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Chapter

Procoagulant Platelets
Andaleb Kholmukhamedov

Abstract

There are two well-known subpopulations of activated platelets: pro-aggregatory 
and procoagulant. Procoagulant platelets represent a subpopulation of activated 
platelets, which are morphologically and functionally distinct from pro-aggregatory 
ones. Although various names have been used to describe these platelets in the liter-
ature (CoaT, CoaTed, highly activated, ballooned, capped, etc.), there is a consensus 
on their phenotypic features including exposure of high levels of  phosphatidylserine 
(PSer) on the surface; decreased aggregatory and adhesive properties; support of 
active tenase and prothrombinase complexes; maximal generation by co-stimulation 
of glycoprotein VI (GPVI) and protease-activated receptors (PAR). In this  chapter, 
morphologic and functional features of procoagulant platelets, as well as the 
 mechanisms of their formation, will be discussed.
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1. Introduction

Blood has different components, like plasma, red blood cells (RBC), white 
blood cells (WBC), and platelets. Platelets, although being only “tiny fragments 
of megakaryocytes (mother cell),” are essential for life. We need them, together 
with about two dozen of coagulation factors, to keep all that nutrient-rich liquid 
plasma, infection-fighting WBCs, and oxygen-carrying RBCs in our bodies in the 
case of trauma and bleeding. Platelets and coagulation get activated immediately 
upon being exposed to things they normally do not have contact with (e.g., during 
blood vessel wall rupture, collagen gets exposed and activates platelets). Upon 
activation, platelets form a mesh-like structure using another plasma protein called 
fibrinogen as bridges between them. This process forms a so-called “unstable clot.” 
At later stages of blood clotting, generated thrombin converts soluble fibrinogen to 
insoluble fibrin, stabilizing the initial platelet plug. These processes are collectively 
called hemostasis. Every aspect of hemostasis has its history. Although exploring 
history can sometimes be tedious, studying the bridge between past and present is 
essential in basic understanding of the subject, the subject of procoagulant platelets 
in this case.

Unlike WBCs, which exist as functionally and morphologically distinct sub-
populations, it has been thought for years that platelets are rather simple in their 
function, being just “cell particles.” It was later revealed that platelets, although 
lacking nuclear material, are indeed very complex not only in their nature but also 
in function. Nowadays, the existence of two different subpopulations of activated 
platelets, pro-aggregatory and procoagulant, is a widely accepted fact. Pro-
aggregatory platelets, historically known as activated, have been a major focus since 
the initiation of platelet research. The history of procoagulant platelets, on the other 
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hand, can be subdivided into two periods. The first one is the discovery of platelet 
procoagulant functionality, whereas in the second period, procoagulant platelets 
were discovered and characterized as a distinct subpopulation of activated platelets.

In 1912, long before we learned that prothrombinase supporting platelets are 
distinct from pro-aggregatory ones, Howell discovered that unsaturated cephalin 
is a phospholipid factor that triggers clotting [1]. This discovery was followed by 
decades of controversial results of what phospholipid or what mixture of phos-
pholipids is responsible for this effect until, in 1960, Karl Slotta demonstrated the 
presence of phosphatidylserine (PSer) is an absolute requirement [2]. This discov-
ery established the central role of PSer in prothrombinase activity, which in a way, 
paused research activities in the procoagulant platelet field.

The history was resumed when two decades later, Bevers and colleagues spec-
trophotometrically showed that thrombin and collagen co-stimulated platelets 
possessing about 5-fold higher prothrombinase activity than those stimulated with 
thrombin or collagen alone. This effect was even more pronounced in the presence 
of exogenous factor Va [3]. Later that year, the same group confirmed their spectro-
photometric observations in one-stage prothrombinase assay [4]. In 1985, Rosing 
et al. more thoroughly described the role of platelet PSer exposure in prothrombin 
(FII) and factor X (FX) activation [5]. They revealed that collagen and thrombin 
co-stimulation significantly increases prothrombinase and tenase activity, while 
this increase was abolished in the presence of phospholipase A2 (PLA2) from N. 
naja. Also observing no cellular lysis in these conditions, they concluded that PSer 
exposure, which is followed by thrombin and collagen co-stimulation, is responsible 
for this phenomenon. In 1993, with the discoveries of annexin V and advancement 
in flow cytometry, Dachary-Prigent et al. established a protocol to detect PSer 
exposing platelets, the methodology that has overtime become fundamental in pro-
coagulant platelet field and has been widely used since then [6]. In 1997 Heemskerk 
and colleagues discovered that a percentage of platelets adhering to collagen, but 
not fibrinogen, balloon and expose PSer [7]. In parallel to these findings, there was 
a series of publications determining the extent and ultrastructure of PSer exposure, 
as well as the essential role of calcium in this process [8–10].

