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Chapter

Improved Narrow Water 
Extraction Using a Morphological 
Linear Enhancement Technique
Wu Bo, Zhang Jinmu and Zhao Yindi

Abstract

An improved water extraction method using a morphological linear enhancement 
technique is proposed to improve the delineation of narrow water features for 
the modified normalized difference water index (MNDWI) derived from remote 
sensing images. This method introduces a morphological white top-hat (WTH) 
transforming operation on the MNDWI to extract multi-scale and multidirec-
tional differential morphological profiles and constructs a morphological narrow 
water index (MNWI). The MNWI can effectively enhance the local contrast of 
linear objects, allowing narrow water bodies to be easily separated from mountain 
shadows and other features. Furthermore, to accurately delineate surface water 
bodies, a dual-threshold segmentation method was also developed by combining an 
empirical threshold segmentation with the MNDWI for wide water bodies and an 
automatic threshold segmentation with the MNWI for narrow water bodies. This 
method was validated using three experimental datasets, which were taken from 
two different Landsat images. Our results demonstrate that narrow water bodies 
can be sufficiently identified, with an overall accuracy of over 90%. Most narrow 
streams or rivers keep a continuous shape in space, and the boundaries of the water 
bodies are accurately delineated as compared with the MNDWI method. Finally, 
the proposed method was used to extract the entire inland surface water of Fujian 
province, China.

Keywords: narrow water extraction, white top-hat transform, MNWI, 
dual-threshold segmentation

1. Introduction

Surface water is one the most vital earth resources undergoing changes in time 
and space as a consequence of land use/cover (LULC) changes, climate change, 
and other forms of environmental changes in many parts of the world. Timely and 
accurate monitoring and delivery of data of the dynamics of surface water are, 
therefore, critically important in various scientific disciplines, such as the assess-
ment of present and future water resources, climate models, agricultural suitability, 
river dynamics, wetland inventory, watershed analysis, surface water surveys, and 
environmental monitoring [1].

Remote sensing at different spatial, spectral, and temporal resolutions provides 
an enormous amount of data for mapping water resources and its dynamics at local 
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to global scales. At a result, it has become a routine approach for the monitoring 
of land surface water bodies, since the acquired data can provide macroscopic, 
real-time, dynamic, and cost-effective information, which is substantially differ-
ent from conventional in situ measurements. Various approaches for water body 
extraction from multispectral images have been developed in the past decades 
[2–4], which can be broadly grouped into three categories: spectral band segmenta-
tion, image supervised classification, and water indices. Among all these methods, 
of particular interest is the spectral water index-based method, as it is a reliable 
and cost-effective method. This type of method takes advantage of reflectivity 
differences of each involved band for water body extraction based on the analysis of 
signature differences between water and other surfaces.

One of the most widely used indexes is the normalized difference water index 
(NDWI) [4], which utilizes the green (band 2) and near-infrared (band 4) of 
Landsat TM to delineate open water features. However, Xu found that the NDWI 
cannot efficiently suppress the signal from built-up surfaces and therefore proposed 
an improved one, called modified normalized difference water index (MNDWI) 
[5], where the NDWI was modified by replacing band 4 with band 5 of Landsat 
TM/ETM. The MNDWI has been validated as one of the most widely used water 
indices for various applications, though it is still difficult to obtain a high accuracy 
of water extraction in complex circumstances. Carleer and Wolff [6], among others, 
have found that the land cover classifications of water and shadow can often be con-
fused. This issue often arises in environments where a large amount of shadow and 
water regions exist, such as urban and mountainous landscapes. The identification 
of narrow water bodies (such as narrow streams, canals, ponds, small reservoirs, 
etc.) can be a difficult task when using NDWI or MNDWI images, because the shal-
low and narrow water pixels may generate unstable spectral profiles or characteris-
tics, due to the mixed reflectance caused by sediment and/or adjacent land covers. 
Narrow water is typically defined as a water body with an apparent width less than 
or equal to three pixels in an image. Therefore, narrow water features often contain 
mixed pixels, and the extraction of them from NDWI or MNDWI images generally 
exhibits a discontinuous shape in space.

