
tor dynamic characteristics, it can be concluded that the variations in the machine
dynamics are considerable in the entire operating range, and, therefore, a control
system is necessary for damping of the oscillations. From the comparison of the
responses across different operating points, it is obvious that the present system is
nonlinear and that the conventional linear control theory does not provide adequate
damping throughout the entire operating area. Therefore, the implementation of a
robust or adaptive control theory is meaningful.

Figure 19.
Synchronous generator outputs’ trajectories: Rotor speed ω(t) [pu] and rotor angle δ(t) [degrees], operating
point P = 0.1 [pu] and Q = 1.0 [pu].

Figure 18.
Synchronous generator outputs’ trajectories: Generated electrical power Pe(t) [pu] and stator terminal voltage
Vt(t) [pu], operating point P = 0.1 [pu] and Q = 1.0 [pu].
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4. Conventional control system for synchronous generator’s rotor
excitation equipment

Two principal control systems affect a synchronous generator directly: a gover-
nor control system and an excitation control system. The governor control system
controls the mechanical power from a steam or water turbine by opening or closing
valves regulating the steam or water flow. The response of the governor control
system is too slow to damp the synchronous generator’s oscillations, which are
mainly in the frequency range 0.5–2.5 Hz. Damping the oscillations is possible only
with the excitation control system. The excitation control system (also called an
automatic voltage regulator) changes the rotor field voltage (and current) in such a
way that the generator’s output voltage is the same (or close enough) to the refer-
ence voltage. In modern power plants, the thyristor or transistor rectifiers are used
mainly to generate the required voltage for rotor winding. The electrical power flow
from the excitation system is much smaller than the mechanical power flow. This,
and the fact that semiconductor components are used in the excitation system
instead of mechanical ones, is the reason that the excitation system is significantly
faster than the governor system. Therefore, an exciter is used for the damping of the
oscillations.

A conventional linear PSS approach is based on utilization of the static excitation
system. Through this system, the PSS changes the field excitation voltage of a
synchronous generator. An additional component of an electrical torque is gener-
ated as a consequence. This torque must be in phase with the rotor speed and thus
increases damping of the synchronous generator [9]. Figure 20 presents a block
diagram of the Heffron-Phillips model of synchronous generator equipped with an
excitation system, voltage controller, and power system stabilizer [10]. The gener-
ator’s output voltage is compared with a reference voltage, and the calculated error
is driven to the rectifier with an integrated voltage controller. The rectifier with the
voltage controller is presented with the first-order model. The PSS input represents
one or more signals in which oscillations are visible. The PSS generates an additional
signal, which is added to the voltage error.

Figure 20.
Block diagram of the Heffron-Phillips model of synchronous generator equipped with excitation system, voltage
controller, and power system stabilizer.
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The symbols in Figure 20 represent the following: kes and Tes are the excitation
system gain [pu.] and the time constant [s], respectively, Efd,ref is the reference for
field excitation voltage Efd (both in [pu]), while uPSS, yPSS, and GPSS(s) are the PSS
input, the output (both in [pu]), and the transfer function, respectively. As for the
variables of the Heffron-Phillips model, subscript Δ denotes the deviation of the
variables from the steady-state operating points, and s is the Laplace complex
variable.

For PSS input uPSSΔ, the variables must be used which contain information about
oscillations. These variables are electrical power, rotor angle, rotor speed, fre-
quency, terminal voltage, and acceleration torque. The electrical power is selected
commonly as the input to the PSS. The output of the PSS, yPSSΔ, is the control signal
for the excitation system. A transfer function of a conventional linear PSS is
represented as follows:

GPSS sð Þ ¼ yPSS sð Þ
uPSS sð Þ ¼ kPSS

sT1 þ 1

sT2 þ 1

� �

sT3 þ 1

sT4 þ 1

� �

sTw

sTw þ 1

� �

Gaaf sð Þ (20)

where kPSS denotes the stabilizer gain [pu]; T1,T2,T3, and T4 are time constants
of the stabilizers lead–lag compensators [s]; Tw is the time constant of the high-pass
(washout) filter [s]; and Gaaf(s) is the transfer function of the low-pass
(antialiasing) filter.