Although numerous studies described platelet procoagulant function in 
response to dual stimulation [3, 5, 11, 12], a breakthrough discovery that identi-
fied procoagulant platelets as a distinct subpopulation of activated platelets is the 
work by Alberio et al., where they demonstrated that only a certain percentage of 
activated platelets retain factor Va (FVa) on their surface [13]. This subpopulation 
was generated by co-stimulation with convulxin/collagen (GPVI agonists) and 
thrombin; hence they were named CoaT platelets. A few years down the road, 
Kulkarni and Jackson introduced a new term—‘sustained calcium-induced platelet 
morphology (SCIP)’ by discovering the fact that procoagulant platelets require 
prolonged elevation in cytosolic calcium to form [14]. Diversifying terminology 
of procoagulant platelets did not stop there, in 2005 revealing that procoagulant 
platelets retain multiple α-granule proteins on their surface in transglutaminase-
dependent manner led to the introduction of a new term—‘coated’ (by α-granule 
proteins) platelets [15, 16]. Further studies by Panteleev et al. revealed that this 
subpopulation of activated platelets binds high levels of factors IXa and Xa [17]. 
In 2008, Jobe et al., characterizing molecular mechanisms of procoagulant platelet 
formation, introduced another term—highly activated platelets [18]. There are few 
more terms used in the literature like ballooned [7], ballooned and procoagulant-
spread [19], and super-activated platelets [20].

Just like in a famous Indian parable, where blind men try to describe an elephant 
they have never encountered before by touching different parts of it, research-
ers have been describing different (morphological and functional) features of 
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procoagulant platelets and introducing different terms based on their discover-
ies. Whereas indeed, everyone has been describing “different parts of the same 
elephant.”

2. Mechanisms of procoagulant platelet formation

The discovery of procoagulant platelets as a distinct subpopulation of activated 
platelets at the beginning of the twenty-first century triggered research activities 
into cellular and molecular mechanisms of their formation. As shown by Alberio 
et al. and confirmed in later studies, procoagulant platelets are maximally generated 
upon co-stimulation of glycoprotein VI and PAR1/4. In 2005, Jobe and colleagues 
discovered that the absence of FcRγ, a key component responsible for glycoprotein 
VI signaling, ablates procoagulant platelet formation almost to baseline levels, 
evidencing GPVI stimulation is the major component of their generation [21]. The 
same year, Remenyi et al. demonstrated the role of mitochondrial permeability 
transition (MPT) in procoagulant platelet formation [16]. MPT is a Ca2+-dependent 
molecular process that leads to mitochondrial swelling and cell death [22, 23]. 
During the onset of MPT, large pores are formed on the mitochondrial inner 
membrane making it non-specifically permeable to all solutes and molecules of 
molecular weight up to 1500 Da [24, 25]. It is a very well-known fact that mitochon-
drial Ca2+ overload can induce MPT, although the structure of MPT pore remains 
unknown.