To remedy this problem, past studies have attempted to identify narrow water 
features by combining different procedures. Yang et al. proposed a method of 
extracting initial water information via a user-defined specified water index, and 
then they performed a series of operations. These operations include morphologi-
cal dilation, image filtering, and thinning techniques applied to the water index 
image to recover the continuity of narrow rivers or streams [7]. This method can be 
effective in the extraction of narrow water bodies if the water disruption is short; 
however, it may increase false water identification when water disruption is large, 
since it is dependent on the morphological dilation operation to reconnect the 
narrow rivers. Such simple threshold techniques are not often a sufficient solution 
to identify narrow water bodies; therefore, Li et al. suggested an object-oriented 
method of small water body extraction [8]. They first extracted textural and shape-
related features from images as supplementary information to spectral bands and 
then performed a segmentation operation on the images using an optimal scale to 
identify the potential water bodies. Yet, their method is not an automatic process, 
since it involves multiple user-defined parameters in image segmentation, which 
prohibits its use in large areas. An alternative approach was performed by Jiang 
et al. who extracted narrow water features via the enhancement of linear features in 
NDWI images [9]. However, their procedure involves multiple empirical thresholds, 
so it is not a cost-effective method for water feature extraction on large scale.

Attempting to improve on these previous approaches, here we propose an 
automatic water extraction method that constructs a novel narrow water index, 
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denoted as morphological narrow water index (MNWI). The MNWI is constructed 
using multi-scale and multidirectional differential morphological profiles (DMPs) 
on a MNDWI image, and then water bodies are automatically extracted using 
a dual-threshold segmentation. The successful use of DMPs to extract vari-
ous thematic information from images has been sufficiently validated, such as 
buildings in urban areas [10, 11], rare earth mining areas [12], and mapping of 
mangrove forests [13]. In this paper, we introduce a DMP technique to highlight 
the contrast of bright features as a way of narrow water recognition in the MNDWI 
images. This can be accomplished because water pixels have higher value than 
surrounding pixels in MNDWI images. Our approach is expected to improve the 
ability of narrow water feature identification by enhancing its spatially implicit 
characteristics using multi-scale morphological features, e.g., other land cover uses 
that have similar values in a MNDWI image, such as bare patches and shadows, can 
be easily identified. Our approach also involves a dual-threshold strategy which 
is adopted for wide and narrow water body extraction, since a simple threshold is 
not often an adequate solution [14]. An empirical threshold is used first to obtain 
possible water areas from a MNDWI image, followed by an automatic threshold 
which is determined by the maximum interclass variance criterion [15] used for 
extracting narrow water features from a MNWI image. Finally, a logical operation 
is performed by combining the two potential water features to identify the true 
water body boundary.

The remainder of this chapter is organized as follows. In Section 2, we describe 
the MNWI method of narrow water extraction. Experimental results are shown in 
Section 3 using multiple experiments on TM images, and we use the MNWI method 
in a practical application for extracting inland water features in Fujian province, 
China, in Section 4. Finally, Section 5 presents conclusions.

2. The proposed MNWI method

It is well accepted that open and wide water features can be easily separated 
from other land cover features by using the NDWI or the MNDWI methods, but 
extracting narrow water boundaries is generally a more difficult task due to its 
being confused with built-up areas, roads, hill shadows, etc. Therefore, the goal 
of our proposed MNWI method is the separation of narrow water and other land 
cover features by depicting the implicit spectral and structural characteristics of 
MNDWI. Narrow water usually exhibits strong linear shapes and continuous spatial 
curves; therefore, we propose a linear enhancement operation on a MNDWI image 
to form a MNWI image, according to the following steps:

Step 1: Generation of a MNWDI image. Level 1 T Landsat images in the study 
region are first collected, which are then corrected geometrically. Atmospheric and 
radiometric corrections were then applied using the 6S approach to transform the 
images into reflectance datasets. Because MNWDI performs better in the extrac-
tion of water features than NDWI [5], it is selected for initial water extraction and 
calculated as:

  MNDWI =    (Green − MIR)  ____________ 
 (Green + MIR) 

    (1)

where Green and MIR are the image reflectance of the green band and medium-
wave infrared band (which correspond to the TM/ETM+ band 5), respectively.

