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Chapter

Singular Boundary Integral
Equations of Boundary Value
Problems for Hyperbolic
Equations of Mathematical Physics
Lyudmila A. Alexeyeva and Gulmira K. Zakiryanova

Abstract

The method of boundary integral equations is developed for solving the
nonstationary boundary value problems (BVP) for strictly hyperbolic systems of
second-order equations, which are characteristic for description of anisotropic
media dynamics. The generalized functions method is used for the construction of
their solutions in spaces of generalized vector functions of different dimensions.
The Green tensors of these systems and new fundamental tensors, based on it, are
obtained to construct the dynamic analogues of Gauss, Kirchhoff, and Green for-
mulas. The generalized solution of BVP has been constructed, including shock
waves. Using the properties of integrals kernels, the singular boundary integral
equations are constructed which resolve BVP. The uniqueness of BVP solution has
been proved.

Keywords: hyperbolic equations, generalized solution, Green tensor, boundary
value problem, generalized function method

1. Introduction

Investigation of continuous medium dynamics in areas with difficult geometry
with various boundary conditions and perturbations acting on the medium leads to
boundary value problems for systems of hyperbolic and mixed types. An effective
method to solve such problems is the boundary integral equation method (BIEM),
which reduces the original differential problem in a domain to a system of boundary
integral equations (BIEs) on its boundary. This allows to lower dimension of the
soluble equations, to increase stability of numerical procedures of the solution
construction, etc. Note that for hyperbolic systems, BIEM is not sufficiently devel-
oped, while for solving boundary value problems (BVPs) for elliptic and parabolic
equations and systems, this method is well developed and underlies the proof of
their correctness. It is connection with the singularity of solutions to wave equa-
tions, which involve characteristic surfaces, i.e., wavefronts, where the solutions
and their derivatives can have jump discontinuities. As a result, the fundamental
solutions on wavefronts are essentially singular, and the standard methods for
constructing BIEs typical for elliptic and parabolic equations cannot be used.
Therefore, for the development of the BIEM for hyperbolic equations, the theory of
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generalized functions [1, 2] is used. At present, BIEM are applied very extensively
to solve engineering problems.

Here, the second-order strictly hyperbolic systems in spaces of any dimension
are considered. The fundamental solutions of consider systems of equations are
constructed and their properties are studied. It is shown that the class of funda-
mental solutions for our equations in spaces of odd dimensions is described by

singular generalized functions with a surface support (e.g. for R3 � t, this is a single
layer on a light cone). The constructed fundamental solutions of consider systems of
equations are the kernels of BIEs. For systems of hyperbolic equations, the BIE
method is developed. Here, the ideas for solving nonstationary BVPs for the wave
equations in multidimensional space [3, 4] are used and the methods were elabo-
rated for boundary value problems of dynamics of elastic bodies [5–8].

2. Generalized solutions and conditions on wave fronts

Consider the second-order system of hyperbolic equations with constant
coefficients:

Lij ∂x, ∂tð Þu j x, tð Þ þ Gi x, tð Þ ¼ 0, x, tð Þ∈RNþ1 (1)

Lij ∂x, ∂tð Þ ¼ Cml
ij ∂m∂l � δij∂

2
t , i, j ¼ 1,M, m, l ¼ 1,N (2)

Cml
ij ¼ Clm

ij ¼ Cml
ji ¼ C

ij
ml (3)

where Gi ∈L2 RNþ1
� �

and δij are Kronecker symbols; ∂x ¼ ∂1, … ∂Nð Þ, ∂i ¼ ∂=∂xi,
and ∂t ¼ ∂=∂t are Partial derivatives; and also we will use following notations
ui, j ¼ ∂ jui and ui, t ¼ ∂tui.

ThematrixCml
ij , whose indicesmay be permitted in accordancewith above indicated

symmetry properties (3), satisfies the following condition of strict hyperbolicity:

W n, vð Þ ¼ Cml
ij nmnlv

iv j
>0 ∀n 6¼ 0, v 6¼ 0

Here everywhere like numbered indices indicate summation in specified limits
of their change (so as in tensor convolutions).

By the virtue of positive definiteness W, the characteristic equation of the
system (1)

det Cml
ij nmnl � c2δij

n o

¼ 0, nk k ¼ 1 (4)

has 2M valid roots (with the account of multiplicity):

c ¼ �ck nð Þ : 0< ck ≤ ckþ1, k ¼ 1,M� 1

They are sound velocities of wave prorogations in physical media which are
described by such equations. In a general case, they depend on a wave vector n.

It is known that the solutions of the hyperbolic equations can have characteristic
surfaces on which the jumps of derivatives are observed [9]. To receive the condi-
tions on jumps, it is convenient to use the theory of generalized functions.

Denote through D0
M RNþ1
� �

the space of generalized vector functions

f̂ x, tð Þ ¼ f̂ 1, … , f̂M

� �

determined on the space DM RNþ1
� �

of finite and indefinitely
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differentiable vector functions φ x, tð Þ ¼ φ1, … ,φMð Þ: For regular f̂ , this linear
function is presented in integral form:

f̂ x, tð Þ,φ x, tð Þ
� �

¼
ð

∞

�∞

dτ

ð

RN

f i x, τð Þφi x, τð ÞdV xð Þ, ∀φ∈DM RNþ1
� �

, i ¼ 1,M

dV ¼ dx1 … dxN (further, we shall say everywhere generalized function instead of
generalized vector function).

Let u x, tð Þ be the solution of Eq. (1) in RNþ1, continuous, twice differentiable

almost everywhere, except for characteristic surface F which is motionless in RNþ1

and mobile in RN (wave front Ft). On surface, Ft derivatives can have jumps. The
equation of F is Eq. (4). We denote ν ¼ n1, … nN, ntð Þ ¼ n, ttð Þ, n ¼ n1, … nNð Þ,
where ν is a normal vector to the characteristic surface F in RNþ1, and n is unit wave

wave vector in RN directed in the direction of propagation Ft. It is assumed that the
surface F is piecewise smooth with continuous normal on its smooth part.