Based on the block diagram in Figure 20 and the transfer function in (Eq. (6)),
the IEEE Association established the IEEE Standard for the PSS studies [11]. The
Standard enables the unification of commercial applications of PSS. The Standard
sets out four basic types of PSS, which differ mainly with regard to the available
input and degree of the transfer function. Most of the commercial PSS are realized
on the standardized proposals.

For synthesis of a PSS, knowledge is required of a mathematical model of a
synchronous generator with an excitation system. The required model is calculated
from the known data of a synchronous generator, or by means of identification.
Usage of systematic methods for tuning parameters of conventional PSS assures
effective damping for the nominal operating point, though with a significantly
decreased damping for some non-nominal operating points. The other disadvan-
tages of these methods are the requirement of the synchronous generator mathe-
matical model’s parameters and the time-consuming tuning. Therefore, in practice,
the systematic methods are rarely implemented. Hence, neither optimal damping in
the nominal operating point nor stable operation is secured in the entire operating
range. The implementations of an incorrectly tuned PSS could be harmful. Such PSS
are, in practice, often turned off [12].

Due to a mathematical model of a synchronous generator not being available,
sophisticated and time-consuming synthesis of the conventional linear PSS, and its
proven non-optimum damping in the entire operating range of synchronous gener-
ator, advanced control theories are recommended for the PSS implementation.

5. Robust PSS

Among many robust control approaches, the sliding mode control is one of the
most interesting. The main advantages of this control are its insensitivity to param-
eter variations, rejection of disturbances, a decoupling design procedure, and sim-
ple implementations by means of power converters [13].

The fundamentals of the sliding mode control theory date back to the late 1950s.
Since that time, new research directions emerged, due to the appearance of new

20

Automation and Control



classes of control problems, new mathematical methods, and new prospects of
implementation [13–15].

A modification of the sliding mode control based on the decoupling principle
will be used for the proposed PSS design. The mathematical model of the controlled
plant must be transformed to a regular form:

_xRF1 tð Þ ¼ ARF11xRF1 tð Þ þARF12xRF2 tð Þ (21)

_xRF2 tð Þ ¼ ARF21xRF1 tð Þ þARF22xRF2 tð Þ þ BRF2up tð Þ (22)

where ARFij (i,j = 1,2) and BRF2 are constant matrices of relevant dimensions,
xRF1 tð Þ∈ℜn�m and xRF2 tð Þ∈ℜm are state-space vectors, and up(t) is a controlled
plant input vector. Matrix BRF2 must be nonsingular.

For the PSS design being based on the simplified linearized model of synchro-
nous generator, a state-space vector in regular form xRF(t), where n = 3 and m = 1,
could be selected as

xRF tð Þ ¼
xRF1 tð Þ
xRF2 tð Þ

� �

where : xRF1 tð Þ ¼
δΔ tð Þ
_δΔ tð Þ

� �

and xRF2 tð Þ ¼ €δΔ tð Þ (23)

Sliding mode control for implementation in PSS requires knowledge of all state-
space variables of the synchronous generator’s regular form model. Measurements
of electrical power, rotor speed, and terminal voltage are feasible only at the syn-
chronous generator. For the sliding mode control, the state-space variables for the
regular form model need to be calculated from the measured variables. To calculate
regular form state-space variables, firstly, variables δΔ(t) and E’q∆(t) can be calcu-
lated by inverting (Eq. (19)), such as

δΔ tð Þ
E0
qΔ tð Þ

" #

¼ 1

K1K6 � K2K5

K6 ‐K2

‐K5 K1

� �

PeΔ tð Þ
V tΔ tð Þ

� �

(24)

Finally, state-space variables xRF1(t) and xRF2(t) can be calculated with trans-
formation

δΔ tð Þ
_δΔ tð Þ
€δΔ tð Þ

2

6

4

3

7

5
¼

1 0 0

0 ωr 0

�K1ωs

2H
�Dωs

2H
�K2ωs

2H

2

6

6

4

3

7

7

5

δΔ tð Þ
ωΔ tð Þ
E0
qΔ tð Þ

2

6

4

3

7

5
(25)

In such a way, the state-space variables could be obtained without explicit
differentiation.

