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Chapter

Current Advances in Mass 
Spectrometry Imaging for Insect 
Physiology and Metabolism
Fei-Ying Yang, Wei-Yi He and Min-Sheng You

Abstract

Research regarding the distribution of metabolites is a vital aspect of insect 
molecular biology. However, current approaches (e.g., liquid chromatography-mass 
spectrometry or immunofluorescence) have cons like requirement of massive 
tissues, low efficiency, and complicated operating processes. As an emerging 
technology, mass spectrometry imaging (MSI) can visualize the spatiotemporal 
distribution of molecules in biological samples without labeling. In this chapter, we 
retrospect the major types of in situ measurement by MSI, and the application of 
MSI for investigating insect endogenous and exogenous metabolites and monitoring 
the dynamic changes of metabolites involved with the interactions between insects 
and plants. Future studies that combine MSI with other genetic tools can facilitate 
to better explore the underlying mechanisms concerning insect physiology and 
metabolism.

Keywords: spatial metabolomics, in situ characterization, endogenous metabolites, 
exogenous metabolites, plant-insect interaction

1. Introduction

Insect molecular biology studies the molecular basis of biological processes in 
insects, including molecular synthesis, modification, mechanisms, and interactions 
[1]. Metabolites play key roles among all these aspects of insect molecular biology. 
Therefore, understanding the distribution of metabolites contributes to revealing 
the mechanisms of insect biology, including ontogeny, metabolism, and physiol-
ogy. Research methodologies such as liquid chromatography-mass spectrometry 
(LC-MS) and immunofluorescence are generally used in visualizing the distribu-
tion of metabolites. However, all of them have their shortcomings. LC-MS or gas 
chromatography-mass spectrometry (GC-MS) usually uses the homogenate of a 
certain weight of specific tissue(s) or organ(s), resulting in losing in situ spatiotem-
poral information. Insect body sizes are mostly small, let alone certain tissues; so 
tissue-specific researches, in most case, consume a large number of insect individu-
als [2–4]. On the other hand, ordinary in situ characterization technologies such as 
immunofluorescence assay and fluorescence in situ hybridization (FISH) require 
labeling at specific biomolecules [5–7]. Hence, operating processes such as synthe-
sizing probes and antibodies are usually time-consuming, inefficient, and limited to 
only one molecule.
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As a new molecular visualization technology, mass spectrometry imaging 
(MSI) has drawn more and more attention in recent years. MSI can visualize the 
spatial distribution of molecules in specific samples without any labeling and 
enable simultaneous evaluation and identification of hundreds of molecules 
in situ. In comparison with LC-MS and GC-MS, MSI requires only one sample 
for biomolecular localization, which makes it a powerful tool to visualize the 
changes in organism physiology and biochemistry. The basic principle of MSI 
is to scan target samples such as tissue slice for desorption and ionization of 
molecules or ions on the surface of samples by a laser or a high-energy ion beam 
[8]. Mass analyzer obtains mass-to-charge ratio (m/z) and ion intensity of the 
molecules or ions from pixels. Mass peaks are obtained from the database of 
imaging software such as FlexImaging and used to visualize one-dimensional 
linear profiling, two-dimensional spatial distribution of molecules, or three-
dimensional anatomic structure [8]. MSI has been widely applied in life sciences, 
such as histology [9, 10]; pathology [11, 12]; pharmacology [13, 14]; food science 
[15]; botany [16–19]; and microbiology [20, 21].

In this chapter, we introduce the major types of in situ measurement by MSI 
and present an example of matrix-assisted laser desorption ionization (MALDI) 
to elucidate the operating processes. We also discuss the advances of MSI in insect 
physiology and biochemistry to better promote the research in entomology.