Let us consider Eq. (1) in the space D0
M RNþ1
� �

and its solutions in this space are
named as generalized solutions of Eq. (1) (or solutions in generalized sense).

The solution u(x,t) is considered as a regular generalized function and we denote

û(x, t) = u(x, t), accordingly Ĝ (x,t) =G(x,t). Let û(x,t) be the solution of Eq. (1) in

D0
M RNþ1
� �

.
Theorem 2.1. If û(x,t) is the generalized solution of Eq. (1), then there are next

conditions on the jumps of its components and derivatives:

ui x, tð Þ½ �Ft
¼ 0 (5)

σmi nm � cui, t
� �

Ft
¼ 0 (6)

where σmi ¼ Cml
ij u j, l and the velocity c of a wave front Ft coincides with one of ck.

Proof. By the account of differentiation of regular generalized function rules
[2], we receive:

Lij ∂x, ∂tð Þû j x, tð Þ þ Ĝi x, tð Þ ¼ σmi νm � νtui, t
� �

F
δF x, tð Þþ

þCml
ij ∂m u j

� �

F
νlδF x, tð Þ

� �

� ui½ �FνtδF x, tð Þ
� �

, t (7)

Here, α x, tð ÞδF(x,t) is singular generalized function, which is a simple layer on
the surface F with specified density α ¼ α1, … , αMð Þ :

α x, tð ÞδF x, tð Þ,φ x, tð Þð Þ ¼
ð

F

αi x, tð Þφi x, tð ÞdS x, tð Þ, ∀φ x, tð Þ∈DM RNþ1
� �

dS x, tð Þ is the differential of the surface in a point x, tð Þ and (ν,νt) =
ν1, … , νN, νtð Þ is a unit vector, normal to characteristic surface F.

If F x, tð Þ ¼ 0 is an equation of wave front, then

ν, νtð Þ ¼ gradF,F, tð Þ= gradF,F, tð Þk k:

If the right part of expression (7) is equal to zero, then the function û(x,t) will
satisfy to the Eq. (1) in a generalized sense. The natural requirement of the conti-
nuity of the solutions at transition through wave front F
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ui x, tð Þ½ �F ¼ 0 (8)

vanishes only two last composed right parts of Eq. (7). Hence, it is necessary that

σmi νm � νtui, t
� �

F
¼ 0 (9)

These conditions on the appropriate mobile wave front Ft we can write down with
the account Eq. (4). By virtue of continuity of function u(x,t) for (x,t)∈Ft, we have

f x; tð Þ½ �F ¼ lim
ε!þ0

f xþ εν; tþ ενtð Þ � f x� εν; t� ενtð Þð Þ
¼ lim

ε!þ0
f xþ εn; tð Þ � f x� εn; tð Þð Þ ¼ f x; tð Þ½ �Ft

;

therefore the condition (5) is equivalent to (8).
If x, tð Þ∈Ft, then xþ cnΔt, tþ Δtð Þ∈FtþΔt. Therefore,

F xþ cnΔt, tþ Δtð Þ � F x, tð Þ ¼ c F, j, n j

� �

þ F, t
� �

Δt ¼ 0

From here, we have

c ¼ �F, t= F, j, n j

� �

¼ �νt=
ffiffiffiffiffiffiffi

νiνi
p

By virtue of it, the condition (9) will be transformed to the kind (6), where c, for
each front, coincides with one of ck. The theorem has been proved.

Corollary. On the wave fronts

nlui, t þ cui, l½ �Ft
¼ 0, i ¼ 1,M, l ¼ 1,N (10)

The proof follows from the condition of continuity (5). The expression (10) is
the condition of the continuity of tangent derivative on the wave front.

In the physical problems of solid and media, the corresponding condition (6) is a
condition for conservation of an impulse at fronts. This condition connects a jump
of velocity at a wave fronts with stresses jump. By this cause, such surfaces are
named as shock wave fronts.

Definition 1. The solution of Eq. (1), u(x,t), is named as classical one if it is

continuous on RNþ1, twice differentiable almost everywhere on RNþ1, and has
limited number of piecewise smooth wave fronts on which conditions jumps (5)
and (6) are carried out.

3. Fundamental matrices

3.1 The Green’s matrix of second-order system of hyperbolic equations

Let us construct fundamental solutions of Eq. (1) on D0
M RNþ1
� �

.
Definition 2. Ujk x, tð Þ is the Green’s matrix of Eq. (1) if it satisfies to equations

Lij ∂x, ∂tð ÞUjk x, tð Þ þ δikδ xð Þδ tð Þ ¼ 0, i, j, k ¼ 1,M (11)

and next conditions:

Ujk x, tð Þ ¼ 0 for t<0, ∀x, (12)
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Ujk x, 0ð Þ ¼ 0 for x 6¼ 0 (13)

Here, by definition,

δikδ x, tð Þ,φi x, tð Þð Þ ¼ φk 0, 0ð Þ ∀φ∈D0
M RNþ1
� �

For construction of Green’s matrix, it is comfortable to use Fourier transforma-
tion, which brings Eq. (11) to the system of linear algebraic equations of the kind

Ljk �iξ,�iωð ÞUkl ξ,ωð Þ þ δjl ¼ 0, j, k, l ¼ 1,M

Here, ξ,ωð Þ ¼ ξ1,… ,ξN,ω
� �

is the Fourier variables appropriate to x, tð Þ.
By permitting the system, we receive transformation of Green’s matrix which by

virtue of differential polynomials uniformity looks like:

Ujk ξ,ωð Þ ¼ Q jk ξ,ωð ÞQ�1 ξ,ωð Þ (14)

where Q jk are the cofactors of the element with index (k, j) of the matrix

L �iξ,�iωð Þf g; and Q is the symbol of operator L:

Q ξ,ωð Þ ¼ det Lkj �iξ,�iωð Þ
	 


There are the following relations of symmetry and homogeneous:

Q jk ξ,ωð Þ ¼ Q jk �ξ,ωð Þ ¼ Q jk ξ,�ωð Þ,Q ξ,ωð Þ ¼ Q �ξ,ωð Þ ¼ Q ξ,�ωð Þ (15)

