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Chapter

Some Identities Involving
2-Variable Modified Degenerate
Hermite Polynomials Arising
from Differential Equations
and Distribution of Their Zeros
Cheon Seoung Ryoo

Abstract

In this chapter, we introduce the 2-variable modified degenerate Hermite
polynomials and obtain some new symmetric identities for 2-variable modified
degenerate Hermite polynomials. In order to give explicit identities for 2-variable
modified degenerate Hermite polynomials, differential equations arising from
the generating functions of 2-variable modified degenerate Hermite polynomials
are studied. Finally, we investigate the structure and symmetry of the zeros of the
2-variable modified degenerate Hermite equations.

Keywords: differential equations, symmetric identities, modified degenerate
Hermite polynomials, complex zeros

1. Introduction

The Hermite equation is defined as

u00 xð Þ � 2xu0 xð Þ þ ε� 1ð Þu xð Þ ¼ 0, x∈ �∞,∞½ �, (1)

where ε is unrestricted. Hermite equation is encountered in the study of
quantum mechanical harmonic oscillator, where ε represent the energy of the
oscillator. The ordinary Hermite numbers Hn and Hermite polynomials Hn xð Þ are
usually defined by the generating functions

et 2x�tð Þ ¼
X

∞

n¼0

Hn xð Þ
tn

n!
(2)

and

e�t2 ¼
X

∞

n¼0

Hn
tn

n!
: (3)

Clearly, Hn ¼ Hn 0ð Þ.
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It is known that these numbers and polynomials play an important role in
various fields of mathematics and physics, including number theory, combinations,
special functions, and differential equations. Many interested properties about that
have been studied (see [1–5]). The ordinary Hermite polynomials Hn xð Þ satisfy the
Hermite differential equation

d2H xð Þ

dx2
� 2x

dH xð Þ

dx
þ 2nH xð Þ ¼ 0, n ¼ 0, 1, 2, … : (4)

Hence ordinary Hermite polynomials Hn xð Þ satisfy the second-order ordinary
differential equation

u00 � 2xu0 þ 2nu ¼ 0: (5)

We remind that the 2-variable Hermite polynomials Hn x, yð Þ defined by the
generating function (see [2])

X

∞

n¼0

Hn x, yð Þ
tn

n!
¼ et xþytð Þ (6)

are the solution of heat equation

∂

∂y
Hn x, yð Þ ¼

∂
2

∂x2
Hn x, yð Þ, Hn x, 0ð Þ ¼ xn: (7)

Observe that

Hn 2x,�1ð Þ ¼ Hn xð Þ: (8)

Motivated by their importance and potential applications in certain problems of
probability, combinatorics, number theory, differential equations, numerical anal-
ysis and other areas of mathematics and physics, several kinds of some special
numbers and polynomials were recently studied by many authors (see [1–8]). Many
mathematicians have studied in the area of the degenerate Stiling, degenerate
Bernoulli polynomials, degenerate Euler polynomials, degenerate Genocchi poly-
nomials, and degenerate tangent polynomials (see [6, 7, 9]).

Recently, Hwang and Ryoo [10] proposed the 2-variable degenerate Hermite
polynomials Hn x, y, λð Þ by means of the generating function

X

∞

n¼0

Hn x, y, λð Þ
tn

n!
¼ 1þ λð Þ

t xþytð Þ
λ : (9)

Since 1þ μð Þ
t
μ ! et as μ ! 0, it is evident that (9) reduces to (6). The 2-variable

degenerate Hermite polynomials Hn x, y, λð Þ in generating function (9) are the
solution of equation

∂

∂y
Hn x, y, λð Þ ¼

λ

log 1þ λð Þ

∂
2

∂x2
Hn x, y, λð Þ,

Hn x, 0, λð Þ ¼
log 1þ λð Þ

λ

� �n

xn:

(10)
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Since log 1þλð Þ
λ

! 1 as λ approaches to 0, it is apparent that (10) descends to (7).

Mathematicians have studied the differential equations arising from the gener-
ating functions of special numbers and polynomials (see [10–14]). Now, a new class
of 2-variable modified degenerate Hermite polynomials are constructed based on
the results so far. We can induce the differential equations generated from the
generating function of 2-variable modified degenerate Hermite polynomials. By
using the coefficients of this differential equation, we obtain explicit identities for
the 2-variable modified degenerate Hermite polynomials. The rest of the paper is
organized as follows. In Section 2, we construct the 2-variable modified degenerate
Hermite polynomials and obtain basic properties of these polynomials. In Section 3,
we give some symmetric identities for 2-variable modified degenerate Hermite
polynomials. In Section 4, we derive the differential equations generated from the
generating function of 2-variable modified degenerate Hermite polynomials. Using
the coefficients of this differential equation, we have explicit identities for the 2-
variable modified degenerate Hermite polynomials. In Section 5, we investigate the
zeros of the 2-variable modified degenerate Hermite equations by using computer.
Further, we observe the pattern of scattering phenomenon for the zeros of 2-
variable modified degenerate Hermite equations. Our paper will finish with
Section 6, where the conclusions and future directions of this work are showed.

