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Chapter

Bayesian Approach for X-Ray and
Neutron Scattering Spectroscopy

Alessio De Francesco, Alessandro Cunsolo and Luisa Scaccia

Abstract

The rapidly improving performance of inelastic scattering instruments has
prompted tremendous advances in our knowledge of the high-frequency dynamics
of disordered systems, yet also imposing new demands to the data analysis and
interpretation. This ongoing effort is likely to reach soon an impasse, unless new
protocols are developed in the data modeling. This need stems from the increasingly
detailed information sought for in typical line shape measurements, which often
touches or crosses the boundaries imposed by the limited experimental accuracy.
Given this scenario, the risk of a bias and an over-parametrized data modeling
represents a concrete threat for further advances in the field. Being aware of the
severity of the problem, we illustrate here the new hopes brought in this area by
Bayesian inference methods. Making reference to recent literature results, we dem-
onstrate the superior ability of these methods in providing a probabilistic and
evidence-based modeling of experimental data. Most importantly, this approach
can enable hypothesis test involving competitive line shape models and is intrinsi-
cally equipped with natural antidotes against the risk of over-parametrization as it
naturally enforces the Occam maximum parsimony principle, which favors intrin-
sically simple models over overly complex ones.

Keywords: inelastic X-ray scattering, inelastic neutron scattering, Bayes analysis,
MCMC methods, model choice

1. Introduction

In the last decade, a large amount of inelastic neutron and X-ray scattering
measurements focused on the study of the collective atomic dynamics of disordered
system [1-5]. Although, across the years, the analysis of the line shape reported in
these measurements seldom benefited from the support of a Bayesian inference
analysis, the need of this statistical tool is becoming increasingly urgent. As a
general premise, it is worth stressing that a scattering measurement somehow
resembles a microscope pointed on the dynamics, whose “focus” can be adjusted by
suitable choice of the momentum #Q and the energy E = hw exchanged between
the particle beam and the target sample in the scattering event, where 7 is the
reduced Planck constant, Q is the wave vector transfer, and o is the angular
frequency. Specifically, upon increasing Q the probe “perceives” the response of the
system as an average over smaller and smaller distances ~27/Q and over times
~2r /w including a decreasing number of elementary microscopic events, e.g.,
mutual interatomic collisions. The observable accessed by these spectroscopic
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methods is the spectrum associated to density fluctuations, either spontaneous or
scattering induced. When quasi-macroscopic distances are probed, i.e., in the Q — 0
limit, the detail of atomic structure is lost, and the target sample is perceived as a
continuum medium, whose dynamic behavior is recorded as an average over many
elementary events [6]. Being the mass conserved over macroscopic scales, at these
distances the liquid density tends to become a constant of motion, i.e., a time-
invariant. For this reason, quasi-macroscopic density fluctuations relax very slowly to
equilibrium, and collective density oscillations are correspondingly very long-living.
The typical spectral signature of this so-called hydrodynamic behavior is a very sharp
triplet reflecting the quasi-conserved nature of hydrodynamic density fluctuations. A
striking example of such sharp triplet shape is provided in panel A of Figure 1, where
the low — (Q, w) spectrum on liquid argon at the triple point is reported as measured
by Brillouin visible light scattering (BVLS) [7].

One could guess that such a sharp spectral shape does not leave any room for
interpretative doubts, also considering that the limiting hydrodynamic spectral
profile is exactly known as analytically treatable starting from the application of
mass, momentum, and energy conservation laws. Although these statements appear
partly true, the very concept of “interpretative doubt” sounds grossly ill-defined
before spelling out explicitly the accuracy required to the interpretation one alludes
to. Despite its pioneering nature, the quality of the measurements in panel A seems
certainly adequate for a precise determination of the side-peak position, probably
not much so for a detailed analysis of the spectral tails, which are dominated by the
slowly decaying resolution wings. Nonetheless such a shape might still appear a
more encouraging candidate for a line shape analysis than its counterpart reported
in panel B of Figure 1 which is featured by broad and loosely resolved spectral
features, besides a definitely poorer count statistics. Given that the latter result is
fairly prototypical of terahertz spectroscopic measurements on simple disordered
systems, one might wonder why, thus far, the analysis of these measurements failed
to benefit from Bayesian inference methods as routine line shape analysis tools.
Aside of hardly justifiable initial mistrusts, a likely explanation is that only recently
these spectroscopic techniques transitioned to a mature age in which the very
detection of collective modes in amorphous systems can no longer be considered a
discovery in itself, and detailed analyses of the spectral shape are more and more
common and required. Again, the take-on message of this course of events is that
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Panel A: The Brillowin light scattering spectral intensity, 1(Q, E), measured in liquid avgon at the triple point,
redrawn from Ref. [7]. Panel B: The inelastic X-ray scattering spectrum of another noble gas: neon at ambient
temperature and 0.3 GPa pressuve [8]. Spectral profiles are normalized to their maxima.
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the pivotal issue is the adequacy of a given measurement to provide the sought for
information, rather than the quality of the measurement in itself. The unbalance
between an unavoidably limited experimental performance and the rapidly
increasing interpretative needs dramatically enhances the risk of “good faith over-
interpretations” representing a lethal threat for the progress of knowledge.

Listen, the data talk! Every time we need to proceed with a data analysis, we
could be induced or even tempted, on the basis of our prior knowledge or intuition,
to somehow suggest the data what they should tell us about the properties of the
system we are investigating. Being driven by acquired knowledge is not necessarily
a wrong attitude, it is actually a natural demeanor which effectively drives the
cognitive process and the progress of knowledge. However it could become deceiv-
ing if we do not have well-consolidated insight about the system under investigation
and the observed data are not accurate enough or barely informative. In such cases,
in fact, it is highly probable that we just adapt a model to the data, which fits them
as well as many other possible models, with the only advantage to deliver results
and solutions we feel more at ease with, as they confirm our prior beliefs. This
model, of course, can be really plausible and reasonably pondered, and the solution
adopted can accidentally be the right one; however, it would be desirable a robust
method to quantify how much we can trust such a solution, either in itself or in
comparison with alternative ones. We surely want to avoid an aprioristic reliance in
a model, which might coerce data to confirm certain results preventing them from
providing new insights on the investigated system.

When dealing with neutron or X-ray scattering, the statistical accuracy of spec-
tral acquisition is the primary concern. For the most varied reasons, e.g., relating to
the scattering properties of the sample, the integration time, or the count rate of the
measurement, the achieved count statistics may either be adequate for a rigorous
data analysis or, as often happens, not as good as we would like it to be. In the latter
case, the experimental data might not be accurate enough to tell us everything
about the physical problem under scrutiny. They could tell us something, but not
everything! This is why we need a solid inferential method capable of extracting the
maximum amount of information from the data acquired and possibly providing us
with a quantitative probabilistic evaluation of the different models that are com-
patible with the data at hand. Especially when nothing or very little is known about
a specific sample or system, the point is, given the observed data, how plausible is a
specific model? What is the precision of the conclusions drawn from this model?
Are there other possible interpretations of the data at hand? To what extent are
different models and interpretations supported by the observed data?