Q jk λξ, λωð Þ ¼ λ2M�2Q jk ξ,ωð Þ,Q λξ, λωð Þ ¼ λ2MQ ξ,ωð Þ (16)

By virtue of strong hyperbolicity characteristic equation,

Q ξ,ωð Þ ¼ 0

has 2M roots. It is a singular matrix. There is not a classic inverse Fourier
transformation of it. It defines the Fourier transformation of the full class of fun-
damental matrices which are defined with accuracy of solutions of homogeneous
system (1). Components of this matrix are not a generalized function. To calculate
the inverse transformation, it is necessary to construct regularisation of this matrix
in virtue of properties (12) and (13) of Green tensor. The following theorems has
been proved [10]:

Theorem 3.1. If cq q ¼ 1,M
� �

are unitary roots of Eq. (4), then the Green’s matrix

of system (1) has form

Ujk x, tð Þ ¼ σNH tð Þ
X

M

q¼1

ð

ek k¼1

Ajk e, cq
� �

� e, xð Þ þ cq eð Þt� i0
� �1�N � e, xð Þ � cq eð Þt� i0

� �1�N
n o

dS eð Þ

where σN ¼ 2πið Þ�N N � 2ð Þ!, Ajk e, cq
� �

¼ Q jk e, cq
� �

=2 cqQmm e, cq
� �� �

, and H tð Þ is
Heaviside’s function.

Theorem 3.2. If cq q ¼ 1,M
� �

are roots of Eq. (4) with multiplicity mq, then the

Green’s matrix of system (1) has form
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Ujk x, tð Þ ¼ σNH tð Þ
X

q

mq

ð

RN

Q
mq�1ð Þ

jk,ω e, cq
� �

Q,
mqð Þ

ω e, cq
� �

� ��1

� e, xð Þ þ cq eð Þt� i0
� �1�N � e, xð Þ � cq eð Þt� i0

� �1�N
n o

dS eð Þ

Here, the top index in brackets designate the order of derivative on ω.
So, the construction of a Green’s matrix is reduced to the calculation of integrals

on unit sphere. For odd N, these theorems allow to build the Green’s matrix ε-
approach only. For even N and for ε�approach, it is required to integrate
multidimensional surface integral over unit sphere. However, in a number of cases,
this procedure can be simplified.

We notice that if the original of Q�1 is known, i.e.

J x, tð Þ ¼ F�1 Q�1 ξ,ωð Þ
� �

,

which is built in view of conditions (12), then it is easy to restore the Green’s matrix

Ujk x, tð Þ ¼ Q jk i∂x, i∂tð ÞJ x, tð Þ (17)

In the case of invariance of Eq. (1) relative to group of orthogonal transforma-
tions, a symbol of the operator Lij is a function of only two variables ξk k,ω and can
be presented in the form:

Q ξ,ωð Þ ¼ iωð Þ2Mq ξk kω�1
� �

: (18)

It essentially simplifies the construction of the original using the Green’s func-
tions of classical wave equations. For this purpose, it is necessary to spread out

Q�1 ξ,ωð Þ on simple fractions. In the case of simple roots,

Q ξ,ωð Þ ¼
Y

M

k¼1

ξk k2 � ω2=c2k

� �

Q�1 ξ,ωð Þ ¼ �iωð Þ�2Mþ2
X

M

k¼1

Ak ξk k2 � ω2=c2k

� ��1
(19)

where Ak is the decomposition constant. It is easy to see that summand in round
brackets under summation sign is the symbol of the classical wave operator

Dk ¼ c�2
k ∂

2
t � ΔN :

Here, ΔN is the Laplacian for which the Green’s function UN x, tð Þ has been
investigated well [11].

From Theorem 3.1 follows the support UN x, t, cð Þ is:

Kþ
c ¼ x, tð Þ : xk k≤ ct, t>0f g

in RNþ1 for even N and it is sound cone

Kc ¼ x, tð Þ : xk k ¼ ct, t>0f g

for odd N:

6
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For example,U3 is the simple layer on a cone [10] and it is the singular generalized
function. In this case, J x, tð Þ is convolution over t Green’s function with H tð Þ:

J x, tð Þ ¼
X

M

k¼1

Ak H tð Þ ∗ t … H tð Þ ∗ tUN x, t, ckÞð Þð Þ:ð (20)

Here, the convolution over t undertakes (2 M � 2) time, which exists, by virtue
of, on semi-infinite at the left of supports of functions [11]. It is easy to check up
that the boundary conditions (12) and (13) are carried out as UN x, t, cð Þ which
satisfies them. We formulate this result as:

Theorem 3.3. If the symbol of the operator L is presented in form (18) and ck are
simple roots of Eq. (4), then Ujk x, tð Þ is defined by the formula (17), where J x, tð Þ looks
like (20).

If ck have multiplicity mk in decomposition as (20), degrees ξk k2 � ω2=c2k

� ��m

m ¼ 1,mk

� �

can appear. Using the property of convolution transformation, we

receive their original in kind of complete convolution over (x,t):

F�1 ξk k2 � ω2=c2k

� ��mh i

¼ UN x, t, cð Þ ∗ … m ∗UN x, t, cÞð Þð

Then, the procedure of construction of a Green’s matrix is similar to the
described one.

We notice that as follows from (20) in a case of N = 1, 2, the convolution
operation is reduced to calculate regular integrals of simple kind:

UN x, tð Þ ∗ tH tð Þ ¼
ð

t

0

UN x, t� τð Þdτ

UN x, tð Þ ∗ tUN x, tð Þ ¼
ð

RN

dV yð Þ
ð

t

0

UN x� y, t� τð ÞUN y, τð Þdτ

But already for N = 3 and more, the construction of convolutions is non-trivial,
and for their determination, its definition in a class of generalized functions should
be used.