2. Basic properties for the 2-variable modified degenerate Hermite
polynomials

In this section, a new class of the 2-variable modified degenerate Hermite
polynomials are considered. Furthermore, some properties of these polynomials are
also obtained.

We define the 2-variable modified degenerate Hermite polynomials Hn x, yjμð Þ
by means of the generating function

X

∞

n¼0

Hn x, yjμð Þ
tn

n!
¼ 1þ μð Þ

xt
μ eyt

2

: (11)

Since 1þ μð Þ
xt
μ ! ext as μ ! 0, it is clear that (11) reduces to (6). Observe that

degenerate Hermite polynomials Hn x, y, μð Þ and 2-variable modified degenerate
Hermite polynomials Hn x, yjμð Þ are totally different.

Now, we recall that the μ-analogue of the falling factorial sequences as follows:

xjμð Þ0 ¼ 1, xjμð Þn ¼ x x� μð Þ x� 2μð Þ⋯ x� n� 1ð Þμð Þ, n≥ 1ð Þ: (12)

Note that lim μ!1 xjμð Þn ¼ x x� 1ð Þ x� 2ð Þ⋯ x� n� 1ð Þð Þ ¼ xð Þn, n≥ 1ð Þ: We also
need the binomial theorem: for a variable y,

1þ μð Þyt=μ ¼
X

∞

m¼0

ty

μ

� �

m

μm

m!

¼
X

∞

m¼0

X

m

l¼0

S1 m, lð Þ
ty

μ

� �l
μm

m!

 !

¼
X

∞

l¼0

X

∞

m¼l

S1 m, lð Þylμm�l l!

m!

 !

tl

l!
:

(13)
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We remember that the classical Stirling numbers of the first kind S1 n, kð Þ and the
second kind S2 n, kð Þ are defined by the relations (see [6–13])

xð Þn ¼
X

n

k¼0

S1 n, kð Þxk andxn ¼
X

n

k¼0

S2 n, kð Þ xð Þk, (14)

respectively. We also have

X

∞

n¼m

S2 n,mð Þ
tn

n!
¼

et � 1ð Þm

m!
and

X

∞

n¼m

S1 n,mð Þ
tn

n!
¼

log 1þ tð Þð Þm

m!
: (15)

As another application of the differential equation for Hn x, yjμð Þ is as follows:
Note that

G t, x, y, μð Þ ¼ 1þ μð Þ
xt
μ eyt

2

(16)

satisfies

∂G t, x, y, μð Þ

∂y
�

log 1þ μð Þ

μ

� �2
∂
2G t, x, y, μð Þ

∂x2
¼ 0: (17)

Substitute the series in (11) for G t, x, y, μð Þ to get

∂

∂y
Hn x, yjμð Þ ¼

μ

log 1þ μð Þ

� �2
∂
2

∂x2
Hn x, yjμð Þ:

Thus the 2-variable modified degenerate Hermite polynomials Hn x, yjμð Þ in
generating function (11) are the solution of equation

log 1þ μð Þ

μ

� �2
∂

∂y
Hn x, yjμð Þ �

∂
2

∂x2
Hn x, yjμð Þ ¼ 0,

Hn x, 0jμð Þ ¼
log 1þ μð Þ

μ

� �n

xn:

(18)

The generating function (11) is useful for deriving several properties of the 2-
variable modified degenerate Hermite polynomials Hn x, yjμð Þ. For example, we
have the following expression for these polynomials:

Theorem 1. For any positive integer n, we have

Hn x, yjμð Þ ¼
X

n
2½ �

k¼0

log 1þ μð Þ

μ

� �n�2k

xn�2kyk
n!

k! n� 2kð Þ!
, (19)

where ½ � denotes taking the integer part.
Proof. By (11) and (13), we have

X

∞

n¼0

Hn x, yjμð Þ
tn

n!
¼ 1þ μð Þ

xt
μ eyt

2

¼
X

∞

k¼0

yk
t2k

k!

X

∞

l¼0

log 1þ μð Þ

μ

� �l

xl
tl

l!

