
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

Looking at Data Science through
the Lens of Scheduling and Load
Balancing
Diórgenes Eugênio da Silveira, Eduardo Souza dos Reis,

Rodrigo Simon Bavaresco, Marcio Miguel Gomes,

Cristiano André da Costa, Jorge Luis Victoria Barbosa,

Rodolfo Stoffel Antunes, Alvaro Machado Júnior,

Rodrigo Saad and Rodrigo da Rosa Righi

Abstract

The growth in data generated by private and public organizations leads to
several opportunities to obtain valuable knowledge. In this scenario, data science
becomes pertinent to define a structured methodology to extract valuable knowl-
edge from raw data. It encompasses a heterogeneous group of techniques that
challenge the implementation of a single platform capable of incorporating all the
available resources. Thus, it is necessary to formulate a data science workflow based
on different tools to extract knowledge from massive datasets. In this context, high-
performance computing (HPC) provides the infrastructure required to optimize the
processing time of data science workflows, which become a collection of tasks that
must be efficiently scheduled to provide results in acceptable time intervals. While
few studies explore the use of HPC for data science tasks, in the best of our
knowledge, none conducts an in-depth analysis of scheduling and load balancing on
such workflows. In this context, this chapter proposes an analysis of scheduling and
load balancing from the perspective of data science scenarios. It presents concepts,
environments, and tools to summarize the theoretical background required to
define, assign, and execute data science workflows. Furthermore, we are also
presenting new trends concerning the intersection of data science, scheduling, and
load balance.

Keywords: scheduling, load balance, high-performance computing, data science,
big data

1. Introduction

Private corporate networks, as well as the Internet, generate and share data at
ever increasing rates. This unconstrained growth can easily lead disorganization
and, as a consequence, missed opportunities to analyze and extract knowledge for
these data. There is an essential difference between the concepts of data and infor-
mation. Data cannot express something outside a particular field of expertise.

1

In turn, information enables the coherent transmission of knowledge. Data science
aims to close the gap between data and knowledge through the use of computational
tools. More specifically, data science is a tool for converting raw data into knowl-
edge [1]. The field of data science leverages many methods originating from com-
puter science and statistics [2]. Figure 1 illustrates a Venn’s diagram that correlates
the research areas with major influence in data science.

Although data science receives significant influence from expert knowledge, it is
plausible to say that a data scientist knows more about computer science than a
statistician and more about statistics than a computer scientist [3]. Besides, it also
encompasses the intersection of data analytics and machine learning. Therefore,
data science encompasses a heterogeneous group of studies and methodologies such
as big data, machine learning, data analytics, and statistics, which challenge the
implementation of a single platform capable of incorporating all the available
techniques.

There are a variety of widely adopted platforms available for data analysis and
knowledge extraction, for example, Tableau,1 Dataiko,2 Microsoft Azure Machine
Learning Studio,3 Orange BioLab,4 each one suitable for a specific step of a data
science process. A workflow can be formulated based on the coordinated applica-
tion of different tools to extract knowledge from massive datasets. In this context,
the use of cloud platforms for data science steadily grows because they offer scal-
ability and distributed execution of individual tasks.

In data science, a large dataset allows the generation of a more in-depth model,
which provides more robust insights because there are more instances to compose
the statistical analysis of data. One of the most relevant aspects regarding a dataset
is the quality of available data. Thus, before the use of any statistical method, the

1

https://www.tableau.com/
2

https://www.dataiku.com/
3

https://azure.microsoft.com/en-us/services/machine-learning-studio/
4

https://orange.biolab.si/

Figure 1.
Venn’s diagram for correlating the influence of other research areas on data science.

2

Scheduling Problems - New Applications and Trends

dataset must go through a cleaning process that ensures the uniformity of values
and the elimination of duplicated data. On one hand, a large dataset with high-
quality data enables an insightful model. On the other hand, the computational
power required to process data is directly proportional to the size of the available
dataset. In this scenario, high-performance computing (HPC) provides the infra-
structure (clusters, grids, and cloud platforms) required to optimize the processing
time of data science workflows. In particular, data science demands are transformed
in a collection of tasks, with or without the notion of dependency among them,
which must be efficiently scheduled along the computational resources [memory,
processors, cores, cluster nodes, graphical processing unit (GPU) cores, grid nodes,
and virtual machines, for example] to provide the results in an acceptable time
interval. To map such tasks to resources, a scheduling policy takes place where load
balancing algorithms are important to provide a better execution equilibrium
among the tasks and a fast response time, mainly when considering either dynamic
or heterogeneous environments. While some articles explore the use of HPC for
data science tasks [4–6], in the best of our knowledge, there are no studies that
conduct an in-depth analysis of how the aspects of scheduling and load balancing
affect data science workflows.

