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Chapter

Flicker-Noise Spectroscopy
Method in the Problem of
Diagnosing the State of the
Cardiovascular System
Abdullayev Namiq Tahir and Ahmadova Khadija Ramiz

Abstract

In the field of research of the cardiovascular system, mainly analysis methods
that are strictly mathematically applicable to stationary signals are distinguished;
however, nonstationary signals prevail in medical practice, the statistical properties
of which vary with time. Often they consist of short-term high-frequency compo-
nents, followed by long-term low-frequency components. Given this nature of
bioelectric potentials, and in particular electrocardiographic signals, the most suit-
able for their analysis may be the nonlinear dynamics method with the calculation
of quantitative characteristics of chaos. This possibility is presented by the flicker-
noise spectroscopy method, which takes into account the intermittency effect in a
complex dynamic system when sections of chaotic bursts and jumps alternate with
relatively long sections of a laminar nature. The analysis of signals of such a
dynamic nature is usually based on the use of flicker-noise spectroscopy.

Keywords: flicker-noise spectroscopy, electrocardiographic signals, analysis,
intermittency, diagnostics

1. Introduction

The flicker-noise spectroscopy method is proposed as a general phenomenolog-
ical (non-model) approach to the analysis of chaotic signals of different nature.
The essence of flicker-noise spectroscopy is to give informational significance to the
correlation relationships that are realized in sequences of signal irregularities—
bursts, jumps, and kinks of derivatives of various orders—as carriers of information
about changes occurring at each spatiotemporal level of the hierarchical organiza-
tion of the dynamic system under study. The autocorrelation function ψ τð Þ is used
as a basic image for extracting information from complex signals in the flicker-noise
spectroscopy method [1, 2].

To classify information, this function is not analyzed but some of its transfor-
mations (“projections”), such as power spectrum S fð Þ, where f is the signal fre-

quency, and the difference moment (“transition structure function”) Φ 2ð Þ τð Þ of the
second order. The information extracted from the analysis of dependencies S fð Þ

and Φ 2ð Þ τð Þ, built on the basis of time series V tð Þ, has the meaning of correlation
times or parameters, characterizing the loss of correlation relationships (“mem-
ory”) for the irregularities under consideration such as bursts and jumps.
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Moreover, only irregularities of the type of jumps of dynamic variable V tð Þ

contribute to the formation of dependence Φ 2ð Þ τð Þ, and jumps and bursts (out-
bursts) of chaotic series V tð Þ contribute to the formation of S fð Þ.

The solution to the problem of predicting the evolution of a complex system and,
above all, the search for precursors (precursors) of catastrophic changes in it is associ-

ated with themost dramatic changes in dependencies S fð Þ andΦ 2ð Þ τð Þ p ¼ 2, 3, …ð Þ
calculated on the basis of high-frequency and low-frequency componentsV tð Þ.

2. Splitting an electrocardiographic signal into low-frequency and
high-frequency components

The behavior of the electrocardiographic signal, reflecting the functional state
of the cardiovascular system, is quite complicated and has the character of
randomness.

The most general form of evolution in dynamic variable V tið Þ for the ith space–
time level of the electrocardiographic signal is presented in the form of intermittency,
when not all intervals on the time axis are informationally equivalent. Such dynamics
of the electrocardiogram (ECG) is characterized (Figure 1) by relativelyweak changes
in the variable over relatively long time intervals—“laminar phases”with characteris-
tic durations ofTi and sudden interruptions of such evolution by abrupt changes in the
value of the dynamic variable in the short intervals of duration τi τi <Tið Þ.

Each such abrupt change in the values of a dynamic variable then ends up with
values in the subsequent “laminar” section. The magnitude and duration of such
jumps, surges, and “laminar” sections are specific for each of the cardiovascular
systems, causing a certain contribution to the corresponding power spectrum.

In this case, the studied signal V tð Þ is conveniently represented as the sum of the
two terms: the singular term VS tð Þ, which is formed only by bursts of the dynamic
variable, and the regular term VR tð Þ ¼ V tð Þ � VS tð Þ, which is formed after
subtracting bursts from the presented signal and determined by the jumps of the
dynamic variable and “laminar phases.”

The analysis of the electrocardiogram shows that it corresponds to the described
dynamics, when bursts in the form of QRS complexes alternate with rather small
jumps in the form of P and T teeth and extended phases in the form of an isoline.

The information contained in S fð Þ and Φ 2ð Þ τð Þ is different, so in order to
determine the adequate parameters of the structure under study, it is necessary to

analyze the dependencies log S fð Þ ¼ F log fð Þ and log Φ 2ð Þ τð Þ ¼ F log τð Þ.
Let V tð Þ denotes the dynamic variable, characterizing the ECG signal. We apply

the proposed method of splitting the dynamic signal into low-frequency VR tð Þ and

Figure 1.
The dynamics of the electrocardiogram.
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high-frequency VS tð Þ components. This method is built by analogy (Figure 2) with
the solution of the diffusion equation and is based on the following “relaxation”
procedure:

1.Set the value V1, … ,VN of signal V with a step of discreteness Δt.