Step 2: Formulation of the MNWI. MNDWI can improve the local contrast 
between water and other land cover features, since most water bodies can easily be 
extracted using a threshold segmentation method. However, narrow water bodies 
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are still difficult to extract, as they are easily confused with urban areas, roads, and 
mountain shadows because of mixed pixels. To alleviate this problem, we adobe a 
linear object enhancement technique using a white top-hat transform operation on 
a MNDWI image via the extraction of multi-scale and multidirectional differential 
morphological profiles to form a MNWI image, according to the following three 
sub-procedures:

1. Define linear structures. A narrow river or stream has clear linear features 
with two main directions, but the shapes of buildings and mountain shadows 
have polygon-like features. Hence, we introduce a DMP method to separate 
them. The use of DMPs involves the designing of a filtering operator (e.g., size 
and shape), known as a structural element (SE). This acts as a probe to extract 
or suppress specific structures by checking that each part of the SE fits within 
the objects in the image. A single-SE size approach is typically not suitable for 
complex structures; therefore, a series of linear structural elements are imple-
mented to form DMPs, so that the size and directional bias of the narrow water 
features are identified clearly. Thus, the linear structure element was defined 
as se = strelem(d, s), where d represents the orientation of the linear structure 
(e.g., 0°, 45°, 90°, 135°) and s denotes the scale of the small water body.

2. White-hat morphological reconstruction (white top-hat). In general, an 
opening/closing operator can isolate bright or dark structures in an image 
when the objects are brighter or darker than the surrounding features. An 
opening operator can help separate water objects from other land cover fea-
tures since water appears brighter in a MNDWI image. To isolate features that 
have a thinner support than a given SE, a common practice to use is a top-hat 
morphological transform in taking the residual of the opening, closing, and 
original images to ensure a better shape preservation [11–13]. The white top-
hat reconstruction operation is formulated by subtracting the opening opera-
tion from the initial image using the same image. This enhances linear features 
with a structure smaller than the SE, and a morphological reconstruction of 
the white-hat MNDWI image is according to:

  WTH (d, s)  = MNDWI −  γ  MNDWI   (se)   (2)

where   γ  MNDWI   (se)   is the output image yielded by performing a closing operator to 
a MNDWI image. A closing operator can suppress smaller, darker objects and join 
adjacent objects together; thus we expect that small water bodies smaller than the 
structural elements will be highlighted after this reconstruction, and open water 
bodies and background objects larger than the structural elements should be sup-
pressed. We previously defined a narrow water body as no larger than three pixels; 
thus, the linear structural elements in our algorithm are extended in four directions 
(0°, 45°, 90°, and 135°), and each direction was applied with three scales (smin = 1, 
smax = 3, Δs = 1) to generate the WTH image.

3. Construction of the morphological narrow water index. The WTH 
 process essentially suppresses the nonrelevant background, though there still 
may be small features (e.g., buildings or shadows) that must be removed. 
Narrow water features have linear features with two main orientations, and 
the difference between maximum and minimum values of the WTH value 
in different directions is relatively large. Conversely, the shapes of buildings 
and mountain shadows usually have polygon-like features, indicating that the 
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WTH difference is small. With this consideration in mind, we determine the 
contrast of the maximum and minimum values of the WTH in all directions to 
enhance the linear structure further. Thus, the MNWI is formulated as:

  MNWI =  WTH  Max   −  WTH  Min    (3)

where WTHMax and WTHMin are the maximum and the minimum values of the 
reconstruction of the white top-hat procedure in all directions, respectively.