For any regular function Ĝ∈D0
M RNþ1
� �

: supt Ĝ∈ 0,∞ð Þ, the appropriate
solution of Eq. (1) looks like the convolution

ûi ¼ Uik ∗ Ĝk:

For regular functions, it has integral representation in form of retarded potential:

ûi x, tð Þ ¼ H tð Þ
ð

∞

0

dτ

ð

RN

Uik x� y, τð ÞGk y, t� τð ÞdV yð Þ

If Eqs. (1) are invariant, concerning the group of orthogonal transformations,
then ck do not depend on n. In physical problems, the isotropy of medium is reduced
to the specified property.
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3.2 The Green’s tensor of elastic medium

For isotropic elastic medium constants, the matrix is equal to

Cml
ij ¼ ρ λδml δ

j
i þ μ δmi δ

l
j þ δmj δ

l
i

� �n o

:

The coefficients of Eq. (1) depend only on two sound velocities

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μð Þ=ρ
p

, c2 ¼
ffiffiffiffiffiffiffiffi

μ=ρ
p

,

where ρ is the density of medium, and λ and μ are elastic Lame parameters.
These two speeds are velocities of propagation of dilatational and shearing waves.
Wave fronts for Green’s tensor are two spheres expanding with these velocities.

In the case of plane deformation N = M = 2, an appropriate Green’s tensor was
constructed in [5, 6]. For the space deformation N = M = 3, the expression of a
Green’s tensor was represented in [6].

For anisotropic medium in a plane case (N = M = 2), the Green’s tensor was
constructed in [12, 13]. For such medium, the wave propagation velocities depend on
direction n and the form of wave fronts essentially depends on coefficients of Eq. (1).
Anisotropic mediums with weak and strong anisotropy of elastic properties in the case
of plane deformation were considered in [12–15]. In the first case, the topological type
of wave fronts is similar to extending spheres. In the second case, the complex wave
fronts and lacunas appear [16]. Lacunas are the mobile unperturbed areas limited by
wave fronts and extended with current of time. Such medium has sharply waveguide
properties in the direction of vector of maximal speeds. The wave fronts and the
components of Green’s tensor for weak and strong anisotropy are presented in [15].
The calculations are carried out for crystals of aragonite, topaz and calli pentaborat.

3.3 The fundamental matrices V̂, T̂, Ŵ, Û
sð Þ
, T̂

sð Þ

For solution of BVP using Green’s matrix Û, we introduce the fundamental

matrices Ŝ and T̂ with elements given by

Ŝ
m

ik x, tð Þ ¼ Cml
ij ∂lÛ

k

j, Γ
k
i x, t, nð Þ ¼ Ŝ

m

iknm, (21)

T̂
i

k x, t, nð Þ ¼ �Γ
k
i x, t, nð Þ ¼ �Cml

ij nm∂lÛ
k

j, (22)

i, j, k ¼ 1,M, m, l ¼ 1,N:

Then, the equation for Û can be written as

Ŝ
l

ik, l � Û
k

i , tt þ δki δ xð Þδ xð Þ ¼ 0:

From the invariance of the equations for Û under the symmetry transformations
y ¼ �x, some symmetry properties of introduced matrices follows:

Û
k

i x, tð Þ ¼ Û
k

i �x, tð Þ, Û
k

i x, tð Þ ¼ Û
i

k x, tð Þ, Ŝ
m

ik x, tð Þ ¼ �Ŝ
m

ik �x, tð Þ, (23)

T̂
k

i x, t, nð Þ ¼ �T̂
k

i �x, t, nð Þ ¼ �T̂
k

i x, t,�nð Þ: (24)

Is easy to prove [17].
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Theorem 3.4. For fixed k and n, the vector T̂
k

i x, t, nð Þ is the fundamental solution of
system (1) corresponding to

Gi ¼ Cml
ik nmδ, l xð Þδ tð Þ:

The matrix T̂ is called a multipole matrix, since it describes the fundamental
solutions of system (1) generated by concentrated multipole sources (see [18]).

Primitives of the matrix. The primitive of the multipole matrix is introduced as
convolution over time:

Ŵ
k

j x, t, nð Þ ¼ T̂
k

j x, t, nð Þ ∗ tH tð Þ,

which is the primitive of the corresponding matrices with respect to t:

∂tV̂
k

i ¼ Û
k

i x, tð Þ, ∂tŴ
k

i ¼ T̂
k

i x, t, nð Þ:

It is easy to see that V̂
k

i and Ŵ
k

i are fundamental solutions to system (1) of the form

Lij ∂x, ∂tð ÞV̂k

j þ δki δ xð ÞH tð Þ ¼ 0, (25)

Lij ∂x, ∂tð ÞŴk

j þ nmC
ml
ki δ, l xð ÞH tð Þ ¼ 0:

Relation (23) implies the following symmetry properties of the above matrices:

V̂
k

i x, tð Þ ¼ V̂
k

i �x, tð Þ, V̂
k

i x, tð Þ ¼ V̂
i

k x, tð Þ,

Ŵ
k

i x, t, nð Þ ¼ �Ŵ
k

i �x, t, nð Þ ¼ �Ŵ
k

i x, t,�nð Þ: (26)

The Green’s matrix of the static equations for Û
k sð Þ
i xð Þ (when the t-derivatives in

(1) are zero) is defined by

Lij ∂x, 0ð ÞÛk sð Þ
j xð Þ þ δki δ xð Þ ¼ 0, (27)

Û
k sð Þ
i xð Þ ! 0, ∥x∥ ! ∞: (28)

By analogy with (22), we define the matrix

T̂
k sð Þ
i x, nð Þ ¼ �Cml

kj nm∂lÛ
i sð Þ
j :

Obviously, we have the symmetry relations

T̂
k sð Þ
i x, nð Þ ¼ �T̂

k sð Þ
i �x, nð Þ ¼ �T̂

k sð Þ
i x,�nð Þ: (29)

Theorem 3.4 implies the following result.