2.Calculate Vh i ¼ 1
N

Pn
k¼1V kð Þ and put V Rð Þ ≔V kð Þ � Vh i, k ¼ 1, … ,N.

3.We calculate

ψ mτð Þ ¼
1

N �mτ

X

N�mτ

k¼1

V kð ÞV kþmτð Þ,mτ ¼ τ=Δt½ � (1)

where Φ 2ð Þ τð Þ ¼ 2 ψ 0ð Þ � ψ τð Þ½ �, σ2 ¼ ψ 0ð Þ, τ ¼ mτ � Δt

mτ ¼ 0, 1, … ,M� 1,M∈N (2)

4.We plot Φ 2ð Þ τð Þ in bilogarithmic coordinates.

The asymptotic representation for Φ 2ð Þ τð Þ is

Φ 2ð Þ τð Þ ¼
τ2H1 , if τ< <T1

2σ2, if τ> >T1:

(

(3)

5.We take for T1 the value τ, at which logΦ 2ð Þ τð Þ begins to stabilize to a constant

equal to log 2σ2ð Þ.

6.Choose a sequence of small τkf g k ¼ 1, … , k0 k0 ≈ 20ð Þ, τk < <T1, and

construct a regression y ¼ axþ b b ¼ 0ð Þ; y ¼ lnΦ 2ð Þ τð Þ, x ¼ ln τ, a ¼ 2H1.

According to the least squares method (LSM) estimate â, we calculate the
estimate H1 ¼ â=2.

7.We calculate

Figure 2.

Typical curve for function Φ 2ð Þ τð Þ, characterizing a chaotic signal V tð Þ without a resonant component.
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D ¼
σ2

Γ2 1þH ∗

1

� �

� T ∗

1

(4)

To calculate Γ xð Þ for x ¼ 1þH1, put n ¼ 103and represent Γ xð Þ in the form

Γ xð Þ ¼
Γ xþ 1ð Þ

x
¼

Γ xþ 2ð Þ

x xþ 1ð Þ
¼ ⋯ ¼

Γ xþ nð Þ

x xþ 1ð Þ � xþ ntð Þ
: (5)

The value Γ zð Þ (we have z ¼ xþ n) is calculated by the formula

Γ zð Þ ¼ exp z�
1

2

� �

ln z� zþ
1

2
ln 2π

� �

(6)

with an error of order z�1 ≈ 10�3 n≈ 103 z ¼ xþ n.

8. Denote by ∆t and ∆τ the steps of discreteness in t and τ, and

ω ¼ D � Δτ= Δtð Þ2 (7)

choose ∆τ so that ω< 1=2.

9. Put M≔N� 1, and construct an iterative procedure according to j ¼ 0, 1, … , ,

according to which the value V
jþ1
k at the jth step is calculated through the value

V
j
k according to the formula

V
jþ1
k ¼ ωV

j
kþ1 þ ωV

j
k‐1 þ 1� 2ωð ÞV

j
k (8)

at j ¼ 0 we set V
j
k ¼ V kð Þ; at k ¼ 1 and k ¼ M, the values of V

jþ1
k are calculated

by the formulas

V
jþ1
1 ¼ 1� 2ωð ÞV

j
1 þ 2ωV

j
2, V

jþ1
M ¼ 1� 2ωð ÞV

j
M þ 2ωV

j
M�1: (9)

The procedure stops at step j ¼ j0, in which.

V
j0þ1
k � V

j0
k

�

�

�

�

�

�< ε, for Vk ¼ 1, … ,M, k ¼ 1, 2, … , N,

where ε is the given number (e.g., ε ¼ 10‐mþ1, where 10‐mis the error in
setting the initial values Vk).

10. The values V
j0
k determine the low-frequency component VR tð Þ. Then V tð Þ �

VR tð Þ ¼ VS tð Þ is the high-frequency component of the signal V tð Þ.

The described signal smoothing procedure is focused on minimizing the “high-
frequency” information in the “low-frequency” part VR tð Þ of the signal and vice
versa, minimizing the “low-frequency” information in the “high-frequency” part
VS tð Þ of the signal. This conclusion follows from the diffusion nature of the partial
differential equation used

∂V

∂τ
¼

∂
2V

∂t2
, (10)

represented as a difference equation
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V
jþ1
k � V

j
k

Δτ
¼

V
j
kþ1 þ V

j
k‐1 � 2V

j
k

Δtð Þ2
, (11)

corresponding to the simplest difference scheme for numerically solving
Eq. (10). From (11) we obtain

V
jþ1
k ¼ V

j
k þ

Δτ

Δtð Þ2
V

j
kþ1 þ V

j
k‐1 � 2V

j
k

	 


:

In notation ω ¼ Δτ= Δtð Þ2, the last equation is written in the form (8). From the
theory of stability of difference schemes, it is known that this difference scheme
will be absolutely stable at ω< 1=2.

Such a relaxation procedure realizes the maximum rate of entropy generation
and uses the relationship of entropy and Fisher information, which is a quantitative
measure of the heterogeneity of the distribution density of the analyzed data array.