Step 3: Dual-threshold segmentation. A simple threshold is not usually 
adequate to separate water features in large and complex regions from a MNDWI 
or MNWI image. Therefore, we employ a dual-threshold strategy to delineate water 
feature characteristics. A relatively large threshold was first determined empiri-
cally to separate the MNDWI image into possible water regions, denoted as W1. 
Experimental results suggest that this threshold should be set at 0.2, such that all 
wide water bodies were extracted, and most other objects were excluded. However, 
many narrow water bodies may be missed in this procedure, and small rivers may 
be of a discontinuous shape in space. Thus, another threshold is determined by 
the Otsu method [15] performed on the MNWI image to extract possible narrow 
water bodies, denoted as W2. The final water feature information is then delineated 
according to the following logical rule: If the possible water in W2 is connected to 
any wide water extracted from the MNDWI image (i.e., W1), it is then determined 
to be narrow water; otherwise it is categorized as not water.

Step 4: Image post-processing. Small trails might also display a high value in a 
MNWI image and may be misclassified as a narrow water body. To reduce this error, 
the difference built-up index (NDBI) [16] can also be used to refine the final result. 
In the present study, a threshold of NDBI >0.05 is used, so that most of the roads 
and trails are excluded from the final water determinations.

3. Method validations

To evaluate our method, three study regions are taken from two Landsat ETM+/
OLI images with different water body types and different terrains, as shown in 
Figure 1. Study area 1 is a sub-scene image with 1000 by 1000 pixel size chosen 
from a Landsat 7 ETM+ image acquired on September 1, 2001, centered on the 
Panjiakou Reservoir near Tangshan and Chengde cities in Hebei province in north-
ern China, which covers multiple branches of Luanhe River.

Study area 2 is also a sub-image of 1000 by 1000 pixels, which is located in 
Luoyuan County, Fujian province, which is acquired from the Landsat 8 operational 
Landsat image (OLI) on December 13, 2014. This region contains very narrow 
streams (Figure 2b), and it is used to test the extraction ability from mixed pixels. 
Study area 3 (Figure 3c) is a 1000 by 1000 pixel scene selected from the same OLI 
image as #2, which is located in southern Youxi County, Fujian province, and covers 
one of main branches of Minjiang River as well as other narrow streams (Qingyin, 
Qing, Wenjiang, etc.). Youxi County and several villages are in this study area, 
which contain multiple sources of possible background noise.

Actual water feature information for these study areas are not available, so the water 
bodies in the three images are manually digitized using high resolution spatial images to 
provide a basis map for comparison. High-resolution Google Earth™ images were also 
used as a complementary reference to assist in distinguishing water pixels that might be 
confused with background noise, such as mountain shadows, trails and built-up areas.
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Figure 3. 
Comparison of small bodies of water in the MNDWI and the MNWI for study area 1 where (a) and (b) are 
the extracted water bodies with the MNDWI and the MNWI  indexes, respectively, and (c) and (d) denote the 
focused areas highlighted in red boxes.

Figure 1. 
The collected images and locations for the study areas.

Figure 2. 
The false-colored images for the three study areas used in our experiments. (a) study area 1, (b) study area 2, 
(c) study area 3.
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3.1 Validation of MNWI features

A comparison between MNDWI and MNWI methods was first described. The 
two types of water index images for study area 1 are shown in Figure 3a and b,  
with focused areas highlighted in red boxes shown in Figure 3c and d. The pixels’ 
values of water typically have higher values (white areas) than those of the other 
land cover features in these images, since both the MNDWI and the MNWI water 
indexes strongly enhance the water body signals. It is also observed in Figure 3a 
and c that the brightness difference between wide water and narrow water in 
the MNDWI image is larger, suggesting that a threshold segmentation on the 
MNDWI image cannot resolve entire water bodies. In contrast, the difference 
in the MNWI image is significantly reduced, though they maintain relatively 
higher values than other land cover features, as shown in Figure 3b and d. By 
looking at Figure 3d, it is seen that the local contrast between narrow water and 
other land cover features is significantly enhanced. Additionally, narrow water 
such as small rivers and branches maintains a continuous spatial shape, sug-
gesting that narrow water features can be accurately extracted with a threshold 
implementation.