A Bayesian inferential approach provides answers to all these questions on a
probabilistic basis, along with a sound criterion to integrate any prior knowledge in
the process of data analysis. Bayesian inference, in fact, recognizes the importance
of including prior knowledge in the analysis. When we do have well-established
prior knowledge about a sample property or a general law a physical phenomenon
must comply with, it would be insane and pointless not to use this information.
Such a prior knowledge, in fact, can protect us from the risk of making mistakes in
the description of experimental data, hence in their interpretation. In the Bayesian
framework, prior knowledge takes the form of probability statements so that dif-
ferent probabilities, ranging from zero to one, can be attributed to competitive
explanations of the data. In this way, less probable explanations are not excluded a
priori but simply given a smaller prior probability. The a priori probability of
different explanations is then updated, through the Bayes theorem, based on the
new information provided by the data. The results of this analysis, thus, assume the
form of posterior probabilities. On this basis, one can easily establish which model is
most supported by both data and prior knowledge, what are the posterior
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probabilities of alternative models and those of their parameters, and which pro-
vides a ground to appreciate the precision of their estimates. In addition, Bayesian
methods naturally embody the Occam’s razor principle, thus favoring simpler
models over unnecessarily complex ones. Last but not least, Bayesian estimation
algorithms are generally less affected by the presence of local optima in the param-
eter space and are not sensitive to the starting values used to initialize the estimation
process.

The aim of this chapter is to illustrate how Bayesian inference can be used in
X-ray and neutron scattering applications. The Bayesian approach proposed here is
implemented through an estimation algorithm, which makes use of Markov chains
Monte Carlo (MCMC) methods [9, 10] integrated, where appropriate, with a
reversible jump (R]) extension [11]. This Bayesian method has been already suc-
cessfully applied in a series of Brillouin inelastic neutron scattering works [12], as
well as inelastic X-ray scattering ones [13, 14] and, very recently, in the description
of the time correlation function decay in the time domain as measured by spin echo
neutron scattering [15, 16]. The rest of the work is organized as follows: Section 2
provides a motivating example; Section 3 revises the Bayes theorem and discusses
its different components, as well as some advantages inherent in the Bayesian
method; Section 4 applies the Bayesian inference to X-ray and neutron scattering
spectroscopy with special emphasis on model choice, parameter estimation, and
results interpretation.

2. An example: searching for differences

Depending on the problem at hand, our approach to data analysis can be very
different. Imagine that we want, as a toy or teaching example, to measure either the
neutron or the X-ray scattering spectrum from a system whose spectrum is well-
known and its interpretation unanimously agreed. For instance, we aim at
extracting the phonon dispersion curve from the thoroughly measured spectral
density S(Q, E) of a given sample. In our replica of past measurements, it is possible
that the proper discernment of the excitation lines is hampered by both the course
instrumental resolution and the limited statistical accuracy. The poor quality of data
could prevent us from easily identifying the spectral features (peaks, bumps,
shoulders), already measured and characterized by others. For instance, it could be
overly difficult to establish how many excitations are present in the spectra. Unless
we deliberately refute the conclusions previously reached by other scientists, it is
natural to enforce a line shape modeling well-established in the kinematic range
spanned and to verify ex post if the resulting spectral features are consistent with
those known from literature.

More often, we face a different problem, as we want to measure for the first time a
certain system on which we might not have previous knowledge. Alternatively, we
could have prior knowledge about that same system, yet in different thermodynamic
or environmental conditions— for instance, a liquid either in bulk or confinement
geometries—and possible effects of these peculiar conditions are under scrutiny.
Changes could also be very small, and, since detecting them is the focus of our
research, it is essential to take the most impartial and noninvasive approach. In this
second situation, it would be desirable not to rely too heavily on previous results when
choosing the model and to allow the measurement to reveal possible new features.

The two situations mentioned above notably differ in the amount of information
available on the system before analyzing the data. In the first case, we have a
complete knowledge of the system, while, in the second case, this knowledge is
partial or even lacking at all. In this second situation, a traditional approach would
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consist in either best fitting a model we deem adequate for the data, e.g., well-
assessed for the considered sample, albeit only in different thermodynamic or
environmental conditions, or fitting competing models to establish the one best
performing based on criteria agreed upon, e.g., the chi-square value. Following the
first path, we hinge too much on a specific model and on previous partial knowl-
edge, thus jeopardizing the chance of new findings. On the other hand, the second
path would be less coercive at the cost of completely ignoring previous partial
knowledge. In addition, the model chosen would be simply the one providing the
best fit, but no assessment can be made on the plausibility of this or any other fitting
model, based on the data measured. Conversely, a Bayesian approach to data anal-
ysis would, instead, allow to assign a different prior probability to the different
models (accounting for the uncertainty of available information on the system)
and, then, revise these probabilities in the light of the data to deliver the posterior
probability of each model, conditional on the data at hand.

3. Bayesian inference
3.1 The Bayes theorem

The Bayes theorem stems from the theorem of compound probability and from
the definition of conditional probability. If we consider two events A and B, the
compound probability theorem states that the probability of the two events occur-
ring simultaneously is given by:

P(A, B) = P(B|A)P(A) = P(A|B)P(B), 1)

where P(B|A) is the probability of observing B, once A has been observed.
Obviously, if A and B are independent, so that the occurrence of one of them does
not affect the probability of occurrence of the other one, the compound probability
theorem reduces to:

P(A,B) = P(A)P(B). (2)
From Eq. (1), we immediately get:

P(B|A)P(A)

P(AIB) = =55

(3)

which is nothing else than the Bayes theorem.

Let us now consider A as the ensemble of the parameters of a certain model (or
class of models) we choose to describe experimental data. In a slightly different
notation, let this ensemble be denoted, from now on, as the vector ® =
(64,6, ...,0,,), where each vector component 6,, is a parameter. Notice that a
component of ® might also be associated to a parameter that designates a particular
model among several proposed. Also, consider B as the entire set of experimental
data. Let us indicate this dataset with the vector y = (yl, Vs wees yn) , with n being the
sample size. In this new notation, the Bayes theorem reads obviously as:

P(y|©)P(©)
Py)

where P(0|y) is the posterior distribution of the parameters given the observed
data; P(®) is the prior distribution of the parameters before observing the data;

p®ly) = (4)
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P(y|®) is the likelihood of the data, i.e., the probability of observing the data
conditional on a certain parameter vector; and P(y) is the marginal probability of
the data, which plays the role of normalizing constant so that Eq. (4) has a unit
integral over the variable ®. The different elements of Eq. (4) are thoroughly
discussed in the following sections.

3.2 The prior distribution

Let us consider the different elements of Eq. (4), starting with the prior distri-
bution (or simply prior) P(®). This is the distribution function elicited for the
parameters, given the information at our disposal before data collection. Using a
slightly more redundant notation, the prior can be explicitly denoted as P(®|I),
where I represents the a priori information. This prior probability includes all prior
knowledge (or lack of it) we might have, and it can be more or less informative
depending on the amount of information on the problem under investigation. Using
the same explicit notation, the Bayes formula in Eq. (4) can be rewritten as:

P(y|®,)P(O|I)
PRI

Just to make a few examples, it might be possible that a certain parameter ¢
included in the model is known, or either already measured or somehow evaluated
independently, and its value is 6*. In this case, we can assume that the parameter
takes the specific value * with probability equal to one. Otherwise, if we want to be
less coercive, we can adopt for the parameter a Gaussian prior centered on 6* and
with a variance opportunely chosen to limit the parameter variability to a certain
interval around 6. In this way, values closer to 8* will be given a higher a priori
probability.