3. Parameterization of the singular component of the ECG signal

The procedure for parameterizing the singular part of the signal consists of the
following sequence of steps [3]:

1. Let V tð Þ be represented as a sum

V tð Þ ¼ VR tð Þ þ VS tð Þ:

2.Let tk ¼ kΔt k ¼ 1, … ,Nð Þ, t0 ¼ 0, tN ¼ T points of task V tð Þ by 0,T½ � with a
certain step of discreteness Δt;N ¼ T=Δt½ �.

We calculate the average value:

V tð Þh i ¼
1

N

X

N

k¼1

V tkð Þ (12)

In what follows, we will assume that V tð Þh i ¼ 0, i.e., signal V tð Þ, is stationary.

3. For stationary signalV tð Þ, the power spectrum S fð Þ (Fourier transform of the
autocorrelation function ψ τð Þ) coincideswith Sc fð Þ (cosine Fourier transform of
ψ τð Þ).

We set M from condition 4
3 ≤M≤N (in practice, take M close to N). We

assume that M is an even number. For a time delay of mτ ¼ 0, 1, … ,M� 1,
we calculate the autocorrelator:

ψ mτð Þ ¼
1

N �mτ

X

N�mτ

k¼1

V kð ÞV kþmτð Þ (13)

4. Let f ¼ q=M
Δt .

We calculate the power spectrum S fð Þ ¼ Sc fð Þ

Sc fð Þ ¼
1

Δt
Sc qð Þ

Sc qð Þ ¼ ψ 0ð Þ þ ψ
M

2

� �

�1ð Þq þ 2
X

M

2
� 1

m¼1

ψ mð Þ cos
2πqm

M

� �

,

q ¼ 0, 1, … ,M� 1ð Þ

(14)
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5. We will construct the image S fð Þ (or S fð Þj j, if in some frequencies S fð Þ<0)
in a bilogarithmic scale (Figure 3).

From Figure 3 we find the frequency f ¼ f 0, starting from which S fð Þ

ceases to stabilize around a certain constant S 0ð Þ.

6. Let f ∗ , f
∗

h i

be the frequency interval in the region of the graph S fð Þ

(or S fð Þj j), preceding the first strong peak of the power spectrum S fð Þ,
corresponding to “irregularity-burst.” We assume that S fð Þ increases at

f ∈ f ∗ , f
∗

h i

and S ∗

s 0ð Þ—a certain number from interval S f ∗ð Þ, S f
∗

	 
h i

.

7. We calculate the autocorrelator ψS,R τð Þ according to the formula.

ψS,R τð Þ ¼
1

N �mτ

X

N�mτ

k¼1

VS kð ÞVS kþmτð Þ þ VR kð ÞVS kþmτð Þ þ VS kð ÞVR kþmτð Þ½ �,

mτ ¼ 0, 1, … ,M� 1ð Þ

(15)

8. We calculate the singular component SS fð Þ of spectrum S fð Þ by the formula

SS fð Þ ¼
1

Δt
SS qð Þ

SS qð Þ ¼ ψS,R 0ð Þ þ ψS,R

M

2

� �

�1ð Þq þ 2
X

M

2
� 1

m¼1

ψS,R mð Þ cos
2πqm

M

� �

q ¼ 0, 1, … ,M� 1ð Þ

(16)

9. For parameterization SS fð Þ, we approximate this function by an interpolation
expression:

ŜS fð Þ≈
SS 0ð Þ

1þ 2πfT0

� �n0 (17)

Parameter T0 by formula (17) will be determined by Algorithm 1, assuming
that the “experimental” spectrum SS fð Þ is calculated by formula (16).

Algorithm 1.

Figure 3.
Typical curve for function S fð Þ, characterizing a chaotic signal V tð Þ without a resonant component.
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9.1. Using the spectrum graph (Figure 3), we introduce the constants

f ∗

0 , f
∗ , f

∗
, S ∗

S 0ð Þ, as well as the threshold value RSS ∗ ¼ 1010.

9.2. We set SS 0ð Þ ¼ S ∗

S 0ð Þ and evaluate the parameters T0, n0.
Build a regression

y ¼ axþ b,

where

y ¼ ln
Ss 0ð Þ

Ss fð Þ
� 1

�

�

�

�

�

�

�

�

, x ¼ ln 2πf , a ¼ n0, b ¼ n0 lnT0,

and estimate the coefficients a and b using the least squares method (least
squares) for sample ym, xm

� �

with ym and xm, corresponding to frequencies

fm ¼ m
M�Δt m ¼ 0, 1, … ,M� 1ð Þ.

We calculate the residual sum of squares

RSS 1ð Þ ¼
X

M�1

m¼0

ym � âxm þ b̂
	 
h i2

,

where â and b̂ LSM are the estimations of parameters a and b.

If RSS 1ð Þ
<RSS ∗ , then RSS ∗

≔RSS 1ð Þ, n̂0 ¼ n ∗
0 , T

∗

0 ¼ T̂0, where n̂0 ¼ â, T̂0 ¼

exp b̂=â
n o

.