A sliding surface was selected, such that the rotor’s angle deviation and rotor’s
speed deviation converged exponentially to zero. For this aim, a linear equation of
the sliding surface was selected:

s tð Þ ¼ DxRF1 tð Þ þ xRF2 tð Þ, s tð Þ∈ℜm (26)

When the sliding mode appears on manifold s(t) = 0 where xRF2(t) = –DxRF1(t),
the system behavior is governed by (n-m)-th-order equation

_xRF1 ¼ ARF11 �ARF12Dð ÞxRF1 (27)

To obtain the required dynamic properties of the control system, we assigned
eigenvalues of a closed-loop system with a linear feedback. For the controllable
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system described with (Eqs. (21), (22)), there exists matrix D, which ensures the
desired eigenvalues of the system in (Eq. (27)).

In the first stage of design of the sliding mode, we chose the desired eigenvalues
of the system described with (Eq. (27)). From the desired eigenvalues, we deter-
mined matrix D as the solution to the (n-m)-th-order eigenvalue task. Matrix D
determines the equation of discontinuous sliding surfaces (Eq. (27)).

The second stage of the design procedure is the selection of the discontinuous
control law, such that the sliding mode always arises at manifold s(t) = 0, which is
equivalent to the stability of the origin in m-dimensional space s(t). The dynamics
on the s(t) space are described by the equation

_s tð Þ ¼ DARF11 þARF21½ �xRF1 tð Þ þ DARF12 þARF22½ �xRF2 tð Þ þ BRF2u tð Þ
¼ ExRF tð Þ þ BRF2up tð Þ (28)

An appropriate choice of the control law represents the discontinuous control
described with

up tð Þ ¼ �g xRF tð Þj jB�1
RF2 sgn s tð Þ (29)

where xRF tð Þj j is the sum of vector xRF tð Þ component moduli and g is the
constant.

The selected discontinuous control leads to

_s tð Þ ¼ ExRF tð Þ � g xRF tð Þj j sgn s tð Þ (30)

There exists such positive value of g that the functions s tð Þ and _s tð Þhave different
signs. It means that the sliding mode will occur on a discontinuity surface. The
influence of discontinuity of the control signal is reduced by varying the amplitude
of the control signal.

6. Adaptive PSS

Many examples with utilization of different adaptive techniques for realization of
PSS can be found in publications. The majority of PSS realizations are based on usage
of indirect adaptive control, where explicit identification of a mathematical model of
a synchronous generator is needed to be carried out [16, 17]. A transparent structure
of the adaptive control system with the separated identification algorithm and the
control law represents an advantage of indirect adaptive PSS. There are significantly
less publications available where usage of direct adaptive control for PSS is presented
[18]. The methods of direct adaptive control are more difficult to be utilized for the
conventional PSS structure than those for the indirect adaptive control. However,
their advantage is in not requiring explicit identification of the SG, and they are,
therefore, computationally less demanding. In this article, the developed robust PSS
will be compared with direct adaptive PSS which was studied in detail in [2].

The theoretical foundation for the used direct adaptive PSS is represented by a
theory of model reference adaptive control for almost strictly positive real plants.

The implemented direct adaptive control is considered for the controlled plant,
which is described by

_xp tð Þ ¼ Apxp tð Þ þ Bpup tð Þ (31)

yp tð Þ ¼ Cpxp tð Þ (32)
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where xp tð Þ∈ℜn is the controlled plant state-space vector, up tð Þ∈ℜmis the
controlled plant input vector, yp tð Þ∈ℜr is the controlled plant output vector, and

Ap, Bp, and Cp are the matrices of the appropriate dimensions.
It is assumed that:

• The range of the plant matrices parameters is bounded.

• All possible pairs Ap and Bp are controllable and output stabilizable.

• All possible pairs Ap and Cp are observable.

The reference model is described by

_xm tð Þ ¼ Amxm tð Þ þ Bmum tð Þ (33)

ym tð Þ ¼ Cmxm tð Þ (34)

where xm(t) is the model state vector, um(t) is the model command vector,
ym(t) is the model output vector, and Am, Bm, and Cm are matrices of appropriate
dimensions. The model is assumed to be stable. The dimension of the model state
may be less than the dimension of the plant state.