Hence, the present book chapter proposes an analysis of scheduling and load
balancing from the perspective of data science scenarios. Furthermore, it presents
concepts, environments, and tools for data science to summarize the theoretical
background required to understand the definition and execution of data science
workflows. Even though its focus lies on presenting concepts, the chapter also
illustrates new trends concerning the intersection of data science, scheduling, and
load balance.

The remainder of this chapter is organized as follows: Section 2 presents an in-
depth explanation of concepts, workflow, problem classes, and tools used by data
science. Section 3 explores scheduling and load balancing as tools to leverage the
computational power required by data science applications. Section 4 points to
open challenges and trends in the use of HPC applied to data science problems.
Finally, Section 5 concludes the chapter with closing remarks and directions for
future work.

2. Fundamental concepts

This section presents the fundamental concepts related to data science. These are
key to understand the concept of HPC, more specifically scheduling and load
balancing, impact data science processes, as discussed later in the chapter. The
remainder of the section discusses the fundamental components of a data science
pipeline, as observed in real-world scenarios.

2.1 Data science workflow

Data science is highly dependent on its application domain and employs com-
plex methods. Nevertheless, it has a very organized pipeline, which varies in the
number of steps required to extract knowledge. Current work explores a pipeline
that varies between five and seven steps, but in all cases, the process yields similar
outputs. This section aims at presenting the most complete process, composed of
seven steps, widely used by both companies and researchers. Figure 2 depicts the
flow of information step by step. Moreover, the seven proposed steps can be enu-
merated as:

3

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

1.business understanding;

2.data extraction;

3.data preparation;

4.data exploring;

5.data model;

6.results evaluation; and

7. implementation.

Step 1 refers to the process of understanding in which context the data are
inserted on, and what is the expected output. This is a high time-consuming process
in a project. However, data scientist must have a deep understanding about the
application domain to validate the model’s structure as well as its outputs. After
understanding the scope of the project, on Step 2, exploring the data that correlate
with the problem understood in the last step. These data can be hosted at the client
or not. If the client does not have useful data available, the data scientist must look
for a synthetic or publicly available dataset to extract the knowledge. Furthermore,
on Step 3, techniques are employed to clean data because there is a high chance that
it is unorganized or unreadable, so it is necessary to preprocess and standardize it.
An example of this step is a dataset that has a column with country names, but in
some registers, the value of this column is “Brasil” and in others, it is “Brazil,” both
values symbolize the same information but are encoded in different languages.
Regarding Step 4, the data are organized, and it is indispensable to execute a

Figure 2.
Flow diagram of data science steps.

4

Scheduling Problems - New Applications and Trends

detailed analysis in order to figure out patterns or insights that would be valuable to
the client. In this stage, the data scientist usually uses plotting techniques to make
the data more readable and figure out information.

On Step 5, previously identified insights serve as input. But at this step, it is
vital to fully understand the data since, without formal knowledge, it is very hard
to fit a model that correctly represents it. At this stage, it is required that the data
scientist uses computer science expertise to choose the better approach to plan and
validate the model. In Step 6, outputs generated by the model are evaluated in
order to analyze how useful they actually are. Usually, this evaluation is conducted
by the client and the data scientist together, to examine graphs, numbers, and
tables and define if the model generated acceptable results. Finally, on Step 7, the
results are validated, and the model is ready to be implemented and deployed in
production; thus, it is applied to prediction tasks, having real data as input. The
architecture used to implement the model is very important, that is, it is necessary
to understand what will be used for the client application since if the client needs a
real-time response, the structure will be very different than a nonreal-time
scenario.