9.3. We set n0 ¼ n ∗
0 , SS 0ð Þ ¼ S ∗

S 0ð Þand evaluate T0.
Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼
Ss 0ð Þ

Ss fð Þ
� 1

�

�

�

�

�

�

�

�

1=n0

, x ¼ 2πf , a ¼ T0:

We calculate RSS 2ð Þ ¼
P

M�1

m¼0
ym � âxm

 �2

.

If RSS 2ð Þ
<RSS ∗ , then RSS ∗

≔RSS 2ð Þ and T ∗

0 ¼ T̂0, where T̂0 ¼ â.
9.4. We set T0 ¼ T ∗

0 , n0 ¼ n ∗
0 and evaluate SS 0ð Þ.

Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼ Ss fð Þ, x ¼
1

1þ 2πf T0ð Þn0
, a ¼ SS 0ð Þ

We calculate RSS 3ð Þ ¼
P

M�1

m¼0
ym � âxm

 �2

.

If RSS 3ð Þ
<RSS ∗ , then RSS ∗

≔RSS 3ð Þ, SS 0ð Þ ¼ ŜS 0ð Þ, where ŜS 0ð Þ ¼ â.
9.5. We set SS 0ð Þ ¼ S ∗

S 0ð Þ, T0 ¼ T ∗

0 and evaluate n0.
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Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼ ln
Ss 0ð Þ

Ss fð Þ
� 1

�

�

�

�

�

�

�

�

, x ¼ ln 2πfT0ð Þ, a ¼ n0:

We calculate RSS 4ð Þ ¼
P

M�1

m¼0
ym � âxm

 �2

.

If RSS 4ð Þ
<RSS ∗ , then n ∗

0 ¼ n̂0, where n̂0 ¼ â.
As a result of Algorithm 1, we obtain the three parameters SS 0ð Þ ¼ S ∗

S 0ð Þ,
n0 ¼ n ∗

0 , T0 ¼ T ∗

0 , characterizing the interpolation expression (17) for the singular
component of the spectrum SS fð Þ.

4. Informative diagnostic parameters of the singular component
of the ECG signal

During a computational experiment, electrocardiographic signals with a normal
state of the cardiovascular system and pathological signals (“tachycardia,”
“arrhythmia,” and “atrial fibrillation”) were analyzed. We used data from the
public site www.PhysioNet.org for the II standard lead. The ECG removal parame-
ters (type of lead, sampling frequency, time, number of samples, and signal ampli-
tude) are included in the sample. The sampling rate for various samples varies from
125 to 1000 Hz. The values of the presented samples, taking into account the sign
discharge, correspond to the use of a 12-bit ADC.

In Figures 4–6, the graphs of the spectral power of the ECG signal for the norm,
the singular component of this signal, and the estimation of the singular component
of this signal are presented.

In Figures 7–9, as an example, similar relationships for an ECG signal with a
range of “atrial arrhythmia” are presented.

Figure 4.
Graphs of the spectral power of the ECG signal for the norm.
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Figure 5.
Graphs of the singular component of this signal.

Figure 6.
Graphs of the estimation of the singular component of this signal.

Figure 7.
Graphs of the spectral power of the ECG signal for the “atrial arrhythmia.”
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For all the considered states of the cardiovascular system, the same dependen-
cies were obtained, and based on the obtained dependencies, informative parame-
ters of the singular component of the ECG signals were calculated (Table 1).

The high specificity of S fð Þ patterns obtained in the study of the cardiovascular
system in the norm with the indicated pathologies can be used to diagnose diseases.
Dependence S fð Þ built on the basis of different ECGs and the corresponding
informative parameters obtained by them differ from each other, which gives

Figure 9.
Graphs of the estimation of the singular component of the “atrial arrhythmia.”

Figure 8.
Graphs of the singular component of the “atrial arrhythmia.”

ECG signal n0 T0 Ss(0)

Norm 0.3414 0.0042 437.8090

Atrial fibrillation 0.3836 0.0036 334.3640

Ventricular tachycardia 0.4123 0.0032 197.3580

Atrial arrhythmia 0.4013 0.0059 43.7105

Table 1.
Informative parameters of the singular component of ECG signals.
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reason to consider these dependencies as patterns characterizing the condition of
the patient under study. The obtained informative parameters can be considered as
distinguishing features for the differential diagnosis of cardiovascular diseases (e.g.,
using artificial neural networks).

This approach shows the possibility of flicker-noise spectroscopy as a method
that allows you to establish significant differences in the original, visually not very
different, ECG signals.

5. Parameterization of the regular part of the ECG signal and
determination of informative diagnostic parameters

The determination of the parameters of a chaotic signal given on a limited
interval T is set on the basis of the flicker-noise spectroscopy method, taking into
account the contributions of the “resonant components” to the autocorrelation
function [4].