Furthermore, 1200 samples of typical land cover types from study area 3 were 
randomly selected from each category and were analyzed by calculating the maxi-
mal value, the minimal value, the mean value, and the deviation. The criteria for 
the sample selection are the following: (1) Each land cover has ~200 samples to keep 
a sample balance; and (2) each land cover contains several small patches from dif-
ferent locations to maintain a spectral variety. Figure 4 reports the spatial distribu-
tion of the samples for study area 3 and their statistical information for six typical 
land cover types, i.e., wide open water, narrow water, vegetation, built-up area, 
roads, and shadow. As can be seen in Figure 4, the values of the wide water are very 
high for MNDWI. However, it is difficult to discriminate narrow water from other 
land cover types, especially for shadows, roads, and built-up areas. In contrast, the 
values of the narrow water in the MNWI method are relatively high compared with 

Figure 4. 
The spatial distribution of 1200 selected samples for study area 3 (left) and the statistical information of six 
typical land cover types for MNDWI and MNWI images, respectively (right).
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other land cover types, indicating that it is relatively easy to separate the narrow 
water bodies from other land cover types.

It can also be seen in Figure 5 that the values of objects with polygon-like 
shapes, such as wide water, built-up areas, and shadows, are heavily suppressed in 
the MNWI image since they do not exhibit a linear structure. However, roads also 
show linear structural characteristics; thus they have high values in a MNWI image. 
This demonstrates that neither MNDWI nor MNWI can effectively identify 
entire water bodies using a threshold segmentation. To remedy this, we adopted a 
dual-threshold strategy. The first threshold is used for wide water extraction from 
MNDWI, and the second is employed to extract narrow water features from MNWI.

3.2 Validation of dual-threshold segmentation

An empirical threshold (0.2) was first used to perform a rough extraction of 
potential water features from a MNDWI image; then a second threshold deter-
mined by Otsu was determined from the MNWI image for possible narrow water 
features. Next, a combing procedure was carried out to extract entire water bodies 
using an “if-then” logic calculation according to the following rule: If two potential 
water regions are spatially connected, then they are determined to be water bodies; 
otherwise they are determined to be other land cover types.

As a demonstration of the dual-threshold segmentation method, comparisons 
between single threshold segmentation of a MNDWI image and dual-threshold 
segmentation of a MNWI image are shown in Figure 6(a)–(c). It is seen that 
when a smaller threshold (T = 20) is adopted, a narrow stream keeps a relatively 
complete spatial shape, yet it also contains a trail (road) at the bottom of the image 
(Figure 6a). However, if we increase the threshold T to 40, this trail is no longer 
extracted, but the stream exhibits discontinuities along the stream. Thus, the use 
of a dual-threshold segmentation can better identify this stream as continuous and 
avoid the identification of the trail.

3.3 Visual assessment

Figure 7 presents the extracted water features using our proposed method for 
each of the three study areas. As a comparison, water information derived from 
the MNDWI image using an optimal threshold segmentation is also listed. For 
clarity, the corrected, misclassified, and omitted water information is labeled with 
different color schemes. Visual inspection shows that our method significantly 
outperforms the MNDWI method when using an optimal threshold segmenta-
tion. It can be seen that the majority of narrow rivers in each of the study areas 
are successfully extracted by our method. Six branches of the Luanhe River are 