2.2 Solving problems with data science

Data science is not exclusively employed in business scenarios, and it can be
generalized to a plethora of applications, such as in Obama’s campaign for US
presidential elections in 2012. In the context of this election, technology was applied
to identify who were the voters that should receive more attention and marketing
influence. Some analysts highlighted the use of data science as fundamental to
Obama’s victory. However, data science is not limited to the analysis of scenarios,
such as in the above example. Many other challenges can benefit from solutions
based on data science methodologies. For instance, some problem classes in data
science are pattern detection, anomaly detection, cleaning, alignment, classifica-
tion, regression, knowledge base construction, and density estimation [7]. These
classes of problems are explored next.

2.2.1 Pattern detection

The patterns existing in a dataset are not always easily identifiable due to the
organization of the data. It is the method employed to discover information stan-
dards in the dataset. Figuring patterns hidden into data is a relevant task in several
scenarios, for example, to join the clients with similar characteristics, such as those
with the same taste or opinion.

2.2.2 Anomaly detection

The distribution of a dataset regards the positions of data points among each
other in the dataset. Usually, the representation of this distribution employs a
Cartesian plane, in which each point is an instance of the dataset. Within this
representation, regions with a defined concentration of data points become clus-
ters. Therefore, outliers are the data points that are too far from these clusters.
Anomaly detection aims to classify each data into a dataset as an outlier or not. For
example, the banks employ this approach in the scenario of fraud detection. In this
scenario, transactions of a client become clusters, and a new transaction is con-
sidered as unclassified data.

5

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

2.2.3 Cleaning

Dataset contents can present a broad variety of formats, for example, dates,
numeric values, and text data. In many cases, values may also be differently
formatted across dataset entries, even for the same field, due to human error or
lack of standardization. This situation incurs in errors in the dataset, resulting in
possible information loss when processing it. The best solution to this problem is
to employ methods that manage the dataset contents and standardize the data.
For example, in a dataset containing clients birthdays, it is possible that a user
fills the information with an invalid date. This case results in information loss
because the analysis cannot extract useful information related to the user’s
birthday.

2.2.4 Alignment

An organized and standardized dataset is fundamental for the generation of
trustworthy outputs from data science processes. The process of data alignment is
an essential step in dataset standardization. It involves updating the dataset to avoid
the use of multiple values to represent the same information. For example, in a
dataset containing a gender field, users may use both “M” and “Male” values to
represent the same gender. In this context, it is fundamental to unify both entries in
one because the information in both is the same.

2.2.5 Classification

Classification regards assigning specific labels to entries in a dataset. A label is
any information that presents a limited scope of possibilities, for example, a dozen
options present in a specific dataset field. Examples of labels include sentiments,
states, and the scale of integer numbers. This dataset field can then be used to group
multiple dataset entries according to the unique values that the label may take. For
example, in a dataset about client’s purchases, each product may be associated with
a set of keywords. These keywords can then be used to classify the types of pur-
chases a particular client makes, enabling targeted recommendations for other
products.

2.2.6 Regression

Datasets do not always contain fields with labels that enable the classification of
data. Nevertheless, in some problems, it is necessary to label values without a
restricted group of options, for example, using a field that contains real numbers.
This scenario requires a regression approach to estimate which classes an entry
should receive, without considering the limited options available in labels. For
example, in a dataset with prices and sizes of houses in New York, it is possible to
use regression to estimate the price of a new house according to its size. Although
the regression problem has an output similar to classification, its output does not
have a limited set of values, as occurs in labeling.

2.2.7 Knowledge base construction

Datasets are essential for data science, and the problem of knowledge base
construction refers to the process of compiling information to create them. Fre-
quently, this process requires the use of cleaning and alignment methods to

6

Scheduling Problems - New Applications and Trends

standardize data. There are a broad group of knowledge bases on the Internet, for
example, Kaggle,5 UCI Repository,6 Quandl,7 and MSCOCO.8

2.2.8 Density estimation

Density estimation focuses on identifying the clusters that group sets of data
points that represent the entries in a dataset. This process is a fundamental step to
generate the clusters required by anomaly detection methodologies, as described
above. Clustering is another suitable technique to identify groups of entries that
may contain related knowledge within a dataset.