2. Mass spectrometry imaging method

Among all the MSI technologies, we can divide them into two major groups, 
vacuum ionization mass spectrometry imaging system and ambient ionization 
mass spectrometry imaging system, based on whether the environment of the 
instruments is a vacuum [8]. Based on desorption or ionization ion, vacuum 
ionization mass spectrometry imaging system can be further divided into different 
categories, namely MALDI [22], secondary ion mass spectrometry (SIMS) [23], 
surface-assisted laser desorption ionization (SALDI) [24], and laser desorption 
ionization (LDI) [25]; ambient ionization mass spectrometry imaging system 
can be further divided into different categories, namely desorption electrospray 
ionization (DESI) [26], laser ablation electrospray ionization (LAESI) [27], laser 
electrospray mass spectrometry (LEMS) [28], electrospray laser desorption ioniza-
tion (ELDI) [28], atmospheric pressure matrix-assisted laser desorption ionization 
(AP-SMALDI) [29], and air flow-assisted ionization (AFAI) [30]. Among all these 
above-mentioned technologies, MALDI-MSI is the most popular technology in life 
science research because it not only can be applied to a wide range from inorganic 
ion, small molecules to proteins but also has the characteristics of high accuracy 
and sensitivity [31]. Here, we provide a further explanation of the basic principle of 
MADLI-MSI and elucidate the workflow for MALDI.

The basic working principle of MALDI is that target analytes on the surface 
of tissue are crystallized with matrix (e.g., α-cyano-4-hydroxycinnamic acid and 
2,5-dihydroxyacetophenone) to form a complex. When the complex is exposed 
by infrared laser at 2.94 or 10.6 μm and/or ultraviolet laser at 337, 355, or 266 nm, 
it absorbs the laser energy and converts these analytes into a phase of gas, which 
causes molecule ionization. The ionized molecules automatically enter a mass 
spectrometer where the molecules are detected and mapped [19].

A typical experimental workflow for MALDI is as follows (Figure 1):

a. Insect tissues are flash-frozen (with or without fixation) in an embedding 
media with gelatin, carboxymethylcellulose, or water;
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b. Each sample is cryo-sectioned at 10–20 μm thickness and mounted onto 
glass slides coated with indium tin oxide, which is then lyophilized for tissue 
imaging;

c. The lyophilized slide is subject to three irregular fiducial markings on the 
surface of each sample for localization;

Figure 1. 
MALDI-MSI imaging workflow.
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d. A digital image of the sample with fiducials is acquired;

e. A chemical matrix is applied to promote desorption and ionization. Matrix is 
coated by a sprayer/nebulizer or by solvent-free sublimation to acquire homo-
geneous matrix coverage over the entire tissue surface;

f. After matrix deposition, the target is inserted into the instrument, for which 
experimental parameters (e.g., laser energy, step size of plate movement, and a 
selected region of the tissue) are optimized to scan the image;

g. A laser beam is emitted for desorption to acquire mass spectra at every x and y 
grid points within the scanning area, so to visualize target ions and convert the 
ion’s intensity into a color scheme;

h. Hematoxylin-eosin staining is optional for displaying tissue localization.

3.  Application of mass spectrometry imaging in entomological 
researches

MSI can visualize the spatial and temporal distributions of molecules. 
Endogenous metabolites, exogenous metabolites, and insect-plant interactions are 
three main aspects of MSI application to insect tissue section for in situ characteriza-
tion. Endogenous metabolites refer to lipids, neuropeptides, proteins, and defense 
compounds [32–35]; exogenous metabolites are drugs and insecticides [36, 37]; 
insect-plant interactions are associated with the fate of plant secondary defense 
compounds in insects [38]. We summarize the major applications of MSI for a better 
understanding of insect physiology and metabolism (Table 1).

3.1 Insect endogenous metabolites

3.1.1 Lipids

Lipids are basic cell components and play important roles in insect development 
and reproduction, such as maintenance of cell membrane structure and intra or 
extracellular signaling [39–41]. For example, glycerophospholipids, phosphati-
dylcholines, and phosphatidylethanolamines are basic components of cell and 
lysophospholipids have an important function in inflammation, abiotic stress, and 
biotic stress signal transmit [42]. MSI has been widely applied in many aspects in 
model insect Drosophila melanogaster, such as the neutral lipids three-dimensional 
spatial distribution on the surface adults [43, 44], body lipid distribution [45], brain 
lipid structure [46, 47], wing lipids [34, 44], Malpighian tubule phospholipid dis-
tribution [48], and phospholipids in the brain treated with cocaine [49]. Moreover, 
MSI detected and localized the composition and distribution of triacylglyceride in 
Aedes aegypti, phospholipid and phosphatidylcholine in Anopheles stephensi [42], 
and phospholipids in Schistocerca gregaria [37].