In other situations, the information available on the parameters might be more
vague. For example, we might simply know that a certain parameter must be
nonnegative or that it must range in a limited interval, as often the case of neutron
scattering hampered by severe kinematic constraints. Nonnegative parameters can
be a priori assumed to follow, for example, a truncated Gaussian or a gamma
distribution, and, if no other information is available, the prior distribution will be
adjusted to make allowance for a large parameter variability, reflecting the
noninformative initial guess. Parameters having random or hardly quantifiable
variations within limited windows can be assumed to approximately follow a
uniform distribution over such a window. Also, whenever feasible, any mutual
entanglement between parameters, as well as any selection, conservation, or sum
rule, should be embodied in a usable distribution function complementing our prior
knowledge I in the cognitive process.

Notice that, even if it is common practice to assume that the parameters are a
priori independently distributed, correlation between them can be naturally
induced by the data, through the combination of the likelihood and the prior.
Parameters can be a posteriori correlated, even if they are a priori independent.

P(Bly,I) = (5)

3.3 The likelihood function

The likelihood function is the joint probability of the observed data, conditional
on the model adopted and its parameter values. Notice that for continuous data, the
likelihood becomes a density of probability. Let y = (y;,,, -..,) be a sample of
data. Each datum y, can be portrayed as a particular realization of a random variable
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Y; distributed as f(Y;; ©). In fact, if we had to collect data again, even under the
same experimental conditions, we would obtain a different sample of data. This
means that, before collecting data, the i-th result is to be considered a random
variable Y;. Once the data have been collected, y; is the particular realization
observed of the random variable Y;, and the sample y = (y,,,, ...,) is the
particular realization observed of the multiple random variable Y = (Y3, Y2, ... Yy),
whose components Y; are independent and identically distributed as f(Y;; ®). Then,
the joint (density of) probability of the observed data is the probability that, simul-
taneously, each variable Y; takes the value y, (or takes a value in the interval

[yi,yi + Ayi} ), foriel, ...,n, i.e.,f(yl,yz, Yy @). Given the independence of the
variables Y;, fori €1, ..., 7, and using the compound probability theorem, we
obtain:

FO19:79,350) =f (11:0)f (92:0)f (5,5 ©). (6)

The left side of Eq. (6) is the likelihood function for the observed sample y =
Y1:¥5> ¥, which depends on the unknown parameter vector ©. If we condition on
a particular value of ®, we can compute the probability (or density) of the observed
sample, conditional on @, i.e., P(y|®) in Eq. (3).

To be more specific, we can consider spectroscopic data. The observable directly
accessed by a spectroscopic measurement is the spectrum of the correlation
function of density fluctuation, or dynamic structure factor S(Q, E), which, in a
scattering experiment, is a unique function of the energy, E = hw, and the momen-
tum, 7Q, exchanged between the probe particles and the target sample in the
scattering process. One has:

y; =S(Q.E)) +e&i, 7)

where S(Q, E) is the model used for the dynamic structure factor, depending on a
vector of unknown parameters ©, and ¢ = (¢1, &, -+, &,) is a vector of random errors,
here assumed to be independently and normally distributed, i.e., & ~ N (O, 01-2) , for
i€1, ..., n.Notice that assuming heteroscedastic errors, we are not imposing any
restriction other than normality on the error term. The heteroscedastic model embeds
the homoscedastic one, and since the parameters 01-2 are estimated from the data, it
might reduce to it if the data were compatible with the homoscedasticity constraint.

Under the assumption above, the likelihood function is:

1 hi=Si(QE? _sm [y; —S(Q.E;)2
20‘2 i=1 262
2
\/ 2705

e i  =cost-e i (8)
Conditional on a certain value of the parameter vector ® (which might also
include the variance 012 of the error term), we can compute S(Q, E;) and, thus, P(y|0©).

Polo) =]

3.4 The posterior distribution and its normalizing constant

The term on the left-hand side of Eq. (3) is the joint posterior distribution of the
model parameters, given prior knowledge and measured data, i.e., after data collec-
tion. It incorporates both prior knowledge and the information conveyed by the
data, and Bayesian inference completely relies on it. In practice, prior knowledge
about the investigated problem is modified by the data evidence (through the
likelihood function) to provide the final posterior distribution (Figure 2). Estimates
for a single parameter 0, can be obtained by marginalizing, i.e., by integrating
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Figure 2.
Sketch of how the prior distribution and thevefore our prior knowledge about a model parameter ave changed by
the data evidence.

(summing) the posterior over all the other parameters to get P(0,|y) =
Lf@ikP(@ |y)d®_;, where ©_y, is the whole parameter vector except 6. Then, the mean

of P(6ly) is taken as a point estimate of 6, while the square root of its variance
provides a measure of the estimation error. Also, the probability that the parameter
01, belongs to a certain interval can be inferred from its marginal posterior.

The term in the denominator of Eq. (3):

Pp) = [ Pyiep©)de ©

is generally called the marginal likelihood and represents the probability of
observing the measured data y,(i = 1, ---n), averaged over all possible values of the
model parameters. It represents the normalization constant for the posterior distri-
bution, and it is required in the evaluation of P(®|y). However, in most cases, P(y)
does not have a closed analytical expression, as its determination would require the
computation of high-dimensional integrals. Hence, the posterior distribution can
only be obtained up to a normalizing constant, namely:

P(®ly) < P(y|®)P(O). (10)

For this reason, Bayesian inference usually needs to resort to MCMC methods to
simulate the joint posterior distribution. MCMC algorithms, in fact, allow to draw
values from distributions known up to a normalizing constant, as is often the case
for P(®ly). Inference is then carried out on the basis of the simulated, rather than
analytical, joint posterior distribution. More details on these methods will be given
in Section 3.6 (see also Refs. [9, 10]).

To illustrate an interesting point, let us go back to the example considered
before, in which we want to analyze spectroscopic data that can be modeled as in
Eq. (7) and for which the likelihood is given in Eq. (8). Imagine to have no prior
information at all on the parameters of the model so that the only sensible choice for
the prior is a uniform distribution on the parameter space. Then, from Egs. (8) and
(10), it follows that:

w1 ;—S(Q.E)] * [y, — S(Q.E)]°
P(BOly) x H \/2—7170? exp (— [y 207 ] ) x exp <— Z [y 202 } )

=1

(11)
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which implies that the posterior distribution is a multivariate Gaussian. As
already mentioned, parameters can be estimated taking the mean of the posterior
distribution, which, for a Gaussian distribution, corresponds to the median, mode,
and maximum of the distribution. Therefore Bayesian parameter estimates are

2
. .. i—S(Q, E; . ..
obtained as those values of ® that maximize exp <—E§?_1 W) . This maximi-
. : e 2 wn PiS@QE) :
zation is equivalent to the minimization of the y* = X ; =——>—" function and

thus provides the same estimates we would obtain through standard fitting pro-
cedures [13]. Therefore, whenever no prior information is available, which trans-
lates into a uniform prior, and a normal error distribution is assumed, the posterior
distribution coincides up to a constant to the classical likelihood function, and
Bayesian and classical estimates are equivalent. This result can be extended to the
case of an informative prior, for which, again, Bayesian and traditional approaches
provide asymptotically the same results. In particular, as sample size increases, the
posterior distribution of the parameter vector approaches a multivariate normal
distribution, which is independent of the prior distribution. These posterior
asymptotic results [17] formalize the notion that the importance of the prior
diminishes as # increases. Only when 7 is small, the prior choice is an important part
of the specification of the model. In such situations it is essential that the prior truly
reflects existing and well-documented information on the parameters so that its use
can significantly improve the precision of the estimates.