¼
X

∞

n¼0

X

n

2

h i

k¼0

yk
log 1þ μð Þ

μ

� �n�2k

xn�2k n!

k! n� 2kð Þ!

0

B

B

B

@

1

C

C

C

A

tn

n!
:

(20)
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By comparing the coefficients of tn

n!
, the expected result of Theorem 1 is achieved.

□

Since lim μ!0
log 1þμð Þ

μ
¼ 1, we get

Hn x, yð Þ ¼ n!

X

n
2½ �

k¼0

ykxn�2k

k! n� 2kð Þ!
: (21)

The following basic properties of the 2-variable degenerate Hermite polynomials
Hn x, yjμð Þ are induced form (11). Therefore, it is enough to delete involved detail
explanation.

Theorem 2. For any positive integer n, we have

1: Hn x, yjμð Þ ¼
X

n

2

h i

k¼0

X

∞

m¼n�2k

ykS1 m, n� 2kð Þxn�2kμm� n�2kð Þ n!

m!k!
:

2: Hn x1 þ x2, yjμð Þ ¼
X

n

l¼0

n

l

 !

log 1þ μð Þ

μ

� �l

xl2Hn�l x1, yjμð Þ:

3: Hn x1 þ x2, yjμð Þ ¼
X

n

l¼0

n

l

 !

Hn�l x1, yjμð Þ
X

∞

m¼l

S1 m, lð Þxl2μ
m�l l!

m!
:

4: Hn x, y1 þ y2jμ
� �

¼
X

n

2

h i

k¼0

Hn�2k x, y1jμ
� � yk2 n!

k! n� 2kð Þ!
:

5: Hn x1 þ x2, y1 þ y2jμ
� �

¼
X

n

l¼0

n

l

 !

Hl x1, y1jμ
� �

Hn�l x2, y2jμ
� �

:

(22)

3. Symmetric identities for 2-variable modified degenerate Hermite
polynomials

In this section, we give some new symmetric identities for 2-variable modified
degenerate Hermite polynomials. We also get some explicit formulas and properties
for 2-variable modified degenerate Hermite polynomials.

Theorem 3. Let a, b>0 (a 6¼ b). The following identity holds true:

bmHm ax, a2yjμ
� �

¼ amHm bx, b2yjμ
� �

: (23)

Proof. Let a, b>0 (a 6¼ b). We start with

G t, μð Þ ¼ 1þ μð Þ
abxt
μ ea

2b2yt2 : (24)

Then the expression for G t, μð Þ is symmetric in a and b

G t, μð Þ ¼
X

∞

m¼0

Hm ax, a2yjμ
� � btð Þm

m!
¼
X

∞

m¼0

bmHm ax, a2yjμ
� � tm

m!
: (25)

By the similar way, we get that

G t, μð Þ ¼
X

∞

m¼0

Hm bx, b2yjμ
� � atð Þm

m!
¼
X

∞

m¼0

amHm bx, b2yjμ
� � tm

m!
: (26)
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By comparing the coefficients of tm

m!
in last two equations, the expected result of

Theorem 3 is achieved. □

Again, we now use

F t, μð Þ ¼
abt 1þ μð Þ

abxt
μ ea

2b2yt2 1þ μð Þ
abt
μ � 1

� �

1þ μð Þ
at
μ � 1

� �

1þ μð Þ
bt
μ � 1

� � : (27)

For μ∈, we introduce the modified degenerate Bernoulli polynomials given by
the generating function

X

∞

n¼0

βn xjμð Þ
tn

n!
¼

t

1þ μð Þ
t
μ � 1

1þ μð Þ
xt
μ , see 6, 7½ �ð Þ: (28)

When x ¼ 0 and βn μð Þ ¼ βn 0jμð Þ are called the modified degenerate Bernoulli
numbers. Note that

lim
μ!0

βn μð Þ ¼ Bn, (29)

where Bn are called the Bernoulli numbers. The first few of them are

β0 xjμð Þ ¼
μ

log 1þ μð Þ
,

β1 xjμð Þ ¼ �
1

2
þ x,

β2 xjμð Þ ¼
log 1þ μð Þ

6μ
�
x log 1þ μð Þ

μ
þ
x2 log 1þ μð Þ

μ
,

β3 xjμð Þ ¼
x log 1þ μð Þ2

2μ2
�
3x2 log 1þ μð Þ2

2μ2
þ
x3 log 1þ μð Þ2

μ2
,

β4 xjμð Þ ¼ �
log 1þ μð Þ3

30μ3
þ
x2 log 1þ μð Þ3

μ3
�
2x3 log 1þ μð Þ3

μ3
þ
x4 log 1þ μð Þ3

μ3
:

(30)

For each integer k≥0, Sk nð Þ ¼ 0k þ 1k þ 2k þ⋯þ n� 1ð Þk is called sum of
integers. A modified generalized falling factorial sum σk n, μð Þ can be defined by the
generating function

X

∞

k¼0

σk njμð Þ
tk

k!
¼

1þ μð Þ
nþ1ð Þt
μ � 1

1þ μð Þ
t
μ � 1

: (31)

Note that lim μ!0σk njμð Þ ¼ Sk nð Þ: From F t, μð Þ, we get the following result:

F t, μð Þ ¼
abt 1þ μð Þ

abxt
μ ea

2b2yt2 1þ μð Þ
abt
μ � 1

� �

1þ μð Þ
at
μ � 1

� �

1þ μð Þ
bt
μ � 1

� �

¼
abt

1þ μð Þ
at
μ � 1

� � 1þ μð Þ
abxt
μ ea

2b2yt2
1þ μð Þ

abt
μ � 1

� �

1þ μð Þ
bt
μ � 1

� �

¼ b
X

∞

n¼0

βn μð Þ
atð Þn

n!

X

∞

n¼0

Hn bx, b2yjμ
� � atð Þn

n!

X

∞

n¼0

σk a� 1jμð Þ
btð Þn

n!

¼
X

∞

n¼0

X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

aibnþ1�i
βm μð ÞHi�m bx, b2yjμ

� �

σn�i a� 1jμð Þ

 !

tn

n!
:

(32)
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In a similar fashion we have

F t, μð Þ ¼
abt

1þ μð Þ
bt
μ � 1

� � 1þ μð Þ
abxt
μ ea

2b2yt2
1þ μð Þ

abt
μ � 1

� �

1þ μð Þ
at
μ � 1

� �

¼ a
X

∞

n¼0

βn μð Þ
btð Þn

n!

X

∞

n¼0

Hn ax, a2yjμ
� � btð Þn

n!

X

∞

n¼0

σk b� 1jμð Þ
atð Þn

n!

¼
X

∞

n¼0

X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

bianþ1�iβm μð ÞHi�m ax, a2yjμ
� �

σn�i b� 1jμð Þ

 !

tn

n!
:

(33)

By comparing the coefficients of tm

m!
on the right hand sides of the last two

equations, we have the below theorem.
Theorem 4. Let a, b>0(a 6¼ b). The the following identity holds true:

X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

aibnþ1�i
βm μð ÞHi�m bx, b2yjμ

� �

σn�i a� 1jμð Þ

¼
X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

bianþ1�iβm μð ÞHi�m ax, a2yjμ
� �

σn�i b� 1jμð Þ:

(34)

By taking the limit as μ ! 0, we have the following corollary.
Corollary 5. Let a, b>0 (a 6¼ b). The the following identity holds true:

X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

aibnþ1�iSn�i a� 1ð ÞBmHi�m bx, b2y
� �

¼
X

n

i¼0

X

i

m¼0

n

i

 !

i

m

 !

bianþ1�iSn�i b� 1ð ÞBmHi�m ax, a2y
� �

:

(35)

4. Differential equations associated with 2-variable modified
degenerate Hermite polynomials

In this section, we construct the differential equations with coefficients
ai N, x, y, μð Þ arising from the generating functions of the 2-variable modified
degenerate Hermite polynomials:

∂

∂t

� �N

G t, x, y, μð Þ � a0 N, x, y, μð ÞG t, x, y, μð Þ �⋯

�a2N N, x, y, μð ÞtNG t, x, y, μð Þ ¼ 0:

(36)

By using the coefficients of this differential equation, we can get explicit
identities for the 2-variable modified degenerate Hermite polynomials Hn x, y, μð Þ.
Recall that

G ¼ G t, x, y, μð Þ

¼ 1þ μð Þ
xt
μ eyt

2

¼
X

∞

n¼0

Hn x, yjμð Þ
tn

n!
, μ, x, t∈:

(37)

7



Then, by (37), we have

G 1ð Þ ¼
∂

∂t
G t, x, y, μð Þ

¼
∂

∂t
1þ μð Þ

xt
μ eyt

2
� �

¼
log 1þ μð Þ

μ
xþ 2yt

� �

1þ μð Þ
xt
μ eyt

2
� �

¼
log 1þ μð Þ

μ
xþ 2yt

� �

G t, x, y, μð Þ,

(38)

G 2ð Þ ¼
∂

∂t
G 1ð Þ t, x, y, μð Þ

¼ 2yG t, x, y, μð Þ þ
log 1þ μð Þ

μ
xþ 2yt

� �

G 1ð Þ t, x, y, μð Þ

¼ 2yþ
log 1þ μð Þ

μ

� �2

x2

 !