Ca2+, being a key signaling molecule in most cells, is important for many pro-
cesses including platelet shape change and integrin α2bβ3 activation [26, 27]. In 
resting platelets, free Ca2+ is tightly regulated and maintained at about 100 nM 
in both the cytosol and mitochondria through the action of Ca2+-ATPases in the 
plasma and cell membranes. Thus, platelet cytosolic-free Ca2+ is substantially lower 
than the blood Ca2+ levels, which are around 2 mM. With stimulation, however, 
cytosolic Ca2+ increases instantaneously. As outlined in Figure 1, this increase is 
mediated by activated phospholipase C (PLC). There are two major isoforms of 
PLC in human platelets, PLCβ and PLCγ. PLCβ is only activated downstream of 
Gq protein-coupled receptors (GPCRs). Whereas, PLCγ is activated downstream 
of numerous receptors like GPVI, glycoprotein Ib-IX complex (GPIb-IX), Fcγ 
receptor IIa (FcγRIIa), and C-type lectin-like receptor 2 (CLEC-2). As illustrated 
in Figure 1, both isoforms of PLC induce the release of Ca2+ from the dense tubular 
system (DTS) as well as activating transient receptor potential channel 3 (TRPC3). 
DTS release of Ca2+, in turn, triggers its extracellular entry through store-operated 
calcium entry (SOCE). For some time, it remained mysterious on how the release 
of DTS calcium stores into the cytosol induces more Ca2+ to flow into the cell, 
further increasing its cytosolic concentrations. However, with the discovery of core 
components of SOCE, everything falls into place. STIM1 and ORAI1 are parts of the 
same complex. When STIM1 senses drop in Ca2+ levels within the DTS, it signals to 
ORAI1 located on a cell membrane to allow Ca2+ passage from extracellular space 
into the cell. As evidenced by the study in the early 2000s, increased cytosolic Ca2+ 
levels are one of the requirements of procoagulant formation [14]. Mitochondria, 
being the major and perhaps the only Ca2+ buffering system within platelets, 
equilibrate increased cytosolic Ca2+ following PAR and GPVI co-stimulation. The 
ensuing fate of mitochondrial Ca2+ overload is the opening of the mitochondrial 
permeability transition pore (MPTP), followed by PSer exposure and integrin 
deactivation (Figure 1), ultimately leading to a cell death. However, in this case cell 
death shall be considered physiologic considering the essential role of procoagulant 
platelets in hemostasis.
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It brings us to another aspect of procoagulant platelet research, debated since 
their discovery, which is whether procoagulant platelets are necrotic or apoptotic. 
Cell death, both necrosis and apoptosis, is an essential event in the normal life 
of many cells in the human body, including platelets. Apoptosis, or programmed 
cell death, occurs in many organs throughout human lifetime. Necrosis, although 
considered to be mostly a catastrophic uncontrolled cell death, can also occur 
physiologically, as in the shedding of decidual endometrium during human menses. 
Necrosis and apoptosis differ in many aspects. The ultimate event during necrotic 
cell death is the osmotic swelling of the cell followed by the rupture of a cell mem-
brane, whereas in apoptosis, cell shrinkage with preserved cell membrane is evident 
in later stages of this process.

Although the proposal that PSer is not homogeneously distributed on the 
surface of activated platelets was made back in 1985 [5], it took three decades to 
visualize that experimentally due to the complex nature of procoagulant plate-
lets. In 2016, Podoplelova et al. presented a detailed structure of procoagulant 
platelets and cellular changes that give them the characteristic morphology. They 
elegantly demonstrated how the balloon is blown out from the platelet, leav-
ing it as a “cap” [29]. The existence of bulges in a phospholipid bilayer, known 
as the open canalicular system (OCS), is essential, as it provides platelet a fair 
amount of surface reserve for ballooning. Morphologic appearance, in this case, 
resembles the classical osmotic swelling of necrotic cell death, as schematically 
presented on the left side of Figure 2. Another feature of necrosis, which is a 
collapse of energy production, is present in procoagulant platelets, as they lack 
energy-requiring contractile function [18]. Moreover, depletion of oxidative 