Despite the asymptotic equivalence, sometimes parameters are much easier
estimated in a Bayesian rather than in a frequentist perspective. Frequentist esti-
mation, in fact, is generally based on least squares or maximum likelihood methods,
and this might be a problem in the presence of local optima. If, for example, the
starting values of the parameters, needed to initialize the optimization algorithm,
are close to a local optimum, the algorithm might be trapped in this suboptimal
solution. As a consequence, different starting values might determine different
solutions and, thus, parameter estimates. The Bayesian estimate of a parameter, as
stated before, is instead obtained as the mean of its posterior distribution, margin-
alized with respect to all other parameters. This estimation procedure does not
involve any minimization or maximization, and, thus, the fitting algorithm does not
risk to get trapped in local optima, and the results are independent from starting
values used in the MCMC algorithm used to simulate the posterior distribution (see
Section 3.6). It might happen, obviously, that the posterior of one or more param-
eters is bimodal or multimodal. The presence of different parameter regions with
high posterior density might suggest that the data show some evidence in favor of a
more complex model but not enough for this model to have the highest posterior
probability. In this case, it is not reasonable to use the mean as a point estimate for
the parameters, since it might fall in a low posterior density region, and the mode of
the posterior distribution can be used in its place. In such situations of posterior
multimodality, it is evident how the whole posterior distribution conveys a much
richer information than the simple parameter estimate.

3.5 The Occam’s razor principle

Even if Bayesian and classical analysis asymptotically give the same results,
Bayesian results always have a probabilistic interpretation, and this is particularly
relevant when we need to compare different models and determine, for instance,
the number of spectral excitations (in the frequency domain) or the number of
relaxations (in the time domain). In addition, the Bayesian method represents a
natural implementation of the Occam’s razor [18-20]: this principle is intrinsic to



Inelastic X-Ray Scattering and X-Ray Powder Diffraction Applications

Bayesian inference and is a simple consequence of the adoption of the Bayes theo-
rem. In model choice problems, in fact, the posterior probabilities of the different
models naturally penalize complex solutions with respect to simple ones, thus
conforming to the parsimony principle.

To see this, consider Eq. (4), and imagine that the parameter vector also includes
a model indicator parameter M, forj =1, ..., k. To make this more explicit, we can

rewrite Eq. (4) as P(©,M,ly) xP(y|®,M;)P(©,M,). Then, Bayesian model choice
simply consists in choosing the model with the highest posterior probability
P(Mjly) = [oP(©,M;ly)d® 4P (y|0,M;)P(6,M;)d® = P(M;) [,P(y|®, M;)
P(®|M;)d® = P(y|M;)P(M;). Thus, if the same a priori probability is attributed to
the models, i.e., P(M;) = P(M;) = -+- = P(M}), the posterior probability P(M;ly) is
simply proportional to the marginal likelihood:

P(y|M;) = J@P(y|®,Mj)P(®|Mj)d® (12)

Now, consider for simplicity just two possible models, the first one, denoted as
M3, more complex and characterized by a larger number of parameters and the
second one, denoted as M,, simpler and characterized by a smaller number of
parameters. Clearly, the more complex model is able to generate a much wider
range of possible datasets (i.e., for which the model would provide a reasonable fit)
than the smaller model. Therefore, the marginal likelihood P(y|M;) is more dis-
persed than P(y|M;) (cf. Figure 28.3 of Ref. [20]). This implies that dataset in
accordance with both M; and M, have P(y|M;) > P(y|M;), while those in accordance
with just the more complex model M; have P(y|M;) < P(y|M;) (with P(y|M,) = 0).
If the two models are a priori given the same probability, for datasets in accordance
with both models, the inequality P(M;|y) > P(M|y) holds for the posterior proba-
bilities, determining the choice of the simplest model to represent the data.

3.6 Bayesian computation of model parameters

As already stated, Bayesian inference completely relies on the joint posterior
distribution P(®|[y). However, for a complex model, it is often impossible to compute
this posterior distribution analytically, and the latter is only known up to a normaliz-
ing constant. The MCMC methods allow to draw values from distributions known up
to a normalizing constant and, thus, to obtain the simulated joint posterior distribu-
tion. In practice, MCMC methods consist in constructing an ergodic Markov chain
(Figure 3) with states ®”, m = 1---M, and stationary distribution corresponding to
the joint posterior distribution. M is the number of states, i.e., the number of

®m)
® R =

o O(miligh A Markov chain is a stochastic process (Markov process) in

- % a discrete state space in which the probability of jumping in

L] [} a new state depends only on the state reached in the

4 previous step.
[ ]
e o
@(m+2)

Figure 3.
Parameter updating. © is the parameter vector. ©™ is a particular set of parameter values in the parameter
hyperspace.
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updating of the parameter values, and is generally called the number of sweeps of the
MCMC algorithm. At each sweep of the algorithm, a new draw of ® from its posterior
is obtained updating all the parameters in turn, drawing each of them from its
posterior distribution, conditional on the value of all the other parameters. If this
posterior conditional distribution is known, the parameter is updated using a Gibbs
sampling step, which simply draws the new value of the parameter from this known
distribution. Otherwise, if this posterior conditional distribution is known only up to
a normalizing constant, the parameter needs to be updated through a Metropolis-
Hasting move [21]. This move is built as follows. Suppose that, at a given sweep of the
algorithm, the current value of a certain parameter is 6. A new candidate value 6’ can
be drawn from an opportunely chosen proposal distribution ¢(-|¢), which generally
depends on the current value 6. The new value ¢ is then accepted with a probability
equal to min (1, R), where R is given by:

_ P(|®) P(¢')q(0]¢')

R =Pule) P(0) 4(0l0)

(13)

where @' is the whole parameter vector with the parameter 0 replaced by the
new value &, P(y|0) is the likelihood, and finally P(6) is the prior on that parameter.
In other words, R is nothing else but the ratio between the joint posterior distribu-
tion calculated with the updated parameter values and the posterior distribution
calculated with the current ones, multiplied by the ratio between the proposals,
q(010")/q(6'10). The higher the posterior ratio, the larger R and hence the probability
to move to the new parameter value. In practice, to decide whether or not a
candidate value is accepted, a random number is drawn from a uniform distribution
defined between 0 and 1 and compared with the calculated value for R. If the
random number is less than R, the parameter is updated to the new value; otherwise
the new value is rejected. The way the acceptation rule in Eq. (13) is built ensures
that the resulting Markov chain has the joint posterior distribution P(®|y) as sta-
tionary distribution.