The output tracking error is defined as

ey tð Þ ¼ ym tð Þ � yp tð Þ (35)

The control up(t) for the plant output vector yp(t) to approximate “reasonably
well” the output of the reference model ym(t) without explicit knowledge of Ap, Bp,
and Cp is generated by the adaptive algorithm:

up tð Þ ¼ Ke tð Þey tð Þ þKx tð Þxm tð Þ þKu tð Þum tð Þ (36)

up tð Þ ¼ K tð Þr tð Þ (37)

where

K tð Þ ¼ Ke tð Þ,Kx tð Þ,Ku tð Þ½ � (38)

rT tð Þ ¼ eTy tð Þ,xT
m tð Þ,uT

m tð Þ
h i

: (39)

The adaptive gains K(t) are obtained as a combination of the “proportional” and
“integral” terms

K tð Þ ¼ KP tð Þ þKI tð Þ (40)

KP tð Þ ¼ ey tð ÞrT tð ÞT (41)

_KI tð Þ ¼ ey tð ÞrT tð ÞT� σKI tð Þ (42)

where σ term is introduced in order to avoid divergence of the integral gains in

the presence of disturbance and T and T are positive definite and positive semi-
definite adaptation coefficient matrices, respectively.

The necessary condition for asymptotic tracking when um(t) is a step command
is that the controlled plant is almost strictly positive real (ASPR) [19]. If the con-
trolled plant is not ASPR, the augmenting of the plant with a feedforward
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compensator is suggested, such that the augmented plant is ASPR. In this case, the
previously described adaptive controller may be utilized.

For the non-ASPR plant described by the transfer matrix

Gp sð Þ ¼ Cp sI�Ap

� ��1
Bp (43)

the feedforward compensator is defined by the strictly proper transfer function
matrix Gff(s) with the realization

_sp tð Þ ¼ Assp tð Þ þ Bsup tð Þ (44)

rp tð Þ ¼ Dssp tð Þ (45)

Instead of the plant output yp(t), augmented output zp(t) is to be controlled:

zp tð Þ ¼ yp tð Þ þ rp tð Þ (46)

The augmented system is defined as

Ga sð Þ ¼ Gp sð Þ þGff sð Þ (47)

Feedforward compensator Gff(s) is an inverse of a (fictitious) stabilizing con-
troller for the plant and must be selected such that the resulting relative degree of
augmented plant Ga(s) is indeed 1. For example, if SISO plant Gp(s) is stabilizable
by a PD controller, one can use its inverse in a manner that is just a simple first-
order low-pass filter.

7. Results

The effectiveness of the proposed sliding mode PSS and direct adaptive PSS was
tested with the simulations of the seventh-order nonlinear model of the synchro-
nous generator in the entire operating range, numerically, as well as experimentally,
in the laboratory.

7.1 Robust PSS

A block diagram of the sliding mode PSS is shown in Figure 21.
A sliding mode controller requires measurements of three synchronous genera-

tor’s quantities: electrical power, rotor speed, and terminal voltage. Input filters are
low-pass filters to eliminate the measured noise. From these measured variables, the
state-space variables for the regular form model are calculated by means of state
transformation. State transformation is carried out by Eqs. (24) and (25). The
obtained regular form state-space variables are used in the control law described
with Eqs. (26) and (29). The output of the discontinuous control law is conducted in
the limiter. Hard type saturation of the PSS output was utilized, with a limited value
of �35% of the value of a nominal rotor excitation voltage. The set value represents
a limitation in a real excitation system.

For a synchronous generator with the data listed in Section 3, we selected
desired eigenvalues λ1,2 ¼ �2 for the system in (Eq. (27)). The following control law
parameters were calculated [2]:

D ¼ 4 4½ � B�1
RF2 ¼ �0:06 g ¼ 350 (48)
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7.1.1 Nominal operating point

Figures 22–24 show the responses of the seventh-order nonlinear model of the
considered 160 MVA synchronous generator equipped with an excitation system

Figure 22.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at nominal operating point P = 1.0 [pu] and Q = 0.62
[pu], with robust PSS.

Figure 23.
Rotor angle δ(t) [pu] at nominal operating point P = 1.0 [pu] and Q = 0.62 [pu], with robust PSS.

Figure 21.
Block diagram of the sliding mode PSS.
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and robust PSS to the step changes of the mechanical torque and the field excitation
voltage, as shown in Figure 11. The synchronous generator operates in in the
vicinity of the nominal operating point. Figures 22 and 23 show the generated
electrical power, rotor speed, and rotor angle at nominal operating point P = 1.0
[pu] and Q = 0.62 [pu].