Figure 5. 
Illustration of the linear enhancement and polygon compression of different land cover types in study 
area 3, where (a) and (c) are the MNDWI and the MNWI features, respectively, and (b) and (d) are the 
corresponding focused areas.
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clearly delineated in study area 1, and most narrow streams in study areas 2 and 
3 are clearly extracted. However, a few narrow tributaries were misclassified by 
the MNDWI method, highlighted in red in Figure 7. A closer inspection of study 
area 2 shows that there are still two omissions which are highlighted with white 
rectangles, due to the width of two streams being too narrow (less than 10 m) to 
occupy a footprint, and the reflectance of these pixels are strongly mixed with 
other land cover types. Conversely, the results derived from the MNDWI image 
are less effective, as only small portions of the narrow rivers were extracted cor-
rectly. This is especially true for the narrow streams in the top region of the image, 
as most of them are ignored.

Another misclassification issue is the delineation of the sides of rivers, due to 
mixed pixel effects. Another experiment in the study area 3 was conducted to dem-
onstrate this. These results are reported in Figure 8, where the water information 
that was corrected, omitted, and misclassified is shown in cyan, magenta, and red, 
respectively. It can be found that the boundary of the Youxi River can be accurately 

Figure 6. 
Segmentation performed on the focused region of study area 1 using different thresholds, where (a), (b), and 
(c) are obtained by a threshold T equal to 20, 30, and 40, respectively, and (d) is the same image using a 
dual-threshold segmentation.

Figure 7. 
Water extraction results from the three study areas, where the first and second lines are the results extracted by 
our method and the optimal threshold segmentation method, respectively.
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extracted with the proposed method as shown in Figure 8b. However, using the 
MNDWI method with an optimal threshold, the omitted water pixels were along 
both sides of the river boundary (Figure 8c).

3.4 Quantitative evaluation

We now quantitatively evaluate our extracted results. Four measurements are 
used for comparison; the user and producer accuracy, the kappa coefficient, and 
the overall accuracy. Additionally, two recently developed methods for narrow 
water extraction, i.e., the method developed by Yang et al. [7] and the linear feature 
enhancement (LFE) developed by Jiang et al. [9], are also included for comparison. 
Table 1 gives a pixel-by-pixel analysis of the classification accuracies for all datasets, 
with the best results highlighted in bold.

It can be seen in Table 1 that the optimal threshold segmentation method 
was the least accurate, as it failed nearly completely in study area 2 with a 35% 
product accuracy and a kappa coefficient of 0.477. The method of Yang has 
some similar effects in narrow water extraction to our datasets, especially for 
mixed water features. The method of Jiang significantly improves the accuracy 
of narrow water extraction as compared to the optimal threshold segmentation 
method, as most of the narrow streams are well extracted in each of the study 
areas and had a comparable accuracy to our method. However, it should also 
be noted that this method is not an automatic method, since many parameters 
need to be tuned, which prevents it from being effectively used in larger areas. 
Overall, our method outperforms all others in terms of measurements except 
for producer accuracy in study area 3, where Yang’s method achieves a relatively 
higher accuracy.

Figure 8. 
The results of the river side misclassification experiment performed on study area 3. (a) the original image, 
(b) and (c) are the extracted water features in the focused area using out-proposed and the OT method, 
respectively.
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4. Extraction of inland water of Fujian province

The aforementioned experiments demonstrate that the MNWI is the most 
efficient algorithm for narrow water extraction, but it is still interest to address 
whether it is applicable to large-volume data in an actual scenario. Therefore, we 
apply our method to extract inland water features in Fujian province, China, which 
is a relatively large region that covers an area of about 121,000 km2. Fujian is a 
mountainous province, located on the southeast coast of China and facing Taiwan 
across the Taiwan Strait. It has significant vegetation cover because of high mean 
precipitation and warm annual temperatures. Topographically, Fujian is a very 
mountainous region, having abundant water resources, rivers, lakes, and reservoirs. 
Many rivers run through these mountains, of which the most important is the Min 
River, as its drainage area covers over 50% of the province. The upstream Jin River, 
Futun River, and Shaowu River all converge into the Min River. The Jiulong River 
flows south of the Min River, reaching the sea at Xiamen city, and the Ting River 
runs across Fujian’s southwestern border. It is thus an appropriate region to test our 
methods in a large area. To cover the entirety of Fujian province, 13 Landsat 8 OLI 
images were collected. Fujian is usually cloudy and rainy in spring and summer, so 
we collected all the images in winter to avoid cloud interference. The acquisition 
information is summarized in Table 2. Note that the quality of all acquired data is 
relatively good, with cloud cover less than 10%.