Concerning the proposal distribution, this should be chosen as a distribution
from which it is easy to sample. It could be, for instance, a normal distribution
centered on the current value of the parameter and with a certain variance which
can be adjusted and used as a tuning parameter. This locution alludes to the cir-
cumstance that adjustments of this parameter can literally tune the step of the
parameter updates. For a normal proposal distribution, a large variance allows the
new value ¢’ to substantially change from the current value. However, if we already
are in a high posterior distribution region for the parameter, values far from the
current one will fall in low-density regions and are accepted with a very low
probability. As a consequence, the algorithm will remain stuck on the same value of
the parameter for a long time, causing an inefficient exploration of the parameter
space. On the contrary, a small variance will constrain ¢’ to be close to 6. In this case,
the new value has a high probability of being accepted, but the algorithm would
move slowly and take a long time to reach convergence to the stationary distribu-
tion. The tuning parameters can be appropriately chosen so that the algorithm
explores the parameter space efficiently. A rule of thumb states that this happens
when the acceptance ratio for each parameter is about 30% [22].

When the parameter vector also includes a model indicator parameter, a further
move needs to be considered to update this parameter and to allow the algorithm to
explore different models. This move is a reversible jump [11] step, which is specif-
ically designed to allow the Markov chain to move between states having different
dimensions (since the dimension of the parameter space varies accordingly to the
model considered).

11
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As a final remark, consider that when the MCMC algorithm reaches convergence,
after a so called “burn-in” period, the draws not only effectively represent samples
from the joint posterior distribution but are also theoretically independent from the
starting values of each parameter. Few examples about this point are shown in
Table 1 of Ref. [12]. Notice, however, that the time required to reach convergence
might vary a lot depending on the data and the prior. For example, peaked unimodal
posterior distributions (i.e., highly informative data) generally speed up convergence,
as well as the availability of an important prior information, which reduces the size of
the effectively accessible parameter space. On the contrary, the presence of many
high posterior density regions can hinder and slow down convergence.

4. The Bayesian approach in neutron and X-ray scattering spectroscopy
4.1 Neutron and X-ray Brillouin scattering
One of the models commonly used to analyze either neutron or X-ray scattering

data is the so-called damped harmonic oscillator (DHO) profile, which we report
here below:

k : 2 .
ﬂQ@Z&@W@+;ﬂMHﬂ1wMQD+Xﬂ 4@ Q5Q)
B = [ - Q)] +alr@)

(14)

where §(E) is the Dirac delta function describing the elastic response of the

system modulated by an intensity factor 4.(Q), n(E) = (ef/%T —1) " is the Bose
population factor expressing the detailed balance condition, and the term in curly
brackets is the sum of a Lorentzian central contribution, characterized by the
parameters Ao and 2o, and the contribution of k pairs of peaks, the DHO doublets,
symmetrically shifted from the elastic (E = 0) position. The generic j-th DHO is
characterized by its undamped oscillation frequency Q;(Q ), damping I';(Q), and
intensity factor A;(Q). The Lorentzian contribution, not necessarily present,
accounts for the quasielastic response of the system. We have intentionally
expressed the inelastic contribution as an indefinite sum of k terms, as the scattering
signal from amorphous systems is often poorly structured and the number of
inelastic modes contributing to it is often hard to guess. A series of concomitant
factors, such as the instrument energy resolution, the limited statistical accuracy,
and the intrinsically weak scattering signal, can make the line shape modeling

not straightforward. In a Bayesian perspective, the number of inelastic features
can be treated as a parameter to be estimated along with the other model
parameters.

To fit the experimental data, the model in Eq. (14) needs to be convoluted with
the instrument resolution, and it can conceivably sit on top of an unknown linear
background. Overall, the final model used to approximate the measured line shape
is given by:

S(QE) = R(Q,E) ®S(Q, E) + (By + H1E). (15)
where “® ” represents the convolution operator. For neutron scattering, the

instrument resolution function has often a Gaussian shape; thus the final model
reads as:
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Q.5 = | e (- f?)} ®S(QE) + (b + SE).  (16)

For IXS, Egs. (14-16) are still formally valid although the instrument resolution
function has usually a slightly more complex shape which appears in the convolu-
tion of Eq. (15) either as approximated by an analytical model or measured from the
signal of an almost elastic scatterer; obviously, in the latter case, the convolution is
computed numerically. The final model is further corrupted by an additive Gauss-
ian noise, having a variance that, for instance, can be taken proportional to each
data point. Thus, the experimental data points are given by:

y; = S(Q,E;) + ¢(Q, E;), (17)

with
e(Q,E) ™ N(0,6%3(Q, E)), (18)

where ¢? is the proportionality constant. Thus, the likelihood for model in
Eq. (17) is simply given in Eq. (8), with S(Q, E;) replaced by S (Q, E;) defined in
Eq. (16) and 67 = 6°S(Q, E;).

The whole parameter vector for the model in Eq. (17) is ® =
(k,A, Q, F,Ae,Ao,Zo,ﬁo,ﬁl, 62>, with A = (Al, ---,Ak>, Q= (Ql, ooy Qk), andI' =
(I'y, -+, T ), so that the dimension of the parameter vector depends on the number
of inelastic modes, k. In a Bayesian perspective, suitable priors need to be chosen for
each component of ©. For example, k can be safely assumed as uniformly distrib-
uted between 1 and a certain value kn,x opportunely fixed so that all models are a
priori given the same probability. All parameters only attaining nonnegative values
such as (A, Q,T’, A,, Ao, 2o and ¢°) can, instead, be assumed distributed according to
a Gamma distribution or a Gaussian distribution truncated in zero. Finally, $, and
p; are assumed to follow a normal distribution, centered in zero and with a large
variance, to keep the priors scarcely informative.

Bayesian inference is, then, based on the joint posterior of the whole parameter
vector ©. However, as mentioned, given the complexity of the model S(Q, E;) in
Eq. (17), the normalizing constant in Eq. (9) cannot be analytically evaluated, and it
is necessary to resort to MCMC methods to obtain a simulated joint posterior. Since
the parameter space dimension depends on the number of inelastic modes, &, a R]
step needs to be added to allow the exploration of a parameter space of variable
dimension. The updating of the parameter k£ can be implemented according to
different types of moves, which, for instance, can enable either the creation (the
birth) of a new component in Eq. (14) or the suppression (the death) of an existing
one, i.e., the so-called birth-death moves; or they can promote the splitting of an
existing component into two components or the combination of two existing com-
ponents into one (split-combine move). These moves are described in Ref. [12]. In
practice, at each step, the algorithm tries to jump to another value of &£ (from 1 to 2,
from to 2 to 1 or 3, from 3 to 2 or 4, and so on). The new value of k is accepted with
an acceptance probability that guarantees the convergence of the algorithm to the
joint posterior distribution.