Figure 24 shows the excitation voltage produced by a robust PSS at operating
point P = 1.0 [pu] and Q = 0.62 [pu]. The limits of the limiters are seen clearly.

7.1.2 Influence of load disturbance

During the operation in the entire operating range, the dynamics of the syn-
chronous generator vary significantly. The sliding mode controller with the calcu-
lated parameters was stable and robust and displayed the effective damping in all
operating conditions. The theoretical analysis of the invariance of the proposed
control system to the disturbances and the variation of the plant parameter are
described in detail in [20].

In this work, the results of the two most extreme operating points are presented
(the same operating points as described in Section 3.2):

• P = 1.0 [pu] and Q = 0.1 [pu]: This is a stable operation point with heavily
damped oscillations.

• P = 0.1 [pu] and Q = 1.0 [pu]: This is the critical operating point with weakly
damped oscillations.

Figure 25 shows the generated electrical power and rotor speed at operating
point P = 1.0 [pu] and Q = 0.1 [pu], and Figure 26 shows both quantities at
operating point P = 0.1 [pu] and Q = 1.0 [pu].

7.1.3 Influence of parameter deviations

To analyze the impact of parameter variations on the damping efficiency of the
proposed control systems, both control systems were tested at different operating
points for synchronous generators of different types and nominal powers. In this
work, the results are presented for a synchronous generator with nominal power 555
MVA. The data of the considered synchronous generator are shown in Table 10 [4].

The linearization coefficients for nominal operating point (PN = 1 [pu], cos
φN = 0.9) and eigenvalues of the Heffron-Phillips model (λ1, λ2, λ3) are presented in
Table 11.

The transient response of the noncontrolled synchronous generator with data in
Table 10 and nominal operating point data in Table 11 are shown in

Figure 24.
Excitation voltage EFD(t) [pu] at nominal operating point P = 1.0 [pu] and Q = 0.62 [pu], with robust PSS.
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Figure 26.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point P = 0.1 [pu] and Q = 1.0 [pu], with
robust PSS.

Figure 25.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point P = 1.0 [pu] and Q = 0.1 [pu], with
robust PSS.
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Figures 27 and 28. Step changes are simulated in both generators’ inputs. Figure 27
shows the simulated trajectory of the turbine mechanical torque and rotor excita-
tion voltage. Step changes are selected as the worst case in order to maximize the
excitation of oscillations.

Figure 28 shows the response of the generated electrical power and rotor speed
on the inputs’ trajectories shown in Figure 27.

PN = 1.0 [pu] QN = 0.48 [pu] cos φN = 0.90

K1 = 1.3306 K2 = 1.2988 K3 = 0.3168

K4 = 1.8578 K5 = �0.0107 K6 = 0.4545

λ1 = �0.2554 + 8.4389i λ2 = �0.2554 - 8.4389i λ3 = �-0.1678

Table 11.
Linearization parameters and eigenvalues of the Heffron-Phillips model at the nominal operating point of the
555 MVA synchronous generator.

Figure 27.
The 555 MVA synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation
voltage Efd(t) [pu], nominal operating point P = 1.0 [pu] and Q = 0.48 [pu].

SN = 555 [MVA] VN = 24 [kV] cos φN = 0.90

ωs = 377 [rad s�1]

T’d0 = 8.0 [pu] H = 3.52 [s] D = 2.0 [pu]

Re = 0.02 [pu] Le = 0.4 [pu] VIB = 1.0 [pu]

Rs = 0.0030 [pu] RF = 0.0006 [pu] x’d = 0.300 [pu]

Ld = 1.810 [pu] Lq = 1.760 [pu] LF = 0.165 [pu]

LD = 0.171 [pu] LQ = 0.084 [pu] LAD = 1.660 [pu]

ld = 0.150 [pu] lq = 0.150 [pu] LAQ = 1.610 [pu]

Table 10.
Data of the 555 MVA synchronous generator used for the analysis of the impact of parameter variations on the
damping efficiency [4].
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The results are presented of the robust control at two operating points:

• P = 1.0 [pu] and Q = 0.1 [pu]: The linearization coefficients and eigenvalues of
the Heffron-Phillips model (λ1, λ2, λ3) are presented in Table 12, the step
changes of the mechanical torque and the field excitation voltage are shown in
Figure 29, and the generated electrical power and rotor speed are shown in
Figure 30.