Methods Optimal threshold Yang Jiang Ours

Study area 1 Producer accuracy 53.8% 75.1% 92.1% 92.3%

User accuracy 79.8% 85.3% 92.8% 95.6%

Overall accuracy 67.3% 79.5% 91.3% 93.6%

Kappa 0.631 0.748 0.907 0.924

Study area 2 Producer accuracy 35.2% 43.6% 82.8% 83.9%

User accuracy 83.9% 57.6% 99.1% 99.6%

Overall accuracy 55.4% 48.5% 89.2% 90.7%

Kappa 0.477 0.453 0.872 0.885

Producer accuracy 56.3% 55.5% 87.1% 86.9%

Study area 3 User accuracy 87.9% 73.8% 96.6% 98.9%

Overall accuracy 71.2% 65.8% 90.3% 91.6%

Kappa 0.696 0.627 0.881 0.905

Table 1. 
Comparison of accuracies for different water extraction methods, with the best results given in bold text.

Path/row 118/041 118/042 119/041 119/042 119/043 120/040 120/041

Acquisition 

time

November 

17

December 

3

October 

23

October 

23

October 

23

December 

1

December 

1

Path/row 120/042 120/043 120/044 121/041 121/042 121/043

Acquisition 

time

December 

1

December 

1

December 

1

October 

5

October 

5

October 5

Table 2. 
The information of collected Landsat 8 OLI images covering Fujian province in 2013.
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All the images were matched and stitched without altering their spectral color 
(Figure 9, left), and the final inland water information for the Fujian province 
(Figure 9, right) shows that 2,494,988 pixels were classified into inland surface 
water. It can be calculated that the total inland water area of Fujian province is 
about 2245.49 km2 in the winter of 2013. Visually, our method can extract the most 
of perceptible water bodies with a high accuracy, where the main rivers, such as 
Min River, Jiurong River, Ting River, etc., are all correctly delineated with clear 
river boundaries. Moreover, most of the spatial shapes of small tributaries were 
continuous and so were the lakes and reservoirs. To evaluate the quantitative clas-
sification accuracy, 6800 samples of water and non-water features were randomly 
selected. The water samples included 3340 pixels, of which wide water to narrow 
water ratio was about 2:1, as the non-water samples were 3460 pixels, chosen from 
possibly confused land cover types such as forest, built-up areas, and rare soil. 
The producer accuracy, user accuracy, overall accuracy, and kappa coefficient 
calculated from these samples are 94.33%, 98.7%, 96.61%, and 0.932, respectively, 
indicating that the proposed method can achieve a high accuracy for water extrac-
tion in a large and complex area and it is an effective optional tool for practical 
water extraction.

5. Conclusions

Most water indices can perform well for the extraction of wide water fea-
tures from remote sensing images, but they are normally ineffective in the 
extraction of narrow water features. This chapter has described a new method 
using a morphological top-hat transform to form a novel narrow water index, 
denoted as MNWI, which improves the extraction accuracy of narrow water 
from Landsat images. Experimental results demonstrated impressive perfor-
mances of our method of the narrow water extraction. A case study in Fujian 
province suggests that it is an effective and practical tool for large area inland 
water.

Figure 9. 
The mosaic image and the final result of inland water bodies in Fujian province, China.