Ψ τð Þ ¼ V tð Þ,V tþ τð Þh i, (18)

and, therefore, to cosine conversion

Sc fð Þ ¼

ð

T=2

�T=2

Ψ τð Þ cos 2πf τð Þdτ (19)

and second-order difference moment

Φ 2ð Þ τð Þ ¼ V tð Þ � V tþ τð j2
�

�

E

:
D

(20)

Here V tð Þ is a stationary signal V tð Þh i ¼ 0ð Þ, and �h i is a symbol of the average
value.

The developed method of signal parametrization is based on the fact that the
introduced “irregularities-bursts” and “irregularities-jumps” contribute to various
spectral regions of dependence S fð Þ.

In fact, the first step in the parameterization of irregularities was to isolate the
“burst” (singular), most “high-frequency” (the so-called “flicker-noise tail”) com-
ponent of the signal irregularities in the spectral dependence S fð Þ.

Based on the remaining (after subtracting the “burst” contribution) spectral

dependence, we can now determine the structure functionΦ 2ð Þ τð Þ, which contains the
contributions from the “jump” and “resonance” components that slowly change
against its background. The next steps are to parameterize the “higher frequency” (of
those remaining) “hopping” (regular) component using the least squares method.

It must be borne in mind that when solving the signal parametrization problem
under consideration, problems arise due to the limited averaging interval T. For this
reason, in particular, it is the “experimental” dependenceV(t) constructed on the basis
of observed signal S(f) that may turn out to be negative in some frequency intervals.
Therefore along with four in such cases, S(f) is introduced into consideration.

The procedure for parameterizing the regular part of the signal is presented
below in the form of the following sequence of operations:

1. From the extreme spectrum S(f), we subtract the singular component Ss(f)
calculated by the interpolation formula (we denote the result by SrR(f))
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SrR fð Þ ¼ S fð Þ � Ss fð Þ (21)

The resulting difference characterizes the contribution of the “resonant”
components Sr fð Þ and the “irregularities-jumps” SR fð Þ to the general
dependence S fð Þ. If it turns out that SrR fð Þ<0 in some frequency intervals,
we assume SrR fð Þ≔ SrR fð Þj j.

2. Take the inverse cosine Fourier transform of SrR fð Þ

ψ rR τð Þ ¼ 2

ð

fmax

0

S fð Þ cos 2πfτð Þdf, τ≤ τ ∗ ¼ T=4ð Þ (22)

fmax ¼
1

4Δt
, τ ¼ k � Δτ k ¼ 1, … , k0ð Þ,Δτ ¼

T=4

k0
, k0 ¼ 500:

Put a ¼ 0, b ¼ fmax, h ¼ fmax=n, n ¼ 100, SrR fð Þ � cos 2πf τð Þ ¼ g f , τð Þ and
apply the trapezoid formula:

ð

b

a

g f , τð Þdf ¼ h
g a, τð Þ

2
þ g aþ h, τð Þ þ g aþ 2h, τð Þ þ … þ g b� h, τð Þ þ

g b, τð Þ

2

� �

3. We calculate

Φ
2ð Þ
rR τð Þ ¼ 2 ψ rR 0ð Þ � ψ rR τð Þ½ �, τ ¼ k � Δτ k ¼ 1, … , k0ð Þ.

4. Put ~Φ
2ð Þ

r τð Þ ¼ ~Φ
2ð Þ

rR τð Þ.
5. We denote

~Φ
2ð Þ

τð Þ ¼ Φ 2ð Þ
r τð Þ þΦ

2ð Þ
R τð Þ: (23)

where Φ 2ð Þ
R τð Þ is given by the interpolation formula:

Φ
2ð Þ
R τð Þ ¼

2σ21 �
1

Γ2 H1 þ 1ð Þ

τ

T1

� �2H1

, τ< <T1,

2σ21 1� Γ�1 H1ð Þ τ
T1

	 
H1�1
exp � τ

T1

	 


� �2

8

>

>

>

<

>

>

>

:

(24)

6. Compare the experimental structural function Φ 2ð Þ τð Þ, determined by the
formula

Φ 2ð Þ τð Þ ¼ 2 ψ 0ð Þ � ψ τð Þ½ �, (25)

where

ψ mτð Þ ¼
1

N �mτ

X

N�mτ

k¼1

V kð ÞV kþmτð Þ

mτ ¼ τ=Δt½ �

(26)

with function Φ 2ð Þ τð Þ determined by formula (20) using the least squares
method.
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• We set RSS ∗ ¼ 1010, T1 ¼ T ∗

1

• A preliminary estimate T ∗

1 of parameter T1 can be obtained using the

asymptotic representation of structure function Φ 2ð Þ τð Þ (Figure 10).

The value Φ 2ð Þ τð Þ is taken as T ∗

1 for small delays, at which Φ 2ð Þ τð Þ≈ 2σ2 takes the

maximum value Φ 2ð Þ τð Þ≈ 2σ2.
We estimate parameters σ1,H1 at τ< <T1.
Build a regression

y ¼ axþ b,

where

y ¼ ln Φ 2ð Þ τð Þ �Φ 2ð Þ
r

n o

, x ¼ ln
τ

τ1

� �

, a ¼ 2H1, b ¼ 2 ln
σ1

Γ2 H1 þ 1ð Þ
:

LSM-estimates â and b̂ are obtained on the basis of sequence τkf g, k ¼ 1, … , k1ð Þ

close to τ ¼ 0, using representation (21) for Φ̂
2ð Þ

τð Þ.
We calculate

RSS 1ð Þ ¼
X

k1

k¼1

yk � âxk þ bð Þ

 �2

,

• where yk and xk correspond to delays τk.