• P = 0.1 [pu] and Q = 1.0 [pu]: The linearization coefficients and eigenvalues of
the Heffron-Phillips model (λ1, λ2, λ3) are presented in Table 13, the step

Figure 28.
The 555 MVA synchronous generator outputs’ trajectories: Rotor speed ω(t) [pu] and rotor angle δ(t) [degrees],
nominal operating point P = 1.0 [pu] and Q = 0.48 [pu], without PSS.

PN = 1.0 [pu] QN = 0.1 [pu] cos φN = 0.995

K1 = 1.1387 K2 = 1.4710 K3 = 0.3168

K4 = 2.1296 K5 = �0.1069 K6 = 0.3281

λ1 = �0.3140 + 7.8075i λ2 = �0.3140 - 7.8075i λ3 = �0.0506

Table 12.
Performance in linearization parameters and eigenvalues of the Heffron-Phillips model in operating point
P = 1.0 [pu] and Q = 0.1 [pu] of the 555 MVA synchronous generator.

PN = 0.1 [pu] QN = 1.0 [pu] cos φN = 0.099

K1 = 1.2340 K2 = 0.1533 K3 = 0.3168

K4 = 0.1204 K5 = 0.0167 K6 = 0.5720

λ1 = �0.1430 - 8.1276i λ2 = �0.1430 + 8.1276i λ3 = �0.3927

Table 13.
Linearization parameters and eigenvalues of the Heffron-Phillips model at operating point P = 0.1 [pu] and
Q = 1.0 [pu] of the 555 MVA synchronous generator.
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changes of the mechanical torque and the field excitation voltage are shown in
Figure 31, and the generated electrical power and rotor speed are shown in
Figure 32.

Figure 25 shows the generated electrical power and rotor speed at heavily
damped operating point P = 1.0 [pu] and Q = 0.1 [pu], and Figure 26 shows both
quantities at weakly damped operating point P = 0.1 [pu] and Q = 1.0 [pu].

Figure 29.
The 555 MVA synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation
voltage Efd(t) [pu], operating point P = 1.0 [pu] and Q = 0.1 [pu].

Figure 30.
The 555 MVA synchronous generator’s electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at nominal
operating point P = 1.0 [pu] and Q = 0.1 [pu], with robust PSS.
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7.2 Adaptive PSS

The proposed direct adaptive controller guarantees stability of any controlled
plant that satisfies ASPR conditions. A synchronous generator with automatic volt-
age system does not satisfy the necessary ASPR conditions. Augmenting of the plant
with a parallel feedforward compensator must be carried out to assure stable oper-
ation of the entire adaptive control system. The augmentation is performed such

Figure 31.
The 555 MVA synchronous generator inputs’ trajectories: Mechanical torque Tm(t) [pu] and rotor excitation
voltage Efd(t) [pu], operating point P = 0.1 [pu] and Q = 1.0 [pu].

Figure 32.
The 555 MVA synchronous generator’s electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at nominal
operating point P = 0.1 [pu] and Q = 1.0 [pu], with robust PSS.
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that the augmented plant fulfills ASPR conditions. The requirement is satisfied in
the majority of cases with the introduction of a feedforward compensator Gff(s),
which is connected in parallel to the basic controlled plant. The suitable
feedforward stabilizer represents a first-order low-pass filter with feedforward
compensator gain kff and feedforward compensator time constant Tff [18].

A block diagram of the direct adaptive PSS is presented in Figure 33.
The benefit of the control diagram shown in Figure 33, if compared to other

adaptive structures, is a very simple realization of the adaptation mechanism. The
presented direct adaptive PSS is essentially simplified; namely, a reference model is
not required because of the constant (zero) command signal.

The reference terminal voltage Vt,ref and the mechanical torque Tm variables
represent the main disturbances which affect the synchronous generator’s dynam-
ics. The variations of the synchronous generator loading can be treated as controlled
plant parameters’ perturbations. The washout block (input filters) serves as a high-
pass filter, with the time constant Tw high enough to allow signals associated with
oscillations in generator active power Pe to pass unchanged. Without it, steady
changes in power would modify the terminal voltage. It allows the PSS to respond
only to changes in generator active power. From the viewpoint of the washout
function, the value of Tw is not critical and may be in the range of 1–20 s. The main
consideration is that it would be long enough to pass stabilizing signals unchanged
at the frequencies of interest. Direct adaptive control law is represented with
(Eqs. (35)–(42)). The necessary feedforward compensator is described with
Eqs. (44) and (45). The same model of the actuator saturation as in Section 7.1.1
was included in the simulations.