Figure 1. 
Molecular mechanisms of physiologic agonist-induced procoagulant platelet formation. In resting platelets, 
low cytosolic Ca2+ is maintained by cell and plasma membrane Ca2+-ATP-ases. Co-stimulation of protease-
activated receptor 1/4 and glycoprotein VI leads to a sustained increase of cytosolic Ca2+ through activation 
of PLCβ and PLCγ, respectively. Increased cytosolic Ca2+ drives mitochondrial Ca2+ entry through the 
mitochondrial calcium uniporter complex. The resulting increase in mitochondrial Ca2+ opens mitochondrial 
permeability transition pore, which in turn leads to necrotic cell death and exposure of phosphatidylserine 
accompanied by integrin inactivation. DTS, dense tubular system; GPVI, glycoprotein VI; MCU, 
mitochondrial calcium uniporter; MPTP, mitochondrial permeability transition pore; PAR, protease-activated 
receptor; PSer, phosphatidylserine; SOCE, store-operated calcium entry; TRPC3, transient receptor potential 
channel 3. Adapted from [28] with modifications.
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phosphorylation due to MPT, deactivates flippases that normally maintain the 
asymmetry of phospholipids. After the onset of MPT, contents of mitochondrial 
matrix get released to the cytosol leading to the second wave of cytosolic Ca2+ 
increase. This in turn leads to scramblase activation. Synergistically with deacti-
vated flippases, scramblase performs its raison d’etre, which is flipping negatively 
charged PSer out in order to equilibrate its concentration. And finally, recent 
work demonstrated that platelets undergoing cell death through necrotic pattern 
and not apoptotic are functionally procoagulant as measured by prothrombinase 
support [30].

Platelet apoptosis (Figure 2, right side), on the other hand, has been widely 
implicated in platelet lifespan via the action of the intrinsic mitochondrial apop-
tosis pathway [31, 32]. Normally, antiapoptotic members of the BCL-2 family 
(e.g., BCL-xL) restrain the activity of proapoptotic Bax and Bak proteins, which 
are present within the cytosolic fraction of a platelet. When BCL-xL wears off, 
oligomerized Bax and Bak translocate to the mitochondrial outer membrane and 
permeabilize it, which leads to cytochrome C leakage into the cytosol, triggering 
apoptosome formation and eventually cell death. This is supported by the fact that 
the genetic ablation of murine BCL-xL reduces platelet life span from about 5 days 
to 5 hours [33, 34].

Thus, procoagulant platelets are indeed necrotic, while apoptosis is essential in 
platelet clearance. It should, however, be mentioned that the presence of PSer on 
the surface of a platelet is a signal for the reticuloendothelial system in the spleen 
and liver for clearance. Therefore, any procoagulant platelet that happened to 
escape the site of the active hemostatic process will be cleared out of the system by 
liver or spleen, just like aged apoptotic platelets do.

Figure 2. 
Cellular mechanisms of platelet cell death. Cyt C, cytochrome C; GPVI, glycoprotein VI; mPTP, mitochondrial 
permeability transition pore; PSer, phosphatidylserine. PSer exposure is shown in red.
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3. Functions of procoagulant platelets

The physiological relevance of procoagulant platelets had been questioned for 
a long time. In recent years, however, after the demonstration of a procoagulant 
platelet being predictive of bleeding or ischemic complications in patients with 
coronary artery disease, brain hemorrhage, traumatic brain injury, stroke, etc. 
[35–42] it is gaining more and more recognition. The importance of this subpopula-
tion is further highlighted on a novel ex vivo model (which integrates all the core 
components of hemostasis [43]), where pharmacologic inhibition of platelet transi-
tion to a procoagulant state without affecting pro-aggregatory phenotype results in 
a decreased thrombus stability [44].

It was initially thought that the only function of procoagulant platelets is to sup-
port coagulation. However, with recent advances in the field, we learn that depend-
ing on their localizations, procoagulant platelets can play different functions within 
the thrombus. For general consideration, these two functionalities will be discussed 
separately here.

3.1 Coagulation support

Coagulation, a cascade of serine protease enzymatic reactions, is achieved by 
cleaving fibrinogen to fibrin, which transforms blood from a liquid to a gel-like 
state. Although platelet contribution to coagulation has been known for decades, 
the exact role of platelet phospholipids has been a matter of major debate. 
Dependence of hemostasis on biological membranes is very extensive, ranging from 
subendothelial membranes triggering coagulation and platelet activation to proco-
agulant platelet surface assembling tenase and prothrombinase complexes. It is very 
well known that at least two coagulation reactions are highly dependent on phos-
pholipid surface, namely the activation of factor X and prothrombin by intrinsic 
tenase and prothrombinase, respectively. Both intrinsic tenase and prothrombinase 
are composed of the serine protease (FIXa for tenase and FXa for prothrombinase) 
and its protein cofactor (FVIIIa for tenase and FVa for prothrombinase). It is 
important to know that although both proteases alone are capable of activating their 
substrates, the presence of cofactors profoundly amplifies the catalytic process for 
up to 10,000 fold.