• If RSS 1ð Þ
≥RSS ∗ , then go to Section 6.5.

• Otherwise, set RSS ∗
≔RSS 1ð Þ, σ ∗

1 ¼ σ̂1, and H ∗

1 ¼ Ĥ1, where Ĥ1 ¼
â
2 and

σ̂1 ¼ Γ2 Ĥ1 þ 1
� �

exp b̂=2
n o

.

Figure 10.

Graph of function Φ 2ð Þ τð Þ in bilogarithmic coordinates.
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• Given σ1 ¼ σ ∗
1 , we estimate H1,T1 at τ< <T1

• Build a regression

y ¼ axþ b b 6¼ 0ð Þ,

• where a ¼ 2H1, b ¼ � lnΓ2 H1 þ 1ð Þ � 2H1 lnT1, y ¼ ln Φ 2ð Þ τð Þ�Φ
2ð Þ
r

2σ21

n o

, x ¼ ln τ.

• LSM grades â and b̂ are obtained by sequence τkf g, k ¼ 1, … , k1ð Þ.

• We calculate

RSS 2ð Þ ¼
X

k1

k¼1

yk � âxk þ b̂
	 
h i

:

• If RSS 2ð Þ
≥RSS ∗ , then go to Section 6.5.

• Otherwise, set H ∗

1 ¼ Ĥ1, T
∗

1 ¼ T̂1, where Ĥ1 ¼
â
2, T̂1 ¼

Γ2 H1 þ 1ð Þ
� �� 1

2H1 exp � b
2H1

n o

.

• Given σ1 ¼ σ ∗
1 , H1 ¼ H ∗

1 , we estimate T1 at τ< <T1.

• Build a regression

y ¼ axþ b b ¼ 0ð Þ,
where

y ¼ ln
Φ 2ð Þ τð Þ �Φ 2ð Þ

r τð Þ

2σ21=Γ
2 H1 þ 1ð Þ

� �

, x ¼ τ, a ¼
1

T1
:

• In LSM, a score of â will be obtained by sequence τkf g,
k ¼ 1, … , k1, k1 < < k0ð Þ.

• We calculate T1 ¼ 1=â

• We calculate RSS 3ð Þ ¼
P

k1

k¼1

yk � âxk

 �2

.

• If RSS 3ð Þ
≥RSS ∗ , then go to Section 6.5.

• Otherwise, we set RSS ∗ ¼ RSS 3ð Þ, T ∗

1 ¼ T̂1.

• Given H1 ¼ H ∗

1 , T1 ¼ T ∗

1 , we estimate σ1 at τ> >T1.

• Build a regression

y ¼ axþ b b ¼ 0ð Þ,
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• where y ¼ Φ 2ð Þ τð Þ �Φ 2ð Þ
r , x ¼ 1� Γ�1 H1ð Þ τ

T1

	 
H1�1
exp � τ

T1

n o

� �2

, a ¼ 2σ1.

• We calculate the least squares method (LSM) estimation by sequence τkf g,
τk ¼ T � k k ¼ 1, … , k1ð Þ.

• We calculate σ̂1 ¼
ffiffiffiffiffiffiffiffi

â=2
p

.

• We calculate RSS 4ð Þ ¼
P

k1

k¼1

yk � âxk
� �2

.

• If RSS 4ð Þ
> >RSS ∗ , then go to Section 6.5.

• Otherwise, we set RSS ∗ ¼ RSS 4ð Þ, σ ∗
1 ¼ σ̂1.

• 6.5. Suppose RSS ∗ , σ ∗
1 , H

∗

1 , T
∗

1 .

• As a result of the proposed algorithm,we obtain the three parameters σ1 ¼ σ ∗
1 ,

H1 ¼ H ∗

1 , andT1 ¼ T ∗

1 , characterizing the interpolationexpression (21) forΦ
2ð Þ
R τð Þ.

6. Informative diagnostic parameters of the regular component
of the ECG signal

Using the above algorithm, we obtained the graphs of functions Φ 2ð Þ τð Þ in
bilogarithmic coordinates for the normal state of the cardiovascular system and a
number of “catastrophic” arrhythmias (ventricular tachycardia, atrial fibrillation,
atrial arrhythmia). An example is given of such a dependence for the state of the
cardiovascular system—“ventricular tachycardia” (Figure 11) and atrial arrhythmia

Figure 11.
Dependence logΦ(2)(τ) for ventricular tachycardia.
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(Figure 12). When conducting a computational experiment, we used the experi-
mental data from the publicly available website www.PhysioNet.org.

For the considered conditions of the cardiovascular system, on the basis of the
obtained dependencies, the informative parameters of the regular component of the
ECG signals were calculated (Table 2).