The parameters of the adaptation mechanism for the considered linearized con-
trolled plant are determined with the rules described in [2], such as

T ¼ 0:1 � 103 T ¼ 200 � 103 σ ¼ 50 � 10�3 kff ¼ 1 � 10�3 Tff ¼ 1 � 10�3

(49)

7.2.1 Nominal operating point

Figures 34–36 show the responses of the seventh-order nonlinear model of the
considered 160 MVA synchronous generator equipped with an excitation system
and adaptive PSS to the step changes of the mechanical torque and the field excita-
tion voltage, as shown in Figure 11. Figures 34 and 35 show the generated electrical
power, rotor speed, and rotor angle at nominal operating point P = 1.0 [pu] and
Q = 0.62 [pu].

Figure 36 shows the excitation voltage produced by an adaptive PSS at nominal
operating point P = 1.0 [pu] and Q = 0.62 [pu].

Figures 34–36 are directly comparable with Figures 22–25.

Figure 33.
Block diagram of the direct adaptive PSS.
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7.2.2 Influence of load disturbance

The results of the two most extreme operating points are presented (the same as
in Sections 3.2 and 7.1.2):

• P = 1.0 [pu] and Q = 0.1 [pu]: The generated electrical power and rotor speed
are shown in Figure 37.

Figure 34.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point P = 1.0 [pu] and Q = 0.62 [pu], with
adaptive PSS.

Figure 35.
Rotor angle δ(t) [pu] at nominal operating point P = 1.0 [pu] and Q = 0.62 [pu], with adaptive PSS.

Figure 36.
Excitation voltage EFD(t) [pu] at nominal operating point P = 1.0 [pu] and Q = 0.62 [pu], with adaptive PSS.
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Figure 37.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point P = 1.0 [pu] and Q = 0.1 [pu], with
adaptive PSS.

Figure 38.
Electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point P = 0.1 [pu] and Q = 1.0 [pu], with
adaptive PSS.
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• P = 0.1 [pu] and Q = 1.0 [pu]: The generated electrical power and rotor speed
are shown in Figure 38.

7.2.3 Influence of parameter deviations

The effectiveness of the adaptive PSS for oscillation damping in the presence of
parameter deviations is shown with a test on the 555 MVA synchronous generator,

Figure 39.
The 555 MVA synchronous generator’s electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point
P = 1.0 [pu] and Q = 0.1 [pu], with adaptive PSS.

Figure 40.
The 555 MVA synchronous generator’s electrical power Pe(t) [pu] and rotor speed ω(t) [pu] at operating point
P = 0.1 [pu] and Q = 1.0 [pu], with adaptive PSS.
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as in Section 7.1.3. Figure 39 shows the generated electrical power and rotor speed
at operating point P = 1.0 [pu] and Q = 0.1 [pu], and Figure 40 shows both
quantities at operating point P = 0.1 [pu] and Q = 1.0 [pu].

7.3 Assessment of the presented power system stabilizers

From the results presented in Sections 7.1 and 7.2 presented in Figures 22–32
and 34–40, it is seen clearly that robust and adaptive PSS improve the damping of
oscillations of the synchronous generators significantly (shorter time of oscillations,
smaller overshoot, and better damping). The numerical assessment was done for
better insight into the effectiveness of both control algorithms. The integral square
root performance index of rotor speed oscillation (

Ð

ω2dt) was introduced for more
objective numerical evaluation of the proposed control approaches. The time
responses shown in Figures 13, 16, 19, 22, 25, 26, 34, 37, and 38 were considered

Synchronous generator with nominal power SN = 160 [MVA]

P [pu] Q [pu] cos φ Performance index

Without PSS Robust PSS Adaptive PSS

1.0 0.1 0.995 1.98 10�6 0.96 10�6 0.91 10�6

1.0 0.62 0.85 0.99 10�6 0.56 10�6 0.44 10�6

0.1 1.0 0.099 0.56 10�6 0.41 10�6 0.42 10�6

Table 14.
Integral square root performance index of rotor speed oscillation of the 160 MVA synchronous generator
without PSS, with robust PSS, or with adaptive PSS at different operating points.