2.3 Data science tools

It is difficult to find a tool that fits all data science processes because, as previ-
ously mentioned, there are multiple steps with a variety of methods available for
use. Hence, there are specific tools for each step, which will provide the most
appropriate result. Table 1 summarizes the most commonly cited tools for each one
of the data science workflow steps. The table has a row that is not considered a step
of the process, but it is fundamental to results that are Storage Data, which refer to
all technologies used for persisting the data in an environment. In the section of data
model, some programming languages are cited, but it is hard for a data scientist to
employ a language without libraries. For example, using Python is very usual to use
libraries such as pandas, sci-kit learn, numpy, and ggplot.

3. Exploring scheduling and load balancing on data science demands

The scheduling problem, in a general view, comprises both a set of resources and
a set of consumers [8]. Its focus is to find an appropriate policy to manage the use of
resources by several consumers in order to optimize a particular performance met-
ric chosen as a parameter. The evaluation of a scheduling proposal commonly
considers two features: (1) performance and (2) efficiency [9]. More specifically,
the evaluation comprises the obtained scheduling as well as the time spent to
execute the scheduler policies. For example, if the parameter to analyze the

Stage Tools

Store data MySql, Mongo DB, Cassandra, PLSql, Redis, HBase

Data preparation Apache Hive

Data exploring Knime, Elasticsearch

Data model Python, R, Julia, Clojure, SPSS, SAS, Apache Manhout

Results evaluation Tableau, Cognos, ggplot, QlikView, Power BI

Development Apache Hadoop, Java, Scala, C, Apache Spark, Haskell

Table 1.
Tools used per step of data science.

5

https://www.kaggle.com
6

https://archive.ics.uci.edu/ml/index.php
7

https://www.quandl.com/
8

http://cocodataset.org/home

7

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

achieved scheduling is the application execution time, the lower this value, the better
the scheduler performance. In turn, efficiency refers to the policies adopted by the
scheduler and can be evaluated using computational complexity functions [10].

The general scheduling problem is the unification of two terms in everyday use
in the literature. There is often an implicit distinction between the terms scheduling
and allocation. Nevertheless, it can be argued that these are merely alternative
formulations of the same problem, with allocation posed in terms of resource
allocation (from the resources point of view), and scheduling viewed from the
consumers’ point of view. In this sense, allocation and scheduling are merely two
terms describing the same general mechanism but described from different view-
points. One important issue when treating scheduling is the grain of the consumers
[11]. For example, we can have a graph of tasks, a set of processes, and jobs that
need resources to execute. In this context, scheduling schemes for
multiprogrammed parallel systems can be viewed in two levels. In the first level,
processors are allocated to a specific job. In the second level, processes from a job
are scheduled using this pool of processors.

We define static scheduling considering the scheduling grain as a task [8]. If data
such as information about the processors, the execution time of the tasks, the size of
the data, the communication pattern, and the dependency relation among the tasks
are known in advance, we can affirm that we have a static or deterministic sched-
uling model. In this approach, each executable image in the system has a static
assignment to a particular set of processors. Scheduling decisions are made deter-
ministically or probabilistically at compile time and remain constant during
runtime. The static approach is simple to be implemented. However, it is pointed
out that it has two significant disadvantages [11]. First, the workload distribution
and the behavior of many applications cannot be predicted before program execu-
tion. Second, static scheduling assumes that the characteristics of the computing
resources and communication network are known in advance and remain constant.
Such an assumption may not be applied to grid environments, for instance.

In the general form of a static task scheduling problem, an application is
represented by a directed acyclic graph (DAG) in which nodes represent applica-
tion tasks, and edges represent intertask data dependencies [12].

Each node label shows computation cost (expected computation time) of the
task, and each edge label shows intertask communication cost (expected communi-
cation time) between tasks. The objective function of this problem is to map tasks
onto processors and order their executions, so that task-precedence requirements
are satisfied, and the minimum overall completion time is obtained.

In the case that all information regarding the state of the system as well as the
resource needs of a process is known, an optimal assignment can be proposed [11].
Even with all information required for the scheduling, the static method is often
computationally expensive getting to the point of being infeasible. Thus, this fact
results in suboptimal solutions. We have two general categories within the realm of
suboptimal solutions for the scheduling problem: (1) approximate and (2) heuristic.
Approximate scheduling uses the same methods used in the optimal one, but
instead exploring all possible ideal solutions, it stops when a good one is achieved.
Heuristic scheduling uses standard parameters and ideas that affect the behavior of
the parallel system. For example, we can group processes with higher communica-
tion rate to the same local network or sort works and processors in lists following
some predefined criteria in order to perform an efficient mapping among them
(list scheduling).