G t, x, y, μð Þ

þ
log 1þ μð Þ

μ
4xy

� �

tG t, x, y, μð Þ

þ 2yð Þ2t2G t, x, y, μð Þ:

(39)

By continuing this process as shown in (39), we can get easily that

G Nð Þ ¼
∂

∂t

� �N

G t, x, y, μð Þ

¼
X

N

i¼0

ai N, x, y, μð ÞtiG t, x, y, μð Þ, N ¼ 0, 1, 2, …ð Þ:

(40)

By differentiating (40) with respect to t, we have

G Nþ1ð Þ ¼
∂G Nð Þ

∂t
¼
X

N

i¼0

ai N, x, y, μð Þ ið Þti�1G t, x, y, μð Þ

þ
X

N

i¼0

ai N, x, y, μð ÞtiG 1ð Þ t, x, y, μð Þ

¼
X

N

i¼0

ið Þai N, x, y, μð Þti�1G t, x, y, μð Þ

þ
X

N

i¼0

log 1þ μð Þ

μ
x

� �

ai N, x, y, μð ÞtiG t, x, y, μð Þ

þ
X

N

i¼0

2yð Þai N, x, y, μð Þtiþ1G t, x, y, μð Þ

¼
X

N�1

i¼0

iþ 1ð Þaiþ1 N, x, y, μð ÞtiG t, x, y, μð Þ

þ
X

N

i¼0

log 1þ μð Þ

μ
x

� �

ai N, x, y, μð ÞtiG t, x, y, μð Þ

þ
X

Nþ1

i¼1

2yð Þai�1 N, x, y, μð ÞtiG t, x, y, μð Þ:

(41)
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Now we replace N by N þ 1 in (40). We find

G Nþ1ð Þ ¼
X

Nþ1

i¼0

ai N þ 1, x, y, μð ÞtiG t, x, y, μð Þ: (42)

By comparing the coefficients on both sides of (41) and (42), we get

a0 N þ 1, x, y, μð Þ ¼ a1 N, x, y, μð Þ þ
log 1þ μð Þ

μ
x

� �

a0 N, x, y, μð Þ,

aN N þ 1, x, y, μð Þ ¼
log 1þ μð Þ

μ
x

� �

aN N, x, y, μð Þ

þ2yaN�1 N, x, y, μð Þ,

aNþ1 N þ 1, x, y, μð Þ ¼ 2yð ÞaN N, x, y, μð Þ,

(43)

and

ai N þ 1, x, y, μð Þ ¼ iþ 1ð Þaiþ1 N, x, y, μð Þ

þ
log 1þ μð Þ

μ
x

� �

ai N, x, y, μð Þ

þ 2yð Þai�1 N, x, y, μð Þ, 1≤ i≤N � 1ð Þ:

(44)

In addition, by (37), we have

G t, x, y, μð Þ ¼ G 0ð Þ t, x, y, μð Þ ¼ a0 0, x, y, μð ÞG t, x, y, μð Þ: (45)

By (45), we get

a0 0, x, y, μð Þ ¼ 1: (46)

It is not difficult to show that

x log 1þ μð Þ

μ
G t, x, y, μð Þ þ 2ytG t, x, y, μð Þ

¼ G 1ð Þ t, x, y, μð Þ

¼
X

1

i¼0

ai 1, x, y, μð ÞtiG t, x, y, μð Þ

¼ a0 1, x, y, μð ÞG t, x, y, μð Þ þ a1 1, x, y, μð ÞtG t, x, y, μð Þ:

(47)

Thus, by (38) and (47), we also get

a0 1, x, y, μð Þ ¼
x log 1þ μð Þ

μ
, a1 1, x, y, μð Þ ¼ 2y: (48)

From (43) and (44), we note that

a0 N þ 1, x, y, μð Þ ¼ a1 N, x, y, μð Þ þ
x log 1þ μð Þ

μ
a0 N, x, y, μð Þ,

a0 N, x, y, μð Þ ¼ a1 N � 1, x, y, μð Þ þ
x log 1þ μð Þ

μ
a0 N � 1, x, y, μð Þ,

…

a0 N þ 1, x, y, μð Þ ¼
X

N

i¼0

x log 1þ μð Þ

μ

� �i

a1 N � i, x, y, μð Þ

þ
log 1þ μð Þ

μ

� �Nþ1

xNþ1,

(49)
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aN N þ 1, x, y, μð Þ ¼
x log 1þ μð Þ