Thus, for the considered functional conditions of the cardiovascular system,
three informative parameters n0,T0, Ss(0) for the singular component of the ECG
signal and three informative diagnostic parameters σ1, H1,T1 for the regular com-
ponent of the ECG signal were obtained by flicker-noise spectroscopy.

A complex of six diagnostic parameters can be used to diagnose catastrophic
conditions of the cardiovascular system (e.g., using an artificial neural network,
where these parameters are considered as input data).

7. Fluctuation dynamics of electrocardiograms and the choice
of sampling frequency of the studied signals

In the general case, when analyzing a complex chaotic signal measured at a
certain sampling frequency fd, a set of the indicated parameters is determined that
characterizes the correlation interconnections in the sequences of irregularities-
jumps and irregularities-bursts characteristic of a given signal determined with a
sampling frequency of fd. Thus, one of the main factors allowing to realize the
allocation of the contribution of irregularities to the analyzed real signals is the

No. ECG signal σ1 H1 T1

1 Norm 0.55 11.133 15.080

2 Atrial fibrillation 0.435 11.388 0.0640

3 Ventricular tachycardia 0.51 10.913 0.6840

4 Atrial arrhythmia 0.208 11.298 11.560

Table 2.
Informative parameters of the regular component.

Figure 12.
Dependence logΦ(2)(τ) for atrial rhythm.
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variation of the used frequencies fd. If the analyzed time series is obtained at a

sufficiently high sampling frequency fd, then the analysis of dependencies Φ 2ð Þ τð Þ
and S(f), calculated on the basis of time series obtained from the initial time series
with a decreasing sampling frequency, allows us to estimate the measure of “stabil-

ity” of parameters σ1,T1 and H1 (for Φ
2ð Þ τð Þ) and the measure of variability of

parameters Ss 0ð Þ,T0 and n0 (for S(f)).

The high specificity of dependencies Φ 2ð Þ τð Þ and S(f) obtained by analyzing the
state of complex systems can be used to diagnose diseases, as well as a combination
of these parameters for their classification. We analyzed the four types of ECG
signals—normal and cardiac “catastrophic” arrhythmias that directly threatened the
patient’s life, ventricular tachycardia, atrial fibrillation, and atrial arrhythmia. To
identify the characteristics of the analyzed signals, it is necessary to evaluate the
entire set of digitized data of V(t) electrocardiograms for the indicated states of the
cardiovascular system. When conducting the computational experiment, the
experimental data from the public site www.PhysioNet.org were used.

The signals were taken from the II standard lead for �60 s with a sampling
frequency of fd = 500 Hs and containingN = 29,859 values. Thus, a time series of ECG
signals was obtained at a sufficiently high sampling frequency of fd, since it can be
used to obtain a set of new time series at sampling frequencies of less than fd times.

The results of the corresponding analysis for the indicated functional conditions
of the cardiovascular system at a sampling frequency of ECG signals fd = 500 Hs are
shown in Table 3.

No. ECG signal Singular component Regular component

Ss(0) T0 n0 σ1 H1 T1

1 Norm 437.80 0.0042 0.3414 0.55 11.133 15.080

2 Ventricular tachycardia 197.358 0.0032 0.4123 0.51 10.913 0.6840

3 Atrial fibrillation 334.364 0.0036 0.3836 0.435 11.388 0.0640

4 Atrial Arrhythmia 43.7105 0.0059 0.4013 0.208 11.298 11.560

Table 3.
Informative diagnostic parameters for various functional conditions of the cardiovascular system.

fd, Hs N Singular component Regular component 4S 0ð Þ
N

Ss(0) T0 n0 σ1 H1 T1

500 29.859 437.80 0.0042 0.3414 0.55 11.133 15.080 0.05

250 14.930 403.72 0.0028 0.4187 0.5044 10.845 1.38 0.08

Table 4.
Norm.

fd, Hs N Singular component Regular component 4S 0ð Þ
N

Ss(0) T0 n σ1 H1 T1

500 29.859 197.358 0.0032 0.4123 0.5180 10.913 0.6840 0.026

250 14.930 175.80 0.0034 0.3446 0.517 15.200 0.340 0.10

Table 5.
Ventricular tachycardia.
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We will carry out a comparative analysis of informative parameters for the two
states of the cardiovascular system: normal (Table 4) and ventricular tachycardia
(Table 5) for sampling frequencies fd = 500 Hs and fd = 250 Hs.