Dynamic scheduling works with the idea that a little (or none) a priori knowl-
edge about the needs and the behavior of the application is available [9]. It is also
unknown in what environment the process will execute during its lifetime.
The arrival of new tasks, the relation among them, and data about the target

8

Scheduling Problems - New Applications and Trends

architecture are unpredictable, and the runtime environment takes the decision of
the consumer-resource mapping. The responsibility of global scheduling can be
assigned either to a single processor (physically nondistributed) or practiced by a
set of processors (physically distributed). Within the realm of this last classification,
the taxonomy may also distinguish between those mechanisms that involve coop-
eration between the distributed components (cooperative) and those in which the
individual processors make decisions independent of the actions of the other pro-
cessors (noncooperative). In the cooperative case, each processor has the responsi-
bility to carry out its portion of the scheduling, but all processors are working
toward a common system-wide goal.

Data science comprises the manipulation of a large set of data to extract knowl-
edge [13, 14]. To accomplish this, we have input that is passed through processing
engines to generate valuable outputs. In particular, this second step is usually
processed as sequential programs that implement both artificial intelligence and
statistical-based computational methods. We can take profit from the several
processing cores that exist in today’s processors to map this sequential demand to be
executed in a multithreading program. To accomplish this, Pthreads library and
OpenMP are the most common approaches to write multithread parallel programs,
where each thread can be mapped to a different core, so exploiting the full power of
a multiprocessor HPC architecture.

In addition to multiprocessor architectures, it is possible to transform a sequen-
tial code in message passing interface (MPI)-based parallel one, so targeting dis-
tributed architectures such as clusters and grids [15]. In this way, contrary to the
prior alternative that encompasses the use of standard multiprocessor systems, the
efficient use of MPI needs a parallel machine that generally has higher financial
costs. Also, a distributed program is more error prone, since problems in the nodes
or the network can put all application down. Repairing these future problems
sometimes is not trivial, requiring graphical tools to observe processes’ interactions.
Finally, in addition to multicore and multicomputer architectures, we also have the
use of GPU, where graphic cards present a set of nongeneral purpose processors to
execute vector calculus much faster than the conventional general-purpose proces-
sors [14]. The challenge consists in transforming a sequential code in a parallel one
in a transparent way at the user viewpoint, in such a way the data science demand
can run faster in parallel deployments. Moreover, the combination of these three
aforesaid parallel techniques is also a challenge since optimizations commonly vary
from one application to another.

Cloud computing environments today also represent a viable solution to run
data science demands [16]. Providers such as Amazon EC2, Microsoft Azure, and
Google Cloud have HPC-driven architectures to exploit multiprocessor,
multicomputer, and GPU parallelism. In particular, different from standard dis-
tributed systems, cloud computing presents the resource elasticity feature where an
initial deployment can be on-the-fly changed following the input demand. Thus, it
is possible to scale resources in or out (through the addition or removal of con-
tainers/virtual machines) or to scale down or up (by performing resource resizing in
virtual units) in a transparent way to the user. Logically, the own data science
application must be written in such a way to take profit of newly available resources
as the current set of working resources.

The CPU load is the most common metric to drive resource elasticity data
science demands since most of them execute CPU-bound artificial intelligence-
based algorithms. Any network data manipulation through the TCP protocol uses
CPU cycles since this is a software protocol executed in the kernel of the operating
system and executes software routines to provide data transfer reliability.

Load balancing and resource scheduling are sometimes seen as having the same
functionality. However, there is a slight difference: one of the members of resource

9

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

scheduling is the scheduling, and this policy can employ or not load balancing
algorithms [14]. The basic idea of load balancing is to attempt to balance the load on
all processors in such a way to allow all processes on all nodes to proceed at
approximately with the same rate. The most significant reason to launch the load
balancing is the fact that exists an amount of processing power that is not used
efficiently, mainly in dynamic and heterogeneous environments, including grids. In
this context, schedulers’ policies can use load balancing mechanisms for several
purposes, such as: (1) to choose the amount of work to be sent to a process; (2) to
move work from an overloaded processor to another that presents a light load;
(3) to choose a place (node) to launch a new process from a parallel application; and
(4) to decide about process migration. Load balancing is especially essential for
some parallel applications that present synchronization points, in which the pro-
cesses must execute together with the next step.