The current understanding of this process, based on numerous studies including 
mathematical modeling, is that phospholipid surface increases the rate of reactions 
by increasing the local concentration of coagulation factors, and thus increasing the 
probability of their interaction [29, 45–51]. This increase in a local concentration of 
factors, essential for tenase and prothrombinase complexes, is accomplished by the 
interaction of negatively charged gamma-carboxyglutamic acid (GLA) residues of 
the coagulation factors with negatively charged phosphatidylserine on the surface 
of procoagulant platelets. It is supported by the fact that GLA domain-containing 
(also known as vitamin K-dependent) factors predominantly bind to a procoagulant 
subpopulation of activated platelets [17, 29, 30]. Both enzymatic factors for intrinsic 
tenase (FIX) and prothrombinase (FX) are GLA domain-containing proteins and 
bind to PSer in a calcium-dependent manner. Whereas cofactors (FVIII and FV) 
structurally are not GLA proteins and bind to a procoagulant surface by different 
mechanisms.

In the case of FVIII, it has been shown by Gilbert et al. that it is not specific to 
a procoagulant surface [52]. It was further confirmed by Podoplelova et al. in their 
efforts exploring procoagulant platelet characteristics, they demonstrated that both 
(pro-aggregatory and procoagulant) subpopulations of activated platelets bind 
FVIIIa [29]. The fact that PS increases the catalytic activity of the intrinsic tenase 
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complex by about 1500-fold [53] can be explained by FIXa’s specificity to PSer. As 
outlined in Figure 3A, initially FIXa and FX bind PSer. This binding reaction is 
calcium-dependent for all GLA domain-containing proteins. FIXa possesses enzy-
matic activity to convert X to Xa, whereas in the presence of its cofactor (FVIIIa), 
the catalytic activity raises 100,000-fold.

As for the FV—there are two different probabilities of binding to the procoagu-
lant surface, as demonstrated in Figure 3B. In the first one, prothrombinase forms 
by the surface Xa reacting with factor Va in solution. Whereas, in the second case, 
both FVa and FXa form binary complexes with PSer first, and then lipid-protein 
rearrangement leads to prothrombinase formation [50]. The addition of exogenous 
FVa to procoagulant platelets increases the velocity of prothrombinase reaction [4], 
whereas in the absence of exogenous FVa, procoagulant platelets are still prothrom-
binase active [54]. These findings indicate that both pathways are physiologically 
important.

3.2 Limiting thrombus growth

During hemostasis, there is a time point when a thrombus needs to stop growing 
in order not to occlude the lumen of the vessel, which may compromise the blood 
supply to an end organ. Stoppage of the thrombus growth is probably the most 
intriguing part of thrombogenesis, although being the most understudied at the 
same time. When coagulation is initiated by subendothelial tissue factor, it leads to 
the formation of small amounts of thrombin. Thrombin then, via a positive feed-
back mechanism, by activating FXI and FVIII triggers the contact activation path-
way and amplifies its production. This self-accelerating process is essential within 
the hemostatic plaque as it is the only way to overcome the anticoagulant nature 
of plasma, which is due to the presence of antithrombin III (ATIII). Besides the 
presence of ATIII in the active form, other mechanisms limit coagulation beyond its 
border zone. Another one of high importance is the presence of thrombomodulin, 
an integral membrane protein that is expressed ubiquitously on the surface of  
endothelial cells. Thrombomodulin converts procoagulant thrombin to an antico-
agulant enzyme. Not only these mechanisms limit coagulation to the injured site  
but also degrade activated factors that happened to escape the hemostatic plaque. 