From the obtained tables, it follows that with increasing sampling frequency fd,
the high-frequency contribution to the power spectrum S(f) increases due to the
inclusion of “bursts” in the analyzed signal corresponding to the increased frequency

fd. In this case, changes in dependence Φ 2ð Þ τð Þ also occur at small τ, which are caused
by the contribution of local changes in the values of the “laminar” signal sections.
Therefore, with an increase of fd, parameters T0 and n0, characterizing the high-
frequency region of dependence S(f), and parameters H1 and T1, characterizing the

dependence of Φ 2ð Þ τð Þ for small τ, change. The value of parameter σ1 and the nature
of spectral dependence S(f) change to a much lesser extent. Small variations in the

standard deviation parameter σ1 indicate a smaller dependence of function Φ 2ð Þ τð Þ on
fd. At the same time, the signal analysis in flicker-noise spectroscopy reveals the
dynamics of changes in parameters H1 and T1 at small τ, as well as parameters T0

andn0, characterizing dependence S(f) in the high-frequency region. Since depen-
dence S(f) is determined by the number ofM terms in a discrete expression for S(f),
it is convenient to use normalized expressions obtained by multiplying S(f) by a
factor of 1=M ¼ 4=N when changing the sampling frequencies. With this normaliza-
tion, functional differences in dependence S(f), due to the use of signals measured at
different sampling frequencies, are detected more explicitly.

Thus, when analyzing a complex chaotic signal during flicker-noise spectros-
copy, a set of parameters is determined that characterize the correlation relation-
ships in the sequences of irregularity-jumps and irregularity-bursts characteristic of
this signal, determined with a sampling frequency of fd. The analysis of dependen-

cies Φ 2ð Þ τð Þ and S(f), calculated on the basis of time series with decreasing sampling
frequency, allows you to evaluate the measure of “stability” of parameters σ1,T1,

and H1, determined on the basis of Φ 2ð Þ τð Þ, and the measure of variability of the
parameters Ss(0),T0, and n0, concerning dependence S(f).

8. The use of neural network technology in flicker-noise spectroscopy
of an electrocardiogram

Based on a computational experiment, dependencies were obtained for the nor-
mal state of the cardiovascular system and a number of “catastrophic” arrhythmias
(ventricular tachycardia, atrial fibrillation, atrial arrhythmia). We used the experi-
mental data from the public website www.PhysioNet.org.

As a result of analyzing the power spectrum S(f), informative parameters were
obtained for the singular component of the ECG signal: T0, determining some
characteristic time within which the measured dynamic variable is interconnected
V tið Þ; n0, dimensionless parameter that effectively determines how this relationship
is lost as frequencies decrease to 1=2πT0; and s 0ð Þ, contribution to the power
spectrum S(f), determined by the most high-frequency singular component [5].

The parameterization of the regular component of the ECG signal is carried out

using expression Φ 2ð Þ τð Þ with parameters T1, τ1, and H1. In this case, parameter T1

determines the characteristic time at which the values of the dynamic variables
V tið Þ do not correlate. To obtain reliable values of variance σ21, it is necessary to
calculate it at time intervals exceeding T1. In this case, parameter H1 shows by what
law the relationship between the quantities V tið Þmeasured at different time instants
is lost—the Hurst exponent.
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Thus, when analyzing a complex chaotic signal, which is an ECG signal, we
consider a set of six parameters, characterizing the correlation relationships in the
sequences of irregularities—“jumps” and irregularities—“bursts” inherent in this
signal.

9. The choice of artificial neural network and its characteristics

The obtained values of the parameters of the singular and regular component of
the ECG signals can be used for differential diagnosis of the functional state of the
cardiovascular system using artificial neural networks, where these parameters are
considered as input data.

For the computational experiment, a perceptron three-layer network with direct
connections was chosen (Figure 13).

To train the neural network, the backpropagation algorithm was used. The
training time was about 240 s, the maximum network error was about 0.05, and the
degree of training was about 0.01.

To recognize the pathologies of the cardiovascular system, a modular version of
the structure of the construction of neural network blocks can be used (Figure 14).

The structure includes several parallel neural network modules, built on the
basis of the structure of a multilayer perceptron. The advantage of this structure is
the concentration of resources of each module on the recognition of only one
pathology, which helps to reduce the likelihood of an error in the wrong conclusion
for the whole system. In addition, the functionality of an artificial neural network is
expanded by increasing the number of neural network modules to recognize new
pathologies without retraining the entire system.

The main factor that allows one to distinguish the contribution of irregularities
to the analyzed electrocardiographic signals is the variation of the used sampling
frequencies fd of the real signal. An analysis of the dependencies of the power
spectrum and the second-order difference moment calculated on the basis of time
series with a varying sampling frequency makes it possible to evaluate the measure
of “stability” for the regular component and between the “variability” of its infor-
mative parameters for the singular component. In this case, parameter fd can be
used as an additional input parameter of an artificial neural network for recognition
of the state of the cardiovascular system.

The presentation of electrocardiographic signals in the form of successive irreg-
ularities allows the use of flicker-noise spectroscopy in the analysis of such signals.
The chaotic signal represented by the time series during flicker-noise spectroscopy
allows one to parameterize these signals and determine informative diagnostic

Figure 13.
The structural diagram of the proposed artificial neural network.
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parameters, characterizing the functional state of the cardiovascular system. The set
of informative parameters, as well as the sampling frequency of the signal, which
determines the dynamics of changes in these parameters, allows the classification of
heart diseases using a neural network.
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Figure 14.
A modular version of the construction of a neural network for recognition of pathologies (the number of input
parameters, the number of neurons in the intermediate layer, the number of pathologies analyzed).
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