Once the convergence is attained, after a burn-in period, at each sweep m =
1,---,M, the R] MCMC algorithm draws a vector:

(k(M): A(m): Q(m), F(m): A(m): Agn),zg)m): ﬂgﬂ)a ﬂYﬂ)a 62(m)> B (19)

e
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from the joint posterior P(®ly). In practice, the output of the algorithm is a
matrix of the form:

M A0 G0 g0 g
K2 4D Q@) @ A®  A@ D g0 40 o)

(20)

where each row is a particular draw of the whole parameter vector ® from its
joint posterior P(®|y), while each column refers to a particular parameter and
represents the whole simulated marginal posterior distribution for that parameter,
independently from the values observed for all the other parameters. Model choice
can, then, be accomplished considering the first column of the matrix in Eq. (20),
that is, the simulated marginal posterior P(k[y). This column contains a string of
values fork (e.g.,1,1,1,2,2,3,2,3,4,3,3,3,2_. . 45,43,4,3,2 ). Therefore, the
posterior probability that the number of modes is equal to a specific value
¢,P(k = £y), is given by the relative frequency of occurrence of the value # in the
strings, and the model chosen will be the one corresponding to the value of k with
the highest occurrence.

Once a particular model with, let us say, # = ¢ inelastic modes has been chosen,
the parameters of this model can be estimated conditionally on k = #. This means
that we only need to consider a submatrix of the matrix in Eq. (20), made up of
those rows for which the first column is equal to #. Then, a certain parameter 6 can
be estimated taking the mean (or the mode) of the corresponding column of this
sub-matrix, which represents the simulated posterior distribution for 6, condition-
ally on the model with # modes and marginalized with respect to all the other
parameters, i.e., P(0|y,k = ?).

In assessing convergence, a valuable tool is provided by trace plots, which show
the sampled values of a parameter over the sweeps of the algorithm. Ideally, a trace
plot should exhibit rapid up-and-down variation with no long-term trends or drifts.
Imagining to break up this plot into a few horizontal sections, the trace within any
section should not look much different from the trace in any other section. This
indicates that the algorithm has converged to the posterior distribution of the
parameters. Other convergence criteria can be found, for example, in Ref. [23].
Figure 4 shows the trace plots of three DHO-mode frequencies (£21,,3) the algo-
rithm found, fitting a spectrum relative to IXS data on pure water recently mea-
sured (data not published) at room temperature and at a wave vector transfer
Q = 3nm™1, after the first 1000 (a), 10,000 (b), and 100,000 (c) sweeps. In plot
(a), it can be seen how rapidly Q, and €3 reach their respective high-density
regions, while ©; has more problems in exploring the parameter space. Plot (b)
shows that, after nearly 2000 sweeps, also €; finally starts oscillating around its
mean, according to its posterior distribution. Plot (c) illustrates that a burn in of, for
example, 10,000 sweeps is large enough to ensure convergence of the algorithm: the
trace plots for the three parameters stabilize well before the end of the burn in
period.

In Figure 5, we report an example of Bayesian analysis applied to neutron
Brillouin scattering data from liquid gold [12] at different values of the momentum
transfer Q. In this work, after a proper removal of spurious effects such as
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background, self-absorption, and multiple scattering, the data look indeed rather
structured so that inferring the number of inelastic components seems rather obvi-
ous and the result confirms the findings of a previous work [24]. Estimates were
obtained from 10° sweeps of the algorithm, after a burn in of 10* sweeps, and the
running time for the algorithm was of approximately 5/10 minutes for each spec-
trum. We chose a precautionary large value for the burn-in, but convergence was
normally achieved in a few hundreds of sweeps.

Even in this straightforward case, however, additional insights can be obtained
from the posterior distributions delivered by the Bayesian inference. For example,
in Figure 6, it can be noticed that, as the value of Q increases, the posterior
probability of £ = 2 also increases. This trend in the discrete distribution for k as a
function of Q could possibly convey interesting insights on the actual onset of a
second excitation or simply indicate a progressive degradation of the experimental
data or, still, suggest that, as the damping becomes more and more effective, the
determination of the number of inelastic features becomes more controversial.

To investigate these issues, one can look, for example, at the posterior distribu-
tions for the excitation frequency €, conditional to k£ = 1 and to k = 2, respectively
(see Figure 7 for an example on the same data of Figure 5 for a Q value of 16 nm ™).
Considering the matrix in Eq. (20), as explained above, for £ = 1, all the values in
the column referring to ©;, and in correspondence with the rows for which & =1,
are draws from P(€]y,k = 1), and a histogram of these values can be used to
visualize the marginal posterior distribution of Q;, conditional to k = 1. In the same
way, for k = 2, all the values in the column referring to €, and in correspondence
with the rows for which k = 2, are draws from P(Q;]y, & = 2), while those in the
column referring to Q, and in the same rows represent draws from P(;|y, k = 2).
Figure 7 illustrates, from left to right, the distributions P(Q4|y,k = 1), P(4|y, k = 2),
and P(Q|y,k = 2) at Q = 16nm ™.
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Figure 4.

Typical trace plots for the three DHO-mode frequencies as obtained after the first 1000 (a), 10000 (b) and
100000 (c) sweeps of the algorithm for IXS data on pure water at room temperature and at a wave vector
transfer Q = 3nm™*. The frequencies are indexed in increasing ovder with vespect to their value.
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Figure 5.

Dynamic structure factor of liquid gold at five Q values measuved on the Brillouin neutron spectrometer BRISP
at ILL (Grenoble, France). The experimental data (blue dots) are broadened by the instrumental energy
resolution. The RJ-MCMC best fit (ved line) takes detailed-balance asymmetry and resolution into account.
Reproduced from Ref. [12], Copyright (2016) of American Physical Society.

The shape of these posterior distributions provides a measure of the precision
with which the parameter is estimated. For example, P(Q;[y, k = 1) is well-shaped,
i.e., unimodal and approximately symmetric, yet quite dispersed. Its mean is equal
to 23.8 meV, but there is a 95% probability that the value of Q; lies in the large
interval 22.3-25.2 meV. This large interval tells us that many different values of Q;
are compatible with the data, signifying that the inelastic mode at Q = 16 nm™? is
largely damped—as confirmed also by the large I'; value (= 7.5meV)—and less
defined, which reveals the large uncertainty in the estimation of the undamped
oscillation frequency of the DHO excitation. If we now look at the posteriors for
P(|y,k = 2) and P(€,]y, k = 2), we can see that these are much worse shaped than
P(Q4]y,k = 1), with unreasonably large or small values having nonvanishing proba-
bility. Their mean are, respectively, 17.6 and 25.5 meV and are outside the proba-
bility interval obtained for Q;, when k = 1. Therefore, based on these findings, the
Q-evolution of the posterior probability of k£ seems to simply reveal the increasingly
elusive discernment of distinct inelastic features as their damping, or broadening,
increases. In practice, at the highest Q explored (16 nm ™), the oscillation mode
becomes so highly damped that it can be fitted equally well either by two distinct
DHO peaks or by a (broader) single one in the middle of the two. At this stage, the
Occam’s razor comes into play, naturally integrated in the Bayesian model choice,
which ultimately privileges the model with only one DHO, as it involves fewer free
parameters. Imagine, instead, that P(Q;]y, k = 1) were bimodal, with the two modes
corresponding to the single modes of P(Q;]y, k = 2) and P(€,|y, k = 2), respectively,
as observed, for instance, in Ref. [25]. In this case, the bimodality of P(Q4[y,k = 1)
would have provided stronger support to the actual presence of two DHOs, thus
suggesting that the finding P(k = 1|y) > P(k = 2|y) only stemmed from the scarcity
of data. Should this have been the case, additional observations would have proba-
bly led to privilege a more complex model.