3.1.2 Neuropeptides

Neuropeptides, a kind of structurally diverse signaling molecules, can control 
and regulate fundamental physiological functions such as growth, reproduction, 
and environmental stress tolerance in animals [50]. MSI detected and localized the 
distribution of 14 neuropeptides in coronal brain sections in all development stages 
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Species Tissue Major analyte Method Embedding 

medium

Thickness 

(μm)

Matrix Ref.

Endogenous metabolites

Anopheles stephensi Whole-body Lipids AP-SMALDI 5% CMC 20 DHB [42]

Aedes aegypti Ovarian 

follicles

Lipids 3D-SIMS / 100 / [41]

Apis mellifera Brain Neuropeptides MALDI / 14 CHCA [51, 52]

Brain Protein MALDI / 12 CA [32]

Brain L-arginine MALDI / 12 DHB [53]

Venom Venom toxins MALDI / 10 CHCA [54]

Drosophila melanogaster Body Peptide MALDI Agarose 10 CHCA [55]

Brain Lipids SIMS 10% Gelatin 15 / [47]

Brain Phospholipid SIMS 10% Gelatin 12 / [49]

Collar Lipids SIMS 10% Gelatin 10 / [46]

Brain & 

head

GABA MALDI 4% CMC 15 CHCA [56]

Malpighian 

tubule

Lipids MALDI 5% CMC 12 DHB、DAN [48]

Surface Lipids MALDI / / LiDHB [43]

Whole-body Neuropeptides AP-SMALDI 5% CMC 20 DHB [29]

Whole-body Lipids MALDI 10% Gelatin 20 DHB [45]

Wing Lipids SIMS PBS / DHB [34, 44]

Graphosoma lineatum Head to 

abdomen

Non-polar compounds DAPPI / / / [57]

Paederus riparius Whole-body Defensive compounds AP-SMALDI 10% Tragacanth 

gum

16 DHB [35]
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Species Tissue Major analyte Method Embedding 

medium

Thickness 

(μm)

Matrix Ref.

Periplaneta americana Brain Neuropeptides MALDI Gelatin 14 CHCA [33]

Neuro-

endocrine 

tissues

Neuropeptides MALDI Paraffin 20 DHB [58]

Prorhinotermes simplex Head to 

abdomen

Non-polar compounds DAPPI / / / [57]

Solenopsis invicta Venom Venom proteins MALDI Gelatin 14 DHB [59]

Exogenous metabolites

Drosophila melanogaster Whole-body Insecticide MALDI 10% Gelatin 15 DHB [36]

Schistocerca gregaria Whole-body Drugs DESI 5% CMC 50 / [37, 60]

Helicoverpa armigera Whole-body Biopesticide MALDI / 16 DHB [61]

Insect-plant interaction system

Aphis glycines Feeding leaf Metabolites MALDI / / DHB、DAN [62, 63]

Athalia rosae Whole-body Glucosinolates MALDI Water 15 CHCA [64]

Chorthippus dorsatus Gut, feces Metabolites LDI 1% PBS 12 DHB、DAN、CHCA [38]

Others

Acromyrmex echinatior Nest Microbial MALDI / / DHB、CHCA [65]

Ants Propleural 

plate

Fungus MALDI / / DHB [66]

Bombus terrestris Whole-body / MALDI pHPMA 12 DHB、SA [67]