Synchronous generator with nominal power SN = 160 [MVA]

P [pu] Q [pu] cos φ Improvement of performance index regarding the case without

PSS [%]

Robust PSS Adaptive PSS

1.0 0.1 0.995 51 [%] 54 [%]

1.0 0.62 0.85 43 [%] 55 [%]

0.1 1.0 0.099 26 [%] 25 [%]

Table 15.
The improvements of the integral square root performance index of rotor speed oscillation of the 160 MVA
synchronous generator at different operating points following the use of robust or adaptive PSS.

Synchronous generator with nominal power SN = 555 [MVA]

P [pu] Q [pu] cos φ Performance index

Without PSS Robust PSS Adaptive PSS

1.0 0.1 0.995 1.73 10�6 0.76 10�6 0.92 10�6

1.0 0.62 0.85 0.89 10�6 0.51 10�6 0.47 10�6

0.1 1.0 0.099 0.33 10�6 0.28 10�6 0.28 10�6

Table 16.
Integral square root performance index of rotor speed oscillation of the 555 MVA synchronous generator
without PSS, with robust PSS, or with adaptive PSS at different operating points.
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for a synchronous generator with nominal power 160 MVA. The calculated perfor-
mance indexes are shown in Table 14. The improvements of the performance index
by means of proposed control systems regarding the noncontrolled synchronous
generator are presented in Table 15.

The time responses shown in Figures 28, 30, 32, 39, and 40 were considered for
a synchronous generator with nominal power 555 MVA. The calculated perfor-
mance indexes of the synchronous generator without PSS, with robust PSS, or with
adaptive PSS are shown in Table 16. The improvements of the performance index
by means of proposed control systems regarding the noncontrolled synchronous
generator are presented in Table 17.

From the obtained numerical results, it is obvious that the proposed robust and
adaptive PSS assure significant damping improvement in the entire operating range.
The effectiveness of both proposed stabilizers are similar. They depend on the type
of generator, largeness of the generator, operating point (loading), etc. In general,
we can conclude that, according to the introduced performance index, their
improvement is in the range of 10–60 [%].

8. Conclusion

Changes in construction of synchronous generators and the introduction of
additional control systems into power systems have led to significant increase of
oscillations in power systems and related stability problems. Conventional linear
power system stabilizers are not able to solve these problems. Advanced control
theories seem appropriate to design more powerful power system stabilizers.

Two power system stabilizers were developed based on robust control theory
and adaptive control theory. The effectiveness of both stabilizers was evaluated as
objectively as possible. The proposed control approaches were evaluated on a basis
of a theoretical analysis and numerical simulations. The sliding mode stabilizer and
direct adaptive stabilizer have the following advantages in comparison to conven-
tional linear stabilizers:

• The proofs of the stability of the entire closed-loop system exist for both
controllers presented.

• Both controllers require minimal preknowledge of the controlled plant
structure and parameters.

• Both controllers have an uncomplicated tuning procedure.

Synchronous generator with nominal power SN = 555 [MVA]

P [pu] Q [pu] cos φ Improvement of performance index regarding the case without

PSS [%]

Robust PSS Adaptive PSS

1.0 0.1 0.995 56 [%] 47 [%]

1.0 0.62 0.85 43 [%] 47 [%]

0.1 1.0 0.099 15 [%] 15 [%]

Table 17.
The improvements of the integral square root performance index of rotor speed oscillation of the 555 MVA
synchronous generator at different operating points following the use of robust or adaptive PSS.
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• Both controllers do not require the measurement of the additional control plant
variables.

• Both controllers are easy to implement (low computing demand and low
sampling frequency).

• Both controllers damp oscillations in the entire operating range and assure
stability.

• Both controllers do not calculate high output amplitudes and are insensitive to
the actuator’s saturations.

The comparison of the developed novel power system stabilizers shows the
significant advantage of the modern concepts in all the considered ranges of the
operation. Due to the actuality and importance of the issues tackled, the develop-
ment of more effective power system stabilizers is inevitable. It is our estimation
that the intensity of research in this field will increase in the future. In our evalua-
tion, the robust and adaptive controls emerged as the most prospective concepts for
implementation in power system stabilizers.
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