The most fundamental topic in load balancing consists of determining the mea-
sure of the load [13, 15]. There are many different possible measures of load
including: (1) number of tasks in a queue; (2) CPU load average; (3) CPU utilization
at specific moment; (4) I/O utilization; (5) amount of free CPU; (6) amount of free
memory; (7) amount of communication among the processes; and so on. Besides
this, we can have any combinations of the above indicators. Considering the scope
of processes from the operating system, such measures will influence in deciding
about when to trigger the load balancing, which processes will be involved, and
where are the destination places in which these processes will execute. Especially on
the last topic, other factors to consider when selecting where to put a process
include the nearness to resources, some processor and operating system capabilities,
and specialized hardware/software features. We must first determine when to
balance the load to turn the mechanism useful. Doing so is composed of two phases:
(1) detecting that a load unbalancing exists and (2) determining if the cost of load
balancing exceeds its possible benefits.

The use of load balancing in data science demands can vary depending on the
structure of the parallel applications: Master-Slave, Bag of Tasks, Divide-and-Con-
quer, Pipeline, or Bulk-Synchronous Parallel [15, 16]. In the first two, we usually
have a centralized environment where it is easy to know data about the whole set of
resources, to dispatching tasks to them following their load and theoretical capacity.
A traditional example of a combination of these parallel applications is the
MapReduce framework. In the divide-and-conquer applications, we have a recur-
sive nature to execute the parallel application where new levels of child nodes are
created with the upper one cannot execute the tasks in an acceptable time interval.
The challenge consists of dividing the tasks rightly following the capacity of the
resources. Pipeline-based applications, in their turn, have a set of stages where each
incoming task must cross. In order to maintain the cadence between the stages, they
must execute in the same time interval, so an outcoming task from the stage n
serves as the direct input for the stage n + 1. However, the fact of guaranteeing this
capacity is not a trivial procedure because of the stages commonly present different
complexities in terms of execution algorithms. Finally, bulk-synchronous applica-
tions are composed by supersteps, each one with local processing, and arbitrary
communication and barrier phases. Load balancing is vital to guarantee that the
slowest process does not compromise the performance of the entire application.

4. Open opportunities and trends

This section aims at compiling the previous two sections, so detailing open
opportunities and trends when joining resource scheduling and load balancing and
the area of data science. In this way, we compile these aspects as follows:

10

Scheduling Problems - New Applications and Trends

• Automatic transformation of a sequential data science demand to a parallel
one—today data science executes locally to query databases and to build
knowledge graphs. Sometimes these tasks are time consuming, then it is
pertinent to transform a sequential demand in a parallel one to execute faster
on multicore, multinode, and GPU architectures.

• Use of GPU cards as an accelerator for data science algorithms—write of data
science demands that combine R and Python together with OpenCL or CUDA
programming languages, so combining CPU and GPU codes with running fast
and in parallel to address a particular data science demand.

• Combination of multimetric load balancing engine to handle data science
efficiently—data science typically encompasses excellent access to IO
(including main memory and hard disk) and a high volume of CPU cycles to
process CPU-bound algorithms. In this way, the idea is to execute data science
demands and learn their behavior, so proposing an adaptable load balancing
metrics that take into account different parameters as input.

• Task migration heuristics—when developing long-running data science parallel
codes, it is essential to develop task migration alternatives to reschedule
demands from one resource to another. This is particularly pertinent on dynamic
environments, either at the application or infrastructure level.

• Cloud elasticity to address data science demand—cloud elasticity comes to
adapt the number of the resource following the current demand. Thus, we
propose a combination of vertical and horizontal elasticity, together with
reactive and proactive approaches to detect abnormal situations. We can use
both consolidation and inclusion of resources, aiming to always accommodate
the most appropriate number of resources for a particular and momentaneous
data science demand.