Table 1. 
Overview of the application of MSI in insect sciences.
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of D. melanogaster [29]. These neuropeptides play important roles in physiological 
processes (e.g., allatostatins and tachykinin-like peptides participate in odor percep-
tion and locomotor activity). Neuropeptides can act as transmitters or neuromodu-
lators in the central nervous system [33]. Neuropeptides in the brain of Apis mellifera 
are related to the functional division of the population and their activities. Worker 
bees’ neuropeptide levels at the age of 0–15 d increased with the in-hive activities 
but decreased with out-hive activities (guarding and foraging) at 15–25 d [51]. 
Further study proved that allatostatin and tachykinin-related neuropeptides in the 
brain of worker bees were related to aggressiveness behaviors [52]. Neuropeptides 
distribution in the retrocerebral complex of Periplaneta Americana revealed the dif-
ferentiation of prohormone processing and the distinctness of neuropeptides-based 
compartmentalization [33]. These studies proved that MSI has the advantages of 
sensitivity, which can facilitate to detect peptides in low abundance.

3.1.3 Proteins

As a kind of macromolecules, proteins are fundamental compounds of organisms 
and take part in important cellular processes, such as DNA replication and metabo-
lisms. MSI can simultaneously and specifically detect the spatial distribution of mas-
sive proteins and overcome antibody cross-contamination. MSI system has been used 
to evaluate the negative impacts in the brain of A. mellifera exposing to a sublethal 
concentration of imidacloprid. The system has successfully visualized the distribution 
of 24 proteins (e.g., cytochrome P450s, glutathione S-transferases, and heat shock 
protein 70s). Besides, 8-day exposure to imidacloprid triggered biochemical changes 
in A. mellifera brain (e.g., up-regulated acetylcholinesterase and amyloid precursor-
like protein and down-regulated cytochrome P450 and disulfide-isomerase protein). 
This could influence the well-being of A. mellifera (e.g., learning and memory 
acquisition, maintaining neuronal integrity, detoxification, and apoptosis) [32].

3.1.4 Others

In addition to lipids, neuropeptides, and proteins, MSI can also be used to visual-
ize the distributions of defensive compounds, special proteins (e.g., venom allergens 
and toxins) and other small molecules (e.g., betaine and amino acids). Defensive 
compounds (e.g., pederin, pseudopederin, and pederon) were detected and local-
ized in the organs of Paederus riparius [35]. Three venom allergens and two venom 
toxins were mapped in the honeybee [54]. Poison sac was the lactation of main venom 
proteins in Solenopsis invicta [59]. Nonpolar compounds (e.g., (E)-1-nitropentadec-1-
ene and (E)-hex-2-enal) can be detected from the head to the abdomen in two model 
insects, Prorhinotermes simplex and Graphosoma lineatum. Gland openings and gland 
reservoirs were the most active areas in P. simplex and G. lineatum [57]. Other small 
molecules (e.g., betaine and amino acids) were detected in Schistocerca gregaria [37]. 
Semiochemicals were mapped on the surface of the adults of D. melanogaster [43]. Two 
male-specific sex pheromones were localized in the ejaculatory bulb of D. melanogaster 
[45]. MSI can also be used as a novel in situ metabonomic tool to study the metabolism 
of L-arginine of the honeybee brain in response to proboscis extension [53].

3.2 Insect exogenous metabolites

3.2.1 Insecticides

MSI can be applied to visualize the distribution of insecticides in insects and 
their negative influence on the target insects. Imidacloprid was used to study its 
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distribution and accumulation in D. melanogaster. Based on laser irradiation, imida-
cloprid was found to be converted to guanidine-imidacloprid. It eventually accumu-
lated and spread in the abdominal region [36]. Azadirachta indica is an economical 
tree that can be used to distract a biopesticide component, azadirachtin-A. It was 
only presented in the midgut of Helicoverpa armigera after application [61].