13

Improved Narrow Water Extraction Using a Morphological Linear Enhancement Technique
DOI: http://dx.doi.org/10.5772/intechopen.92311

Author details

Wu Bo1*, Zhang Jinmu2 and Zhao Yindi3

1 School of Geography and Environment, Jiangxi Normal University, Nanchang, 
China

2 Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of 
Education, Jiangxi Normal University, Nanchang, China

3 School of Environment and Spatial Informatics, China University of Mining and 
Technology, Xuzhou, China

*Address all correspondence to: mywubo@fzu.edu.cn

Acknowledgements

Funding was provided by the Natural Science Foundation of China (Grant No. 
41571330, 41830108).

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



14

Inland Waters - Dynamics and Ecology

[1] Sun F, Sun W, Chen J, Gong P. 
Comparison and improvement of 
methods for identifying water bodies in 
remotely sensed imagery. International 
Journal of Remote Sensing. 
2012;33:6854-6875

[2] Frazier PS, Page KJ. Water body 
detection and delineation with 
Landsat TM data. Photogrammetric 
Engineering and Remote Sensing. 
2000;66:1461-1468

[3] Rokni K, Ahmad A, Solaimani K, 
Hazini S. A new approach for surface 
water change detection: Integration 
of pixel level image fusion and image 
classification techniques. International 
Journal of Applied Earth Observation 
and Geoinformation. 2015;34:226-234

[4] McFeeters S. The use of the 
normalized difference water index 
(NDWI) in the delineation of open 
water features. International Journal of 
Remote Sensing. 1996;17:1425-1432

[5] Xu H. Modification of normalised 
difference water index (NDWI) to 
enhance open water features in remotely 
sensed imagery. International Journal of 
Remote Sensing. 2006;27:3025-3033

[6] Carleer AP, Wolff E. Urban land cover 
multi-level region-based classification of 
VHR data by selecting relevant features. 
International Journal of Remote Sensing. 
2006;27(6):1035-1051

[7] Yang S, Xue S, Liu T. Method 
for automatically extracting fine 
water body by using TM image. 
Journal of Surveying and Mapping 
(in Chinese with English Abstract). 
2010;39(6):611-617

[8] Li Y, Ding J, Yan R. Study on 
extraction method of small water 
bodies in mountainous area based on 
GF-1 remote sensing images. Resource 
Science (in Chinese with English 
Abstract). 2015;37(2):408-416

[9] Jiang H, Feng M, Zhu Y. An 
automated method for extracting rivers 
and lakes from Landsat imagery. Remote 
Sensing. 2014;6(6):5067-5089

[10] Beneditsson JA, Pesaresi M, 
Arnason K. Classification and feature 
extraction for remote sensing 
images from urban area based on 
morphological transformations. IEEE 
Transaction on Geosciences and Remote 
Sensing. 2003;41(9):1940-1949

[11] Huang X, Zhang L. A 
multidirectional and multi-scale 
morphological index for automatic 
building extraction from multispectral 
GeoEye-1 imagery. Photogrammetric 
Engineering & Remote Sensing. 
2011;77(7):721-732

[12] Wu B, Fang C, Yu L, Huang X, 
Zhang Q . A fully automatic method 
to extract rare earth mining area from 
Landsat image. Photogrammetric 
Engineering and Remote Sensing. 
2016;82(9):55-64

[13] Huang X, Zhang L, Wang L. 
Evaluation of morphological texture 
features for mangrove forest mapping 
and species discrimination using 
multispectral IKONOS imagery. IEEE 
Geoscience and Remote Sensing Letters. 
2009;6(3):393-397

[14] Ji L, Zhang L, Wylie B. Analysis 
of dynamic thresholds for the 
normalized difference water index. 
Photogrammetric Engineering and 
Remote Sensing. 2009;75(11):1307-1317

[15] Otsu N. A threshold selection 
method from gray-level histograms. 
IEEE Transactions on Systems, Man and 
Cybernetics. 1979;9(1):62-66

[16] Zha Y, Gao Y, Ni S. Use of 
normalized difference built-up index 
in automatically mapping urban areas 
from TM imagery. International Journal 
of Remote Sensing. 2003;24(3):583-594

References