Corollary. T̂
k sð Þ
i is a fundamental solution of the static equations:

Lij ∂x, 0ð ÞTk sð Þ
j � nmC

ml
ki δ, l xð Þ ¼ 0:

It is easy to see that this is an elliptic system.
The following theorem have been proved [17].
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Theorem 3.5. The following representations take place

V̂
k

i x, tð Þ ¼ U
k sð Þ
i xð ÞH tð Þ þ V

k dð Þ
i x, tð Þ, (30)

Ŵ
k

i x, tð Þ ¼ T
k sð Þ
i xð ÞH tð Þ þW

k dð Þ
i x, tð Þ, (31)

where Uk sð Þ
i xð ÞH tð Þ and T

k sð Þ
i xð ÞH tð Þ are regular functions for x 6¼ 0. As ∥x∥ ! 0,

U
k sð Þ
i xð Þ � ln ∥x∥AN

ik exð Þ, T
k sð Þ
i xð Þ � ∥x∥�1BN

ik exð Þ, N ¼ 2,

U
k sð Þ
i xð Þ � ∥x∥�Nþ2AN

ik exð Þ, T
k sð Þ
i xð Þ � ∥x∥�Nþ1BN

ik exð Þ, N > 2: (32)

Here, ex ¼ x=∥x∥,AN
ik eð Þ, andBN

ik eð Þ are continuous and bounded functions on the

sphere ∥e∥ ¼ 1, and V
k dð Þ
i andW

k dð Þ
i are regular functions that are continuous at x ¼

0and t>0. For any N,

V
k dð Þ
i x, tð Þ ¼ 0 W

k dð Þ
i x, tð Þ ¼ 0 for ∥x∥> max

k¼1,M
max
∥e∥¼1

ck eð Þt,

and for odd N, these relations hold for ∥x∥< min
k¼1,M

min
∥e∥¼1

ck eð Þt:.

4. Statement of the initial BVP

Consider the system of strict hyperbolic equations (1). Assume that x∈ S� ⊂RN,
where S� is an open bounded set; x, tð Þ∈D�, D� ¼ S� � 0,∞ð Þ, D�

t ¼ S� �
0, tð Þ, t>0; D ¼ S� 0,∞ð Þ, and Dt ¼ S� 0, tð Þ.

The boundary S of S� is a Lyapunov surface with a continuous outward normal
n xð Þ ∥n∥ ¼ 1ð Þ:

∥n x2ð Þ � n x1ð Þ∥ ¼ O ∥x2 � x1∥
β

� �

, β>0, x1 ∈ S, x2 ∈ S:

It is assumed that G is a locally integrable (regular) vector function.

G ! 0 as t ! þ∞, ∀x∈ S�:

Furthermore, u∈C D� þDð Þ, where u is a twice differentiable vector function
almost everywhere on D�, except for possibly the characteristic surfaces (F) in

RNþ1, which correspond to the moving wavefronts (Ft) R
N. On them, conditions (5)

and (6) are satisfied.
It is assumed that the number of wavefronts is finite and each front is almost

everywhere a Lyapunov surface of dimension N � 1.
Problem 1. Find a solution of system (1) satisfying conditions (5)–(7) if the

boundary values of the following functions are given:
the initial values

ui x, 0ð Þ ¼ u0i xð Þ, x∈ S� þ S (33)

ui, t x, 0ð Þ ¼ u1i xð Þ, x∈ S�; (34)

the Dirichlet conditions
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ui x, tð Þ ¼ uSi x, tð Þ, x∈ S, t≥0; (35)

and the Neumann-type conditions

σli x, tð Þnl xð Þ ¼ gi x, tð Þ, x∈ S, t≥0, i ¼ 1,N: (36)

Problem 2. Construct resolving boundary integral equations for the solution of
the following boundary value problems.

Initial-boundary value problem I. Find a solution of system (1) that satisfies
boundary conditions (33)–(35) and front conditions (5)–(7).

Initial-boundary value problem II. Find a solution of system (1) that satisfies
boundary conditions (33), (34), and (36) and front conditions (5)–(7).

These solutions are called classical.
Remark. Wavefronts arise if the initial and boundary data do not obey the

compatibility conditions

wi x, 0ð Þ ¼ u0i xð Þ, uSi , t x, 0ð Þ ¼ u1i xð Þ, x∈ S:

In physical problems, they describe shock waves, which are typical when the
external actions (forces) have a shock nature and are described by discontinuous or
singular functions.

5. Uniqueness of solutions of BVP

Define the functions

W uð Þ ¼ 0, 5Cml
ij ui, mu j, l, K uð Þ ¼ 0, 5∥u, t∥

2,

E uð Þ ¼ K uð Þ þW uð Þ, L uð Þ ¼ K uð Þ �W uð Þ,

which are called the densities of internal, kinetic, and total energy of the system,
respectively, and L is the Lagrangian.

Theorem 5.1. If u is a classical solution of the Dirichlet (Neumann) boundary value
problem, then

ð

D�
t

L u x, tð Þð ÞdV x, tð Þ ¼
ð

D�
t

Gi x, tð Þui x, tð ÞdV x, tð Þþ

þ
ð

Dt

gi x, tð ÞuSi x, tð ÞdS x, tð Þ �
ð

S�

ui x, tð Þui, t x, tð Þ � u0i xð Þu1i xð Þ
� �

dV xð Þ

Here and below, dV xð Þ ¼ dx1 … dxN, dV x, tð Þ ¼ dV xð Þdt; dS xð Þ, and, dS x, tð Þ
are the differentials of the area of S and D, respectively.

Proof. Multiplying (1) by ui and summing the result over i, after simple algebra,
we obtain the expression

L ¼ Cml
ij u j,mui

� �

, l � uiui, tð Þ, t þ Giui:

This equality is integrated over Dt taking into account the front discontinuities
and using the Gauss-Ostrogradsky theorem and initial conditions (33) and (34) to
obtain
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ð

D�
t

L u x, tð Þð ÞdV x, tð Þ ¼
ð

D�
t

Cml
ij u j,mui

� �

, l � uiui, tð Þ, tdV x, tð Þþ

þ
ð

D�
t

Gi x, tð Þui x, tð ÞdV x, tð Þ ¼
ð

Dt

σlinl xð Þui x, tð ÞdS x, tð Þ�

�
ð

S

uiui, t x, tð Þ � uiui, t x, 0ð ÞÞdS x, tð Þ þ
ð

D�
t

Gi x, tð Þui x, tð ÞdV x, tð Þþ

þ
X

k

ð

Fk ∩D�
t

ui ν
k
l σ

l
i x, tð Þ � νkt ui, t x, tð Þ

� �

Fk
dFk x, tð Þ

Here, νkl , and νkt are the components of the unit normal vector to the front

Fk x, tð Þ in RNþ1, for which we have [17]

νkt ¼ �ck= νkjν
k
j

� �1=2
, (37)

where ck is the velocity of the front. With the notation introduced, the relation
(37) and the front condition (7) yield the assertion of the theorem.