3.2.2 Drug/pharmacological test

Pharmacology model animals are crucial for scientists or pharmacologists 
to test the side effects of newly developed drugs before clinical trials on human 
beings. Common pharmacology model animal species include mice, rabbits, dogs, 
and monkeys. Insects, compared with the above-mentioned animals, have pros 
such as low costs, high fertility, and moral constraints. Locust has become a new 
model species for pharmacology test because of its high similarity with mammals. 
Antihistamine drug terfenadine was tested in locust to study the distribution of 
secondary metabolites. Terfenadine was gradually degraded from hemolymph to 
stomach and intestinal wall. However, terfenadine-related chemical compounds 
such as terfenadine acid, terfenadine glucoside, and terfenadine phosphate were 
distributed in the unexcreted feces in the intestine, which revealed a rapid dis-
charge of metabolites through defecation [37]. Besides, the spatial and temporal 
distribution of midazolam was tested in locust. The results showed that midazolam 
was abundant in 30-min but only found in the feces after a 2-hour application. 
Midazolam glucoside was found in gut, gastric caeca, and feces after a 2-hour 
application, indicating that glucose conjugates are a major detoxification pathway to 
neutralize the effects caused by midazolam in locusts [60].

In addition, D. melanogaster was used to test how cocaine, drug removal, and 
methylphenidate influence the brain lipids. The results showed that cocaine 
increased the level of phosphatidylcholines and decreased the levels of phosphati-
dylethanolamines and phosphatidylinositols. Methylphenidate-treated flies failed 
to rescue the levels of phosphatidylethanolamines and phosphatidylinositols, but 
enhanced the reversal of phosphatidylcholine levels [49].

3.3 Insect-plant interaction

Plants and herbivorous insects are co-evolved in nature. Plants activate defense 
reaction by releasing secondary metabolites when they are under attack by her-
bivorous insects, while herbivores trigger anti-defense systems for adapting and 
overcoming the side effects of secondary metabolites produced by plants [68]. 
Illuminating the changes of secondary metabolites during the interactions between 
insects and plants can contribute to a better understanding of plant resistance and 
insect adaptability.

Chemical interaction between soybean (Glycine max) and aphid (Aphis glycines) 
was studied. The metabolite changes (e.g., phosphorylcholine and amino acid) were 
detected in the aphid-infested soybean leaves. The results suggested that secondary 
metabolites were produced by dead cells after aphid infestation. Moreover, other 
compounds such as pipecolic acid, salicylic acid, formononetin, and dihydroxyfla-
vone were consistently detected in the plant regions infested by aphids [62]. It was 
also found that isoflavones can be accumulated in mesophyll cells or epidermis but 
were not present in the vasculature. The results indicated that isoflavones take part 
in non-phloem defense response [63].

In addition, MSI can be used for physiological studies such as annihilation of 
the plant secondary metabolites by herbivores. Glucosinolate gradually changes in 
the distribution and metabolic sequestration were detected in the body of Athalia 
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rosae that fed on host plants after different periods. The glucosinolate sinalbin was 
accumulated in the hemolymph and eventually circulated the Malpighian tubules. 
The results indicated that the insect gut plays a crucial role as a regulatory func-
tional organ [64].

Moreover, MSI can be applied to the entire metabolic process of secondary 
metabolites in the plant-insect-soil system. The fate of the secondary metabolites 
produced by Dactylis glomerata was tracked in the different organs of herbivore 
Chorthippus dorsatus, and finally in the soil solution. After infestation by herbivores, 
levels of quinic acid, apigenin, and luteolin decreased, while those of flavonoids 
and rosmarinic acid increased in the leaf wounds of plants in 1 d. Quinic acid can 
be detected during the digestion process in the grasshoppers’ gut and unexcreted 
feces [38]. Overall, MSI is a useful tool to visualize plant defense and insect defense 
processes from the responses of plants infested by herbivores to insect defense 
systems responding to plant-derived metabolites.

4. Conclusion

MSI has been proved to be an effective and powerful tool to visualize molecules’ 
spatial distribution and temporal changes. In this chapter, we introduce the major 
types of MSI methodologies and describe the typical experimental workflow for 
MALDI-MSI. We also retrospect three major applications of MSI in insect physiol-
ogy, for example, endogenous metabolites, exogenous metabolites, and insect-plant 
interaction. However, MSI still has some technical cons with limited application 
range that need to be optimized. In addition, MSI can cooperate with other genetic 
tools (e.g., proteomics, metabolomics, or lipidomics) for a better understanding of 
sophisticated insect biology.
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