Data discussed in Ref. [25] provide another example of the efficacy of Bayesian
inference in enforcing the parsimony principle. Specifically, we refer to the case of
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Figure 6.
Posterior probability for the number of modes k at diffevent values of Q for the spectra of Figure 5. Reproduced
from Ref. [12], Copyright (2016) of American Physical Society.

an IXS measurement from a suspension of gold nanoparticles in water which has
been analyzed with a model similar to the one in Eq. (14), yet with the DHO terms
replaced by Dirac delta functions, due to the extremely narrow width of the mea-
sured excitations. For all Q's explored, the posterior distributions for the number
of inelastic modes have a maximum (Figure 8), which is smaller than k.

In particular, we can also observe that the most probable number of modes and the
related probability change from one dataset to the other; this partly reflects the
physics of the phenomenon under study but also drawbacks of the modeling, such
as the limited count statistics and the increasingly intertwined nature of spectral
features at high Q’s.

As a further remark, we would like to stress again the fact that results from
Bayesian inference are always to be interpreted in a probabilistic nuance. For
instance, we stated before that the oscillation mode ; lies in the interval (22.3,25.2),
with a probability of 95%. This interval, called credibility interval, is obtained by
sorting the values of ©;, drawn from its posterior conditional to £ = 1, and taking the
two values below which we can find, respectively, the 2.5% and 97.5% of all simulated
values of ;. In practice, the values inside the interval are those with the highest
density given the observed data and so the most credible. Classical confidence inter-
val, obtained in the frequentist approach, does not have such a probabilistic interpre-
tation. The interpretation of confidence intervals is that, if we imagine to repeat data
sampling indefinitely under the same conditions and to build a confidence interval at
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Simulated posterior distributions for the excitation frequency Q, and Q, in the case of the model with k = 1

(panel on the left) and k = 2 (central and right panel) for liquid gold at a momentum transfer of
Q =16nm™".
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Posterior probability for the number of k modes at different values of the momentum transfer Q in an inelastic
scattering experiment performed on a gold nanopavticle suspension in water: (a) Q = 3.5nm~*, (b) Q =
s.5nm~ ", (¢) Q=7.5nm™ ", (d) Q=9.5nm ", and(e) Q = 13.5nm*. Adapted with permission from
Ref. [13], Copyright (2018) American Chemical Society.
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a certain 1 — a confidence level for each of the datasets, then (1-a)% of these
confidence intervals will contain the true fixed value of the parameter. However, we
have no guarantee that the single confidence interval, calculated on the basis of the
only dataset actually observed, contains the true parameter value. We can only be
confident [at the (1-a)% level] that it does so, since it comes from a set of intervals,
(1-a) % of which do contain the parameter value. In practice, under a frequentist
approach, data are random variables and give rise to random intervals that have a
specific probability of containing the fixed, but unknown, value of the parameter.
The single interval is also fixed and might or not contain the fixed parameter, but we
cannot associate any probability measure to this possibility. In the Bayesian approach,
the parameter is random in the sense that we have a prior belief about its value, while
the interval can be thought of as fixed, once the data have been observed. In sum-
mary, the frequentist approach do provide a definition of confidence intervals,
which, however, are endowed with a robust probabilistic ground only with respect to
the hypothetic space of all possible repetitions of the measurement experiment but
not with respect to the unique dataset at hand.

4.2 Bayesian inference in the time domain

Time correlation function decays can be modeled in terms of an expansion of the
intermediate scattering function I(Q, ) in exponentials, and the aim is often to
determine the number of time decay channels that could be envisaged in the
relaxation of I(Q, t). In Ref. [15], the dynamics of polymer-coated gold
nanoparticles in D,O was tackled by neutron spin echo (NSE) scattering and
analyzed within a Bayesian approach with the goal of establishing how many char-
acteristic relaxations were present in a given spin echo time window and if they
could be described by either simple or stretched exponentials or by a combination
of the two. The data were assumed to be sampled by the following model:

k b
t J
y, =7 E Ajexp | — (—Z> +¢, fori=1,..,n (21)
. T

where y is a proportionality constant possibly enabling a data normalization, &
represents the number of exponential relaxations, A is the weight of the j-th
component of the exponential mixture, 7; its relaxation time, and f; its stretching
parameter. The ¢;, fori =1, ..., n, are random noises, accounting for statistical
errors in the measurements. These are assumed to be independent and identically
distributed with a normal distribution N/ (O, va%), where o¢; is the measurement error
corresponding to the i-th observation and v is a proportionality constant. As a
consequence, the likelihood of the data is a product of normal densities, each having

NP .
mean y %_;A; exp (— (Tt—']) ) and variance vo?.

The value of k is, obviously, unknown, and its determination is of great rele-
vance. Therefore, also in this case, k is considered a stochastic variable to be
estimated based on the data and conditional to all the other model parameters.
Imagine that we have no clue about how many relaxations are necessary to describe
the observed behavior of the time correlation function. However, we are aware that,
in a case like this, the risk to over-parametrize the model is high, and we certainly
know that, given the finite time window covered by the experiment and the limited
number of experimental data, the number of relaxations should not be too large;
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otherwise the results could be meaningless, hardly justifiable, and unlikely. There-
fore, it seems a priori reasonable that & has a uniform distribution on the discrete
values k =1, -+, Rmax, Where kn.x is a small integer, as previously assumed when
dealing with the number of excitations in the energy spectrum. Also, the relaxation
times 7; are supposed uniformly distributed on a continuous range of nonnegative
values. The prior on A} is tailored to ensure that the combination of relaxation terms

tulfills the constraints ijzlA ;=1and A;>0. The natural choice for the prior of

A = (A1, Ay, -+, Ay) is, then, a Dirichlet density, which takes values on the standard
simplex. A crucial prior is that of the stretching parameter f3;. This is specifically
meant, in fact, to discern whether the relaxations in the given time window are
simple exponential decays, stretched exponential decays, or a combination of the
two. A simple exponential decay corresponds to #; = 1, and thus a positive proba-
bility mass can be assigned to this specific value. The remaining probability can be
assigned to §; values within the interval (0;1). Therefore, a reasonable prior for ;
can be a mixed distribution made up of a probability mass in 1 and a continuous
beta density, i.e., B~ Bk, yw) + (1 — 4)5/;].,1, independently forj =1, ---, k, where x
and y are parameters of the beta density, 5ﬁj,1 is an indicator function equal to 1
when $; = 1 and 0 otherwise, and { is a weight denoting our prior support in favor
of a stretched, rather than simple, exponential components. Once the { = 0 and