It is easy to see that the following result holds true.
Corollary. If ui x, 0ð Þ ¼ 0, ui, t x, 0ð Þ ¼ 0, and

lim
t!þ∞

ui, l ! 0, lim
t!þ∞

ui, t ! 0, x∈ S�,

then

ð

D�

L u x, tð Þð ÞdV x, tð Þ ¼
ð

D�

Gi x, tð Þui x, tð ÞdV x, tð Þ þ
ð

D

gi x, tð ÞuSi x, tð ÞdS x, tð Þ

is proved in the following theorem [17]:
Theorem 5.2. If u is a classical solution of the Dirichlet (Neumann) boundary value

problem, then

ð

S�

E u, tð Þ � E u, 0ð Þð ÞdV xð Þ ¼

ð

D�
t

Gi x, tð Þui, t x, tð ÞdV x, tð Þ þ
ð

Dt

gi x, tð ÞuSi , t x, tð ÞdS x, tð Þ:

It is easy to see that this theorem implies the uniqueness of the solutions to the
initial-boundary value problems in question.

Theorem 5.3. If a classical solution of the Dirichlet (Neumann) boundary value
problem exists and satisfies the conditions

lim
t!þ∞

ui, l ! 0, lim
t!þ∞

ui, t ! 0, ∀x∈ S�,

then this solution is unique.
Proof. Since the problem is linear, it suffices to prove the uniqueness of the

solution to the homogeneous boundary value problem. If there are two solutions u1
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and u2, then their difference u ¼ u1 � u2 satisfies the system of equations with G ¼
0 and the zero initial conditions, i.e.

umi xð Þ ¼ 0 m ¼ 0, 1ð Þ:

The vector u on the boundary S satisfies the homogeneous boundary conditions

ui x, tð Þ ¼ 0 or gi x, tð Þ ¼ 0:

Theorem 5.2 yields

ð

S

E u, tð ÞdS xð Þ ¼
ð

S

K u, tð Þ þW u, tð Þð ÞdS xð Þ ¼ 0:

Since the integrand is positive definite and by the conditions of the theorem, we
have u � 0. The theorem is proved.

6. Analogues of the Kirchhoff and Green’s formulas

Let us assume that S is a smooth boundary with a continuous normal of a set S�.
The characteristic function H�

S xð Þ of a set S� is defined for x∈ S as

H�
S xð Þ ¼ 1=2 (38)

The Heaviside function H tð Þ is extended to zero by setting H 0ð Þ ¼ 1=2. Define
the characteristic function of D� as

H�
D x, tð Þ ¼ H�

S xð ÞH tð Þ (39)

Accordingly, for u defined on D�, we introduce the generalized function

û x, tð Þ ¼ uH�
D x, tð Þ, (40)

which is defined on the entire space RNþ1. Similarly,

Ĝk x, tð Þ ¼ GkH
�
D x, tð Þ: (41)

Let Û
k

i x, tð Þ denotes the Green’s matrix, i.e. the fundamental solution of Eq. (1)

that corresponds to the function Fi ¼ δki δ xð Þδ tð Þ and satisfies the conditions

Û
k

i x, 0ð Þ ¼ 0, Û
k

i , t x, 0ð Þ ¼ 0, x 6¼ 0 (42)

For system (1), such a matrix was constructed in [10].
The primitive of Green’s matrix with respect to t is defined as

V̂
k

i x, tð Þ ¼ Û
k

i x, tð Þ ∗ tH tð Þ ) ∂tV̂
k

i ¼ Û
k

i : (43)

Here and below, the star denotes the complete convolution with respect to x, tð Þ,
while the variable under the star denotes the incomplete convolution with respect to
x or t, respectively. The convolution exists since the supports are semibounded with

respect to t. Clearly, the convolution is the solution of Eq. (1) at Fi ¼ δki δ xð ÞH tð Þ.
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Theorem 6.1. If u x, tð Þ is a classical solution of the Dirichlet (Neumann) boundary
value problem, then the generalized solution û can be represented as the the sum of the
convolutions

ûi ¼ Uk
i ∗ Ĝk þUk

i ∗ x u1k xð ÞH�
S xð Þþ

þ∂tU
k
i �x u

0
k xð ÞH�

S xð Þ þ Uk
i ∗ gk x, tð ÞδS xð ÞH tð Þ� (44)

�Cml
kj ∂lV

k
i ∗ u j, t x, tð Þnm xð ÞδS xð ÞH tð Þ � Cml

kj ∂lV
k
i �x u

0
j xð Þnm xð ÞδS xð Þ:

Here, δS is a singular generalized function that is a single layer on S (see [2]), and
gk x, tð ÞδS xð ÞH tð Þ is a single layer on D.

