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Chapter

Nitrogen Cycling and Soil 
Amelioration in Camellia oleifera 
Plantations
Bangliang Deng and Ling Zhang

Abstract

Camellia oleifera Abel. is one of the four woody edible oil trees around the world, 
which is also an important economic species in subtropical China. It is mainly 
cultivated in subtropical region, where the soil constrains the yield of C. oleifera oil 
due to its low fertility and pH. Thereby, intensive management including fertiliza-
tion practice, especially intensive nitrogen (N) input, has been developed as a vital 
way to enhance oil yield in C. oleifera plantations. However, excessive nitrogen 
input increases soil nitrous oxide (N2O) emissions and soil acidification, limiting 
sustainable development of economic forests. As one of the important greenhouse 
gases