¢ = 1 weights are, respectively, assigned to the sums of simple and stretched expo-
nential terms in Eq. (21), other 0 <{ <1 weights will be associated to mixed combi-
nations of these decay terms. In particular, a { = 0.5 means that the j-th exponential
can be either stretched or not with a priori the same probability, for allj =1, ---, k.
In addition, setting k = 1 and y = 1 allows to assume that the stretching parameters
are uniformly distributed on the interval (0;1). This corresponds to an
uninformative prior giving a probability of 0.5 to both a stretched or unstretched
component and, for a stretched component, assigning the same density to any value
of #; in (0;1). Obviously, more informative priors can be chosen, e.g., by assigning
different values to k, y and ¢, so to favor, for example, a Zimm or Rouse model
specification (see discussion in Ref. [15]) when dealing with polymer dynamics. A
similar prior probability can be adopted for the proportionality constant y, i.e.,
mixed distribution made up of a continuous beta density and a probability mass in
1, corresponding to no need for a refinement of the data normalization process.
Finally, the proportionality constant in the error variance, v, can be, for example,
assumed to have a priori a gamma density so that only nonnegative values are
allowed.

Let us consider one of the datasets in Ref. [15], representing the time correlation
decay of a polymer solution of polyethylene glycol with a molecular weight of
2000D (PEG2000) as measured in a NSE scattering experiment and collected at a
momentum transfer Q = 0.091A. Also in this case, we allowed for 10° sweeps of
the algorithm and a burn-in of 10* sweeps, resulting in approximately 5/10 minutes
of computing time. From the output of the MCMC-R] algorithm, values for the
discrete posterior distribution function of k are found in Table 1.

The most visited model is the one with two exponential functions. The fit is
shown in the figure below (Figure 9).

The values reported in Table 1 clearly show that the posterior distribution of &
has a maximum. In fact, this is a general result (see, e.g., Figures 8 and 10).

When we model a spectroscopic dataset through a homogeneous mixture, e.g., a
linear combination of exponentials, Lorentzians or DHO functions, the posterior
distribution for the number of components always has at least a maximum, unless
the data are so scarcely informative that the posterior for k simply reproduces the
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k P(kly)%
1 8.47

2 61.83

3 2391
4 4.41

5 1.12

6 0.26

Table 1.

Posterior distribution for the number of time correlation decay channels for a polymer solution of polyethylene
glycol with a molecular weight of 2000D(PEG2000) as measured in a NSE experiment and collected at a
momentum transfer Q = 0.091 A.

prior, which might be uniform. In principle, when jumping in a more complicated
model characterized by a larger number of parameters, the »? tends to decrease, and
the likelihood tends to increase. However, according to the Bayes theorem, the
posterior for k is computed averaging the likelihood over all the parameters value
(see Eq. (12)). Therefore, models that are under-parametrized will perform poorly
on average since they just cannot fit the data well enough and have a small likeli-
hood, while models that are over-parametrized will also perform poorly on average,
because the subset of the parameter space that fit the data well (and where the
likelihood is high) becomes tiny compared to the whole volume of the parameter
space. This means that adding components to the mixture model increases the
posterior distribution of & only until the increment in the likelihood more than
compensates for the augmentation of the “wasted” parameter space; overall the
competition of these effects ensures the presence of a maximum in P(k[y). It is
worth noticing that assuming a model with more free parameters does not neces-
sarily mean a better fit, once the likelihood has saturated. To see this, we report here
below (Figure 11) the fit we get with a number of relaxation channels k£ # 2. We
can observe how the fit with three relaxation components or more is not better than
the one more supported by the available data and estimated by the MCMC-R]
algorithm. Moreover it is insane and hopeless to confer a distinct physical meaning
to each one of the corresponding characteristic relaxation times.
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Figure 9.
1(Q,1)/1(Q, 0) vs. time (ns). The black line is the best fit as determined with the RI-MCMC. The two red lines
are the two exponential components.
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Figure 10.

Posterior probability for the number of k modes at different values of the momentum transfer Q in an NSE
expeviment performed on polymer solution of polyethylene glycol with a molecular weight of 2000D (PEG2000)
in D,O.

Let us introduce a quantity which could resemble the y?, namely:
. B 2
52 — Z (yz J;calc) , (22)
i—1 o;

which measures the distance between the experimental data and the best fit
determined with the RJ-MCMC algorithm, where 7 is the number of experimental
observations, y, are the experimental data, y_,. are the best fit calculated values, o;
are the experimental errors. This variable differs from the usual y? as the model
parameters are not estimated by least squares minimization, but are the averages, of
the corresponding marginal posterior distributions. Nevertheless we can use this
quantity to show what follows. If we calculate the quantity in Eq. (22) for each
value of k, we get for s* the values reported in Table 2 which indicates an overall
decrease upon increasing the number of exponentials. Actually, s> does not strictly
decrease with the numbers of parameters, because, as mentioned before, the fit is
not calculated with parameter values which minimize the 2. If, for example, in
particular situations (e.g., for & = 3), the algorithm faces some challenges in deter-
mining a parameter and its posterior distribution is very broad and slowly decaying,
the average of this parameter could be severely affected by the presence of these
sizable distribution tails. In these cases, the mode of the distribution should be used
instead to estimate the parameter.
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1(Q,1)/1(Q, 0) vs. line (ns). The black line is the best fit as determined with the RI-MCMC. The two red lines
are the two exponential components. (a) k=1, (b) k=13, (c) k=4, and(d) k=6.

k §*

1 13.26
2 9.07
3 10.92
4 9.00
5 8.57
6 8.57

Table 2.

Values of the quantity s> as defined in Eq. (22) calculated for the different values of k and considering the
averages of the model parameter posterior distribution.

Nevertheless, s> shows that even with a distance between experimental and
fitted values which is effectively decreasing as the number of parameters increases,
the most probable model from Table 1 is the one with £ = 2 and not the one with
k = kma.x. The effect of the razor is evident. It can also be noted that the fit with
k = 2 is not only the most probable but it is also the best (in the sense that it is much
better than the one with £ = 1 and it is not worse than those obtained using a larger
number of exponentials). More interestingly, we observe also that increasing the
number of parameters, the y? (or any other measure of the distance between the
fitted and the observed data) is not decreasing much for large values of k, because
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obviously at the end, this quantity is going to saturate (and so does the likelihood).
The fit with £ = 2 determines a value of s?, which is not too different from the one
we get with k£ = 6. Incidentally, as it is largely discussed in Ref. [15], the model with
two relaxation channels has also a perfectly plausible and consistent explanation,
which would not be possible if a more complicated model were chosen.

In summary, we have here shown some of the opportunity offered by a Bayesian
inference analysis of experimental results and, in particular, those obtained with
spectroscopic methods. As possible future development, it appears very promising
the opportunity of applying similar methods to the joint analysis of complementary
time or frequency-resolved measurements. Also, we can envisage the use of more
informative priors implementing the fulfillment of sum rules of the spectra or any
other known physical constraint of the measurement. We are confident that, in the
long run, these methods will improve the rigor of routine data analysis protocols,
supporting a probability-based, unprejudiced interpretation of the experimental
outcome.
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