Proof. Applying the operator Lij to û x, tð Þ, using the differentiation rules for
generalized functions, and taking into account the equalities

∂ jH
�
D ¼ �n jδS xð ÞH tð Þ, ∂tH�

D ¼ δ tð ÞH�
S xð Þ,

and the front conditions (5) and (6), we obtain

Lkj ∂x, ∂tð Þû j x, tð Þ ¼ Ĝk x, tð Þ þ u1k xð ÞH�
S xð Þδ tð Þþ

þu0k xð ÞH�
S xð Þ _δ tð Þ þ gk x, tð ÞδS xð ÞH tð Þ � Cml

kj u j x, tð Þnm xð ÞδS xð ÞH tð Þ
	 


, l

Next, we use the properties of Green’s matrix to construct a weak solution of
Eq. (1) in the form of the convolution

ŵi x, tð Þ ¼ Uk
i ∗ Ĝk þ Û

k

i �x u
1
k xð ÞH�

S xð Þ þ ∂tÛ
k

i �x u
0
k xð ÞH�

S xð Þþ

þÛ
k

i ∗ gk x, tð ÞδS xð ÞH tð Þ � Cml
kj Û

k

i ∗ u j x, tð Þnm xð ÞδS xð ÞH tð Þ
� �

, l: (45)

The last convolution can be transformed using the relation (43) and applying the
differentiation rules for convolutions and generalized functions:

Cml
kj ∂tV̂

k

i ∗ u jnm xð ÞδS xð ÞH tð Þ
� �

, l ¼ Cml
kj ∂lV̂

k

i ∗ u jnm xð ÞδS xð ÞH tð Þ
� �

, t ¼

¼ Cml
kj ∂lV̂

k

i ∗ u j, tnm xð ÞδS xð ÞH tð Þ þ u0j xð Þnm xð ÞδS xð Þδ tð Þ
� �

¼

¼ Cml
kj ∂tV̂

k

i ∗ u j, tnm xð ÞδS xð ÞH tð Þ þ Cml
kj ∂lV̂

k

i �x u
0
j xð Þnm xð ÞδS xð Þ

Let us show that ŵi x, tð Þ ¼ ûi x, tð Þ. Indeed, ∀φ∈DN RNþ1
� �

ŵi,φið Þ ¼ Û
k

i ∗ F̂k,φi

� �

¼ Û
k

i ∗Lkj ∂x, ∂tð Þû j,φi

� �

¼

¼ Lkj ∂x, ∂tð ÞÛk

i ∗ û j,φi

� �

¼ δ
j
i δ x, tð Þ ∗ û j,φi

� �

¼ ûi,φið Þ:

Here, F̂k denotes the right-hand side of (44). Since ûi,φið Þ ¼ 0, if suppφ∈Dþ, it
follows that ŵi x, tð Þ ¼ 0, x �∈D�. This implies the assertion of the theorem, since
the solution of the problem is unique.

Given initial and boundary values (33)–(36), the above formula recovers the
solution in the domain. For this reason, it can be called an analogue of the Kirchhoff
and Green formulas for solutions of hyperbolic systems (1). It gives a weak solution
of the problems.
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To represent this formula in integral form and use it for the construction of
boundary integral equations for solutions of the initial-boundary value problems,
we examine the properties of the functional matrices involved.

7. Singular boundary integral equations

Lemma 7.1 (analogue of the Gauss formula). If S is an arbitrary closed

Lyapunov surface in RN, then

ð

S

T
i sð Þ
k y� x, n yð Þð ÞdS yð Þ ¼ δikH

�
S xð Þ

For x∈ S, the integral is singular and is understood in the sense of its principal value.
Proof. Convolution Eq. (27) with H�

S xð Þ and using the differentiation rules for
convolutions yields

Lij ∂x, 0ð ÞUk sð Þ
j ∗H�

S xð Þ þ δikH
�
S xð Þ ¼

¼ �Cml
ij U

s
jk, l ∗ nmδ

k
iH

�
S xð Þ ¼

ð

S

T
i sð Þ
k x� y, n yð Þð ÞdS yð Þ þ δikH

�
S xð Þ ¼ 0

Using (29), we obtain the formula in the lemma. Since Ti sð Þ
k is regular for x ∉ S,

the formula holds for such x. Let us prove the validity of this formula for boundary
points.

Let x∈ S. Define Oε xð Þ ¼ y∈ S : ∥y� x∥< εf g, Sε xð Þ ¼ S�Oε xð Þ, Γε xð Þ ¼
y : ∥y� x∥ ¼ εf g, Γ

�
ε xð Þ ¼ Γε xð Þ∩ S�, and Γ

þ
ε xð Þ ¼ Γε xð Þ∩ Sþ.

Similarly, we obtain

ð

Sε

T
i sð Þ
k y� x, n yð Þð ÞdS yð Þ þ

ð

Γ
�
ε

T
i sð Þ
k y� x, n yð Þð ÞdS yð Þ ¼ 0

ð

Sε

T
i sð Þ
k y� x, n yð Þð ÞdS yð Þ þ

ð

Γ
þ
ε

T
i sð Þ
k y� x, n yð Þð ÞdS yð Þ ¼ δik

Since the outward normals to Γ�
ε xð Þ and Γ

þ
ε xð Þ at opposite points y� and yþ of the

sphere Γε xð Þ coincide, i.e. n y�ð Þ ¼ x� y�ð Þ=ε ¼ yþ � xð Þ=ε ¼ n yþð Þ, while

yþ � xð Þ ¼ � y� � xð Þ, we take into account the asymptotics of T
i sð Þ
k and, according

to Theorem 3.5, sum these two equalities and pass to the limit as ε ! 0, to obtain
equality (30) for boundary points. The lemma is proved.

For M ¼ 1 and L1j ∂x, 0ð Þ ¼ ∂ j∂ j ¼ Δ, this formula coincides with the Gauss
formula for the double-layer potential of Laplace equation (see [2]).

Consider formula (44). Formally, it can be represented in the integral form

ûk x, tð Þ ¼
ð

D

Ti
k x� y, n yð Þ, t� τð Þui y, tð Þ þ Ui

k x� y, t� τð Þgi y, τð Þ
� �

dD y, τð Þþ

þ
ð

S�

Ui
k, t x� y, tð Þu0i yð Þ þ Ui

k x� y, tÞu1i yð Þ
� �

dV yð Þ þUi
k ∗ Ĝi

�
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Under zero initial conditions, this formula coincides in form with the generalized
Green formula for elliptic systems. However, the singularities of Green’s matrix of the
wave equations prevent us from using it for the construction of solutions to boundary

value problems, since the integrals on the right-hand side do not exist because Ti
k has

strong singularities on the fronts. However, the primitives of the matrix introduced in
Section 3 can be used to construct integral representations of formula (44).