μ
aN N, x, y, μð Þ

þ 2yð ÞaN�1 N, x, y, μð Þ,

aN�1 N, x, y, μð Þ ¼
x log 1þ μð Þ

μ
aN�1 N � 1, x, y, μð Þ

þ 2yð ÞaN�2 N � 1, x, y, μð Þ, …

aN N þ 1, x, y, μð Þ ¼ N þ 1ð Þx 2yð ÞN
log 1þ μð Þ

μ

� �

,

(50)

and

aNþ1 N þ 1, x, y, μð Þ ¼ 2yð ÞaN N, x, y, μð Þ,

aN N, x, y, μð Þ ¼ 2yð ÞaN�1 N � 1, x, y, μð Þ, …

aNþ1 N þ 1, x, y, μð Þ ¼ 2yð ÞNþ1:

(51)

For i ¼ 1 in (44), we have

a1 N þ 1, x, y, μð Þ ¼ 2
X

N

k¼0

x log 1þ μð Þ

μ

� �k

a2 N � k, x, y, μð Þ

þ2y
X

N

k¼0

x log 1þ μð Þ

μ

� �k

a0 N � k, x, y, μð Þ,

(52)

Continuing this process, we can deduce that, for 1≤ i≤N � 1,

ai N þ 1, x, y, μð Þ ¼ iþ 1ð Þ
X

N

k¼0

x log 1þ μð Þ

μ

� �k

aiþ1 N � k, x, y, μð Þ

þ2y
X

N

k¼0

x log 1þ μð Þ

μ

� �k

ai�1 N � k, x, y, μð Þ:

(53)

Note that, from (37)–(53), here the matrix ai j, x, y, μð Þ0≤ i,j≤Nþ1 is given by

1
x log 1þ μð Þ

μ
2yþ log 1þμð Þ

μ

� �2
x2 ⋯ �

0 2y
log 1þ μð Þ

μ

� �

4xy ⋯ �

0 0 2yð Þ2 ⋯ �

⋮ ⋮ ⋮ ⋱ �

0 0 0 ⋯ 2yð ÞNþ1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(54)

Therefore, from (37)–(53), we obtain the following theorem.
Theorem 5. For N ¼ 0, 1, 2, … , the differential equation

∂

∂t

� �N

G t, x, y, μð Þ �
X

N

i¼0

ai N, x, y, μð Þti

 !

G t, x, y, μð Þ ¼ 0 (55)
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has a solution

G ¼ G t, x, y, μð Þ ¼ 1þ μð Þ
xt
μ eyt

2

, (56)

where

a0 N þ 1, x, y, μð Þ ¼
X

N

i¼0

x log 1þ μð Þ

μ

� �i

a1 N � i, x, y, μð Þ

þ
log 1þ μð Þ

μ

� �Nþ1

xNþ1,

aN N þ 1, x, y, μð Þ ¼ N þ 1ð Þ 2yð ÞN
x log 1þ μð Þ

μ

� �

,

aNþ1 N þ 1, x, y, μð Þ ¼ 2yð ÞNþ1,

ai N þ 1, x, y, μð Þ ¼ iþ 1ð Þ
X

N

k¼0

x log 1þ μð Þ

μ

� �k

aiþ1 N � k, x, y, μð Þ

þ2y
X

N

k¼0

x log 1þ μð Þ

μ

� �k

ai�1 N � k, x, y, μð Þ, 1≤ i≤N � 1ð Þ:

(57)

Here is a plot of the surface for this solution. In the left picture of Figure 1, we
choose �2≤ x≤ 2, � 1≤ t≤ 1, μ ¼ 1=10, and y ¼ 0:1. In the right picture of
Figure 1, we choose �2≤ y≤ 2, � 1≤ t≤ 1, μ ¼ 1=10, and x ¼ 0:1.

Making N-times derivative for (10) with respect to t, we have

∂

∂t

� �N

G t, x, y, μð Þ ¼
X

∞

m¼0

HmþN x, y, μð Þ
tm

m!
: (58)

By (58) and Theorem 5, we have

a0 N, x, y, μð ÞG t, x, y, μð Þ

þa1 N, x, y, μð ÞtG t, x, y, μð Þ

þ⋯

þaN N, x, y, μð ÞtNG t, x, y, μð Þ

¼
X

∞

m¼0

HmþN x, y, μð Þ
tm

m!
:

(59)

Hence we have the following theorem.
Theorem 6. For N ¼ 0, 1, 2, … , we get

HmþN x, y, μð Þ ¼
X

m

i¼0

Hm�i xð Þai N, x, y, μð Þm!

m� ið Þ!
: (60)