Figure 3. 
Factor X activation (A) and prothrombinase assembly (B) on the “cap” of procoagulant platelet. (A). Initially 
FIXa and FX are bound to PSer on the surface of procoagulant platelet in calcium-dependent manner 
(①), whereas co-factor VIII binding is not specific to PSer and does not require calcium (②). FIXa possesses 
enzymatic activity to convert X to Xa (③). Although reaction ③ is very slow in the absence of factor VIIIa, it is 
efficient to generate small amounts of FXa. Initial FXa then activates VIII to VIIIa (④), this leads to intrinsic 
tenase complex assembly, which in turn amplifies Xa formation (⑤). (B). There are two possibilities for the 
assembly of prothrombinase on the surface of procoagulant platelet. Pathway Ⓐ forms prothrombinase by the 
surface Xa reacting with factor Va in solution. Pathway Ⓑ depicts the possibility for prothrombinase complex 
formation by already bound Xa and Va. In this case, both FVa and FXa form binary complexes with PSer first 
and then lipid-protein rearrangement leads to prothrombinase formation.
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Figure 4. 
Schematic representation of platelet translocation within the evolving hemostatic plug. After vascular injury, 
platelets adhere and aggregate at the wound site. A subpopulation of platelets within the hemostatic plug 
transitions to a procoagulant state. Procoagulant and pro-aggregatory platelets have opposing vectors of 
translocation. Clot retraction, driven by platelets with a pro-aggregatory phenotype, squeezes procoagulant 
platelets to the periphery. Adapted from [56] with minor modification.

These processes outline the general principles of limiting coagulation to its bor-
der zone. However, not only coagulation but also processes of platelet adhesion, 
aggregation, and activation have to stop in order at a certain timepoint. How and 
when thrombus stops growing concerning cellular component had been a mystery 
for a long time.

In 2007, Maroney et al. demonstrated that procoagulant platelets express active 
tissue factor pathway inhibitor (TFPI) on their surface [55]. But why platelets 
expressing procoagulant PSer would also need a strong anticoagulant (TFPI) on 
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their surface remained a question for about a decade until in 2019 a breakthrough 
work by Nechipurenko et al. characterized a phenomenon, together with its mecha-
nisms, of procoagulant platelets translocating to the thrombus periphery [57]. 
They demonstrated that during clot retraction procoagulant platelets are squeezed 
out to the periphery of the thrombus, as shown in Figure 4. Another important 
study in this context is the 2008 work by Jobe et al., which demonstrated that 
procoagulant platelets do not possess contractile function [18]. This explains why 
pro-aggregatory and procoagulant platelets have different translocation vectors 
within the hemostatic plaque (Figure 4). Being bound to the thrombus by its “cap,” 
procoagulant platelets do not get detached but rather are squeezed out during pro-
aggregatory platelets contraction. At the luminal surface of the hemostatic plaque, 
procoagulant platelets limit its further growth not only by expressing low adhesive 
and aggregatory surfaces [58–60], but also with TFPI terminating any extrinsic 
tenase and prothrombinase activity.

The fact of procoagulant platelet being non-adhesive, however, gives rise to a 
legitimate question. If procoagulant platelets are not capable of adhesion and aggre-
gation, how do they get attracted to a thrombus? It turns out to be, as described in 
recent studies, that procoagulant platelets do not form de novo from a resting state, 
but rather temporally transitioning from pro-aggregatory phenotype by the onset 
of the MPT and regulated necrosis within a hemostatic plaque [61, 62].

Many are aware of an ancient Roman god of duality — Janus, who had two faces 
as he was able to look to the future and the past. Procoagulant platelets can also 
demonstrate a functional duality by supporting coagulation on one side and limit-
ing thrombus growth on the other, making them be “Janus” of hemostasis.
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Abbreviations

APC activated protein C
ATIII antithrombin III
Cyt C cytochrome c
DTS dense tubular system
FcRγ FC receptor gamma
FV factor V
FVa activated factor V
FVIII factor VIII
FVIIIa activated factor VIII
FIX factor IX
FIXa activated factor IX
FX factor X
FXa activated factor X
GPIb-IX glycoprotein Ib and IX complex
GPVI glycoprotein VI
MCU mitochondrial calcium uniporter
MPT mitochondrial permeability transition
MPTP mitochondrial permeability transition pore
OCS open canalicular system
PAR protease-activated receptor
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