Theorem 7.1. If u is a classical solution of the boundary value problem, then

ûk ¼ Ui
k x, tð Þ ∗Gi x, tð Þ þUi

k x, tð Þ ∗ gi x, tð Þδs xð ÞH tð Þ�

�
ð

S

T
i sð Þ
k x� yð Þui y, tð ÞdS yð Þ �

ð

S

dS yð Þ
ð

t

0

W
i dð Þ
k x� y, n yð Þ, t� τð Þui, t y, τð Þdτ�

�
ð

S

W
i dð Þ
k x� y, n yð Þ, tð Þu0i yð ÞdS yð Þ þ Ui

k x, tð Þ ∗ x u0i yð ÞH�
S xð Þ

� �

, t

For x∈ S, the integral is singular and is understood in the sense of its principal value.
Proof. For even N, the integral representation (42) has the form

ûk ¼
ð

S

dS yð Þ
ð

t

0

Ui
k x� y, t� τð Þgi y, τð Þ �W i

k x� y, n yð Þ, t� τð Þui, τ y, τð Þ
� �

dτ�

�
ð

S

W i
k x� y, n yð Þ, tð Þu0i yð ÞdS yð Þ þ ∂t

ð

S�

Ui
k x� y, tð Þu0i yð ÞdS� yð Þþ

þ
ð

S�

Ui
k x� y, tð Þu1i yð ÞdV yð Þ þ

ð

D�

Ui
k x� y, t� τð ÞGi y, τð ÞdV yð Þdτ

Here, all the integrals are regular for interior points and singular for boundarypoints.
Remark. If N is odd, then, since U is singular, the integrals involving U are still

written in the form of a convolution, which is taken according to the convolution
rules depending on the form of U. For the wave equation of odd dimension, such
representations were constructed in [4].

It is easy to see that, for zero initial data, the last three integrals (in the convo-
lution) vanish.

Applying Theorem 3.5, by virtue of (31), the second term can be represented as

ð

S

dS yð Þ
ð

t

0

W i
k x� y, n yð Þ, t� τð Þdτui y, τð Þ ¼

¼
ð

S

T
i sð Þ
k x� yð Þ ui y, tð Þ � u0i yð Þ

� �

dS yð Þ

þ
ð

S

dS yð Þ
ð

t

0

W
i dð Þ
k x� y, n yð Þ, t� τð Þui, τ y, τð Þdτ

Here, the first integral is singular for x∈ S and exists in the sense of its principal
value by Lemma 7.1, while the second integral is regular. Then for interior points,
we obtain the formula of the theorem.
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Let us show that the equality holds in the sense of definition (37) for boundary
points as well.

Let x ∗ ∈ S, x∈ S� and x ! x ∗ . Then, since the convolutions containing Ui
k and

W
i dð Þ
k are continuous, we obtain

lim
x!x ∗

uk x; tð Þ ¼ uk x ∗ ; tð Þ ¼

¼ lim
x!x ∗

ð

S

T
i sð Þ
k y� xð Þui y; tð ÞdS yð Þ þ

ð

S

W
i dð Þ
k x ∗ � y; n yð Þ; tð Þu0i yð ÞdS yð Þ�

�
ð

S

dS yð Þ
ð

t

0

Ui
k x ∗ � y; t� τð Þgiðy; τÞ þW

i dð Þ
k ðx ∗ � y; n yð Þ; t� τÞui, τðy; τÞ

� �

dτþ

þ
ð

S�

Ui
k x ∗ � y; tð Þu1i yð ÞdV yð Þ þ

ð

S�

Ui
k x ∗ � y; tð Þu0i yð Þ

� �

, tdV yð Þþ

þ
ð

D�

Ui
k x ∗ � y; t� τð ÞGi y; τð ÞdV yð Þdτ

By Lemma 7.1, the limit on the right-hand side can be transformed into

ð

S

T
i sð Þ
k y� x ∗ð Þ ui y, tð Þ � ui x

∗ , tð Þð ÞdS yð Þ þ ui x
∗ , tð Þδik ¼

¼ V:P:

ð

S

T
i sð Þ
k y� x ∗ð Þui y, tð ÞdS yð Þ � ui x

∗ , tð ÞV:P:

ð

S

T
i sð Þ
k y� x ∗ð ÞdS yð Þþ

þui x
∗ , tð Þδik ¼ V:P:

ð

S

T
i sð Þ
k y� x ∗ð Þui y, tð ÞdS yð Þ þ 0, 5ui x

∗ , tð Þδik

Adding up and combining like terms, we derive the formula of the theorem for
boundary points. The theorem is proved.

The formula on the boundary yields boundary integral equations for solving
initial-boundary value problems.

Theorem 7.2. The classical solution of the Dirichlet (Neumann) initial-boundary value

problem for x∈ S and t>0 satisfies the singular boundary integral equations (k ¼ 1,M)

0, 5uk x, tð Þ ¼ Ui
k x, tð Þ ∗Gi x, tð Þ þUi

k x, tð Þ ∗ gi x, tð Þδs xð ÞH tð Þ�

�V:P:

ð

S

T
i sð Þ
k x� yð Þui y, tð ÞdS yð Þ �

ð

S

dS yð Þ
ð

t

0

W
i dð Þ
k x� y, n yð Þ, t� τð Þui, t y, τð Þdτ�

�
ð

S

W
i dð Þ
k x� y, n yð Þ, tð Þu0i yð ÞdS yð Þ þ Ui

k x, tð Þ �
x
u0i yð ÞH�

S xð Þ
� �

, t þ Uk
i �x u

1
k xð ÞH�

S xð Þ:

From these equations, we can determine the unknown boundary functions of
the corresponding initial-boundary value problem. Next, the formulas of Theorem
7.1 are used to determine the solution inside the domain.
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8. Conclusions

The solvability of the obtained systems of BIEs in a particular class of functions
is an independent problem in functional analysis. These equations can be numeri-
cally solved using the boundary element method. In special cases of nonstationary
boundary value problems in elasticity theory (M ¼ N ¼ 2, 3), these equations were
solved in [4, 6–8].
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