If we take m ¼ 0 in (60), then we have the below corollary.
Corollary 7. For N ¼ 0, 1, 2, … , we have

HN x, y, μð Þ ¼ a0 N, x, y, μð Þ, (61)
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where

a0 0, x, y, μð Þ ¼ 1,

a0 N þ 1, x, y, μð Þ ¼
X

N

i¼0

x log 1þ μð Þ

μ

� �i

a1 N � i, x, y, μð Þ

þ
log 1þ μð Þ

μ

� �Nþ1

xNþ1:

(62)

The first few of them are

H0 x, y, μð Þ ¼ 1,

H1 x, y, μð Þ ¼
log 1þ μð Þ

μ
x,

H2 x, y, μð Þ ¼ 2yþ
log 1þ μð Þð Þ2

μ2
x2,

H3 x, y, μð Þ ¼ 6xy
log 1þ μð Þ

μ
þ

log 1þ μð Þð Þ3

μ3
x3,

H4 x, y, μð Þ ¼ 12y2 þ 12x2y
log 1þ μð Þð Þ2

μ2
þ

log 1þ μð Þð Þ4

μ4
x4,

H5 x, y, μð Þ ¼ 60xy2
log 1þ μð Þ

μ
þ 20x3y

log 1þ μð Þð Þ3

μ3
þ

log 1þ μð Þð Þ5

μ5
x5:

(63)

5. Zeros of the 2-variable modified degenerate Hermite polynomials

This section shows the benefits of supporting theoretical prediction through
numerical experiments and finding new interesting pattern of the zeros of the 2-
variable modified degenerate Hermite equations Hn x, yjμð Þ ¼ 0. By using computer,
the 2-variable modified degenerate Hermite polynomials Hn x, yjμð Þ can be deter-
mined explicitly. We investigate the zeros of the 2-variable modified degenerate

Figure 1.
The surface for the solution G t, x, y, μð Þ.
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Hermite equations Hn x, yjμð Þ ¼ 0. The zeros of the Hn x, yjμð Þ ¼ 0 for n ¼ 30, y ¼
3, � 3, 3þ i, � 3� i, μ ¼ 1=2, and x∈ are displayed in Figure 2. In the top-left
picture of Figure 2, we choose n ¼ 30 and y ¼ 3. In the top-right picture of
Figure 2, we choose n ¼ 30 and y ¼ �3. In the bottom-left picture of Figure 2, we
choose n ¼ 30 and y ¼ �3þ i . In the bottom-right picture of Figure 2, we choose
n ¼ 30 and y ¼ �3� i.

Stacks of zeros of the 2-variable modified degenerate Hermite equations
Hn x, yjμð Þ ¼ 0 for 1≤ n≤ 50, μ ¼ 1=2 from a 3-D structure are presented in Figure 3.
In the top-left picture of Figure 3, we choose y ¼ 3. In the top-right picture of
Figure 3, we choose y ¼ �3. In the bottom-left picture of Figure 3, we choose y ¼
�3þ i. In the bottom-right picture of Figure 3, we choose y ¼ �3� i.

Our numerical results for approximate solutions of real zeros of the 2-variable
modified degenerate Hermite equations Hn x, yjμð Þ ¼ 0 are displayed
(Tables 1 and 2).

We observed a remarkable regular structure of the complex roots of the 2-
variable modified degenerate Hermite equations Hn x, yjμð Þ ¼ 0 and also hope to
verify same kind of regular structure of the complex roots of the 2-variable modi-
fied degenerate Hermite equations Hn x, yjμð Þ ¼ 0 (Table 1).

Plot of real zeros of the 2-variable modified degenerate Hermite equations
Hn x, yjμð Þ ¼ 0 for 1≤ n≤ 50, μ ¼ 1=2 structure are presented in Figure 4. In the top-
left picture of Figure 4, we choose y ¼ 3. In the top-right picture of Figure 4, we

Figure 2.
Zeros of Hn x, yjμð Þ ¼ 0.

13



Figure 3.
Stacks of zeros of Hn x, yjμð Þ ¼ 0, 1≤ n≤ 50.

y ¼ 3, μ ¼ 1=2 y ¼ �3, μ ¼ 1=2

Degree n Real zeros Complex zeros Real zeros Complex zeros

1 1 0 1 0

2 0 2 2 0

3 1 2 3 0

4 0 4 4 0

5 1 4 5 0

6 0 6 6 0

7 1 6 7 0

8 0 8 8 0

9 1 8 9 0

10 0 10 10 0

Table 1.
Numbers of real and complex zeros of Hn x, yjμð Þ ¼ 0.
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choose y ¼ �3. In the bottom-left picture of Figure 4, we choose y ¼ �3þ i. In the
bottom-right picture of Figure 4, we choose y ¼ �3� i.

Next, we calculated an approximate solution satisfying Hn x, yjμð Þ ¼ 0, x∈.
The results are given in Table 2. In Table 2, we choose y ¼ �3 and μ ¼ 1=2.

Degree n x

1 0

2 �3:0206, 3:0206

3 �5:2318, 0, 5:2318

4 �7:0513, � 2:2412, 2:2412, 7:0513

5 �8:6297, � 4:0948, 0, 4:0948, 8:6297

6 �10:041, � 5:7064, � 1:8628, 1:8628, 5:7064, 10:041

7 �11:329, � 7:1490, � 3:4870, 0, 3:4870, 7:1490, 11:329

8 �12:519, � 8:4652, � 4:9433, � 1:6283, 1:6283, 4:9433, 8:4652, 12:519

Table 2.
Approximate solutions of Hn x, yjμð Þ ¼ 0, x ∈ .

Figure 4.
Real zeros of Hn x, yjμð Þ ¼ 0 for 1≤ n≤50, μ ¼ 1

2.
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6. Conclusions

In this chapter, we constructed the 2-variable modified degenerate Hermite
polynomials and got some new symmetric identities for 2-variable modified degen-
erate Hermite polynomials. We constructed differential equations arising from the
generating function of the 2-variable modified degenerate Hermite polynomials
Hn x, yjμð Þ. We also investigated the symmetry of the zeros of the 2-variable modi-
fied degenerate Hermite equations Hn x, yjμð Þ ¼ 0 for various variables x and y. As a
result, we found that the distribution of the zeros of 2-variable modified degenerate
Hermite equations Hn x, yjμð Þ ¼ 0 is very regular pattern. So, we make the following
series of conjectures with numerical experiments:

Let us use the following notations. RHn x,yjμð Þ denotes the number of real zeros of

Hn x, yjμð Þ ¼ 0 lying on the real plane Im xð Þ ¼ 0 and CHn x,yjμð Þ denotes the number of

complex zeros of Hn x, yjμð Þ ¼ 0. Since n is the degree of the polynomial Hn x, yjμð Þ,
we have RHn x,yjμð Þ ¼ n� CHn x,yjμð Þ.

We can see a good regular pattern of the complex roots of the 2-variable modi-
fied degenerate Hermite equations Hn x, y, μð Þ ¼ 0 for y and μ. Therefore, the
following conjecture is possible.

Conjecture 1. Let n be odd positive integer. For a>0 or a∈n a j a<0f g, prove
or disprove that

RHn x,a,μð Þ ¼ 1, CHn x,a,μð Þ ¼ 2
n

2

h i

, (64)

where  is the set of complex numbers.
Conjecture 2. Let n be odd positive integer and a∈. Prove or disprove that

Hn 0, a, μð Þ ¼ 0: (65)

As a result of investigating more y and μ variables, it is still unknown whether
the conjecture 1 and conjecture 2 is true or false for all variables y and μ.

We observe that solutions of the 2-variable modified degenerate Hermite equa-
tions Hn x, y, μð Þ ¼ 0 has not Re xð Þ ¼ b reflection symmetry for b∈. It is expected
that solutions of the 2-variable modified degenerate Hermite equations
Hn x, y, μð Þ ¼ 0, has not Re xð Þ ¼ b reflection symmetry (see Figures 2–4).

Conjecture 3. Prove that the zeros of Hn x, a, μð Þ ¼ 0, a∈, has Im xð Þ ¼ 0 reflec-
tion symmetry analytic complex functions. Prove that the zeros of Hn x, a, μð Þ ¼
0, a<0, a∈n, has not Im xð Þ ¼ 0 reflection symmetry analytic complex functions.

Finally, we consider the more general problems. How many zeros does
Hn x, y, μð Þ have? We are not able to decide if Hn x, y, μð Þ ¼ 0 has n distinct solutions.
We would like to know the number of complex zeros CHn x,y,μð Þ of Hn x, y, μð Þ ¼ 0:

Conjecture 4. For a∈, prove or disprove that Hn x, a, μð Þ ¼ 0 has n distinct
solutions.

As a result of investigating more n variables, it is still unknown whether the
conjecture is true or false for all variables n (see Tables 1 and 2).

We expect that research in these directions will make a new approach using the
numerical method related to the research of the 2-variable modified degenerate
Hermite equations Hn x, y, μð Þ ¼ 0 which appear in applied mathematics and math-
ematical physics.
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