• Definition of a standard API to deal with data science—frequently enterprises
present several departments, each one with its data science demands. In this
way, we envisage an opportunity on developing a standard framework (with a
standard API too) to support the data science demands of the whole enterprise.
The idea is to provide a dashboard with a collection of data science functions,
also expressing the expected input and the output for each one.

• Smart correlation of events—enterprises regularly have timed data in several
databases. We present an opportunity, at each time a problem is found, to take
this particular timestamp and compare in the data sources looking for eventual
data correlations. Thus, we can perceive relations such as: (1) if this happens,
these other things will also happen and (2) this event happened because a set of
prior events happened beforehand.

• Benchmark to evaluate a mapping of data science tasks to HPC resources—how
we know if particular scheduling outperforms another one for executing a
particular data science demand? We see as an opportunity for the exploration
of benchmarks to evaluate scheduling and load balancing techniques that
manipulate data science tasks. Thus, such benchmarks must define what they
expect as input and provide a set of metrics as output. Yet, the output can be a
single value, a collection of values (as a data vector), or a collection of elements
of a data structure (e.g., timestamp and data are useful to develop user profiles
and tracking of assets).

11

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

• Simulation environment to execute data science demands on distributed
resources, but doing all of this a local program—simulation environments, like
Simgrid or GridSim, are useful to use a sequential program to test and simulate
complex parallel demands on a set of virtual resources. Thus, we can save time
on testing different parameters and algorithms when developing scheduling
and load balancing algorithms for data science.

• Definition of metrics to evaluate the scheduling and/or load balancing of data
science tasks—CPU load, memory footprint, disk space, network throughput,
and cache hit rate are examples of metrics that are commonly employed on
distributed systems. Data science is a new area of knowledge, where we
encourage the definition of new metrics to compare the execution of data
science demands.

5. Conclusion

The continuous generation of data by different industry segments presents a
valuable opportunity for analysis and knowledge extraction through data science
methods. There is a high interest in studies that explore the application of data
science to a variety of scenarios, each one with distinct characteristics that reflect on
the composition of available datasets. Furthermore, there is not a single data science
methodology that is applied to all possible data science problems. Consequently, the
most common approach to data science problems is to define a sequence of methods
that depend on the characteristics of the dataset and the intended results.

The constant growth in dataset sizes and the complexity of specific data science
methods also impose a considerable challenge to provide the computational power
required to process data and extract meaningful knowledge. In this context, cloud,
fog, and grid computing architectures present themselves as ideal solutions to apply
data science processes to massively sized datasets.

The distributed nature of such environments raises a series of new challenges,
some of which widely studied in the literature. Nevertheless, the unique character-
istics of data science workloads bring new aspects to these challenges, which require
renewed attention from the scientific community.

This chapter focused on the specific challenge of scheduling and load balancing
in the context of computational environments applied to data science. We
presented an overview of data science processes, in addition to how scheduling and
load balancing methodologies impact these processes and what aspects to consider
when using distributed environments applied to data science. In particular, the
challenge of enabling the automatic transformation of sequential data science
demands into parallel ones is of particular interest because it abstracts part of the
complexity involved in parallelizing data science tasks. As a result, such an auto-
matic transformation promotes wider adoption of distributed environments as
standard tools for large-scale data science processes.

Another notable challenge is to develop cloud elasticity techniques tailored to
data science tasks. Such techniques must consider the specific requirements of data
science processes to guarantee the proper reservation of resources and migration of
tasks in order to guarantee a high throughput for such scenarios. These and the
other investigated challenges represent prime research opportunities to increase the
performance of data science processes.

12

Scheduling Problems - New Applications and Trends

Author details

Diórgenes Eugênio da Silveira1, Eduardo Souza dos Reis1, Rodrigo Simon Bavaresco1,
Marcio Miguel Gomes1, Cristiano André da Costa1, Jorge Luis Victoria Barbosa1,
Rodolfo Stoffel Antunes1, Alvaro Machado Júnior2, Rodrigo Saad2 and
Rodrigo da Rosa Righi1*

1 Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

2 DELL Computadores do Brasil, Eldorado do Sul, RS, Brazil

*Address all correspondence to: rrrighi@unisinos.br

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

13

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

References

[1] Amirian P, van Loggerenberg F,
Lang T. Data Science and Analytics.
Cham: Springer International
Publishing; 2017. pp. 15-37

[2] Gibert K, Horsburgh JS,
Athanasiadis IN, Holmes G.
Environmental data science.
Environmental Modelling and Software.
2018;106:4-12. Special Issue on
Environmental Data Science. Applications
to Air quality and Water cycle

[3]Grus J. Data Science from Scratch:
First Principles with Python. 1st ed.
O’Reilly Media, Inc.; 2015. Available
from: https://www.amazon.com/
Data-Science-Scratch-Principles-
Python/dp/149190142X

[4] Ahmad A, Paul A, Din S,
Rathore MM, Choi GS, Jeon G.
Multilevel data processing using parallel
algorithms for analyzing big data in
high-performance computing.
International Journal of Parallel
Programming. 2018;46(3):508-527

[5] Bomatpalli T, Wagh R, Balaji S. High
performance computing and big data
analytics paradigms and challenges.
International Journal of Computer
Applications. 2015;116(04):28-33

[6] Singh D, Reddy CK. A survey on
platforms for big data analytics. Journal
of Big Data. 2014;2(1):8

[7]Dorr BJ, Greenberg CS, Fontana P,
Przybocki M, Le Bras M, Ploehn C, et al.
A new data science research program:
evaluation, metrology, standards, and
community outreach. International
Journal of Data Science and Analytics.
2016;1(3):177-197

[8] Chasapis D, Moreto M, Schulz M,
Rountree B, Valero M, Casas M. Power
efficient job scheduling by predicting
the impact of processor manufacturing
variability. In: Proceedings of the ACM

International Conference on
Supercomputing (ICS’19). New York,
NY, USA: ACM; 2019. pp. 296-307

[9] Liu L, Tan H, Jiang SH-C, Han Z,
Li X-Y, Huang H. Dependent task
placement and scheduling with function
configuration in edge computing. In:
Proceedings of the International
Symposium on Quality of Service
(IWQoS’19). New York, NY, USA:
ACM; 2019. pp. 20:1-20:10

[10] Palyvos-Giannas D, Gulisano V,
Papatriantafilou M. Haren: A
framework for ad-hoc thread scheduling
policies for data streaming applications.
In: Proceedings of the 13th ACM
International Conference on Distributed
and Event-based Systems (DEBS ’19).
New York, NY, USA: ACM; 2019.
pp. 19-30

[11] Feng Y, Zhu Y. PES: Proactive event
scheduling for responsive and energy-
efficient mobile web computing. In:
Proceedings of the 46th International
Symposium on Computer Architecture
(ISCA ’19). New York, NY, USA: ACM;
2019. pp. 66-78

[12] Topcuoglu H, Hariri S, Min-You
WU. Performance-effective and low-
complexity task scheduling for
heterogeneous computing. IEEE
Transactions on Parallel and Distributed
Systems. 2002;13(3):260-274

[13]Menon H, Kale L. A distributed
dynamic load balancer for iterative
applications. In: Proceedings of the
International Conference on High
Performance Computing, Networking,
Storage and Analysis (SC’13).
New York, NY, USA: ACM; 2013. pp. 15:
1-15:11

[14] Schepis L, Cuomo F, Petroni A,
Biagi M, Listanti M, Scarano G.
Adaptive data update for cloud-based
internet of things applications. In:

14

Scheduling Problems - New Applications and Trends

Proceedings of the ACM MobiHoc
Workshop on Pervasive Systems in the
IoT Era (PERSIST-IoT’19). New York,
NY, USA: ACM; 2019. pp. 13-18

[15] Bak S, Menon H,White S, Diener M,
Kale L. Integrating openmp into the
charm++ programming model. In:
Proceedings of the Third International
Workshop on Extreme Scale
Programming Models and Middleware
(ESPM2’17). New York, NY, USA:
ACM; 2017. pp. 4:1-4:7

[16] Gandhi R, Liu HH, Hu YC, Lu G,
Padhye J, Yuan L, et al. Duet: Cloud
scale load balancing with hardware and
software. SIGCOMM Computer
Communication Review. 2014;44(4):
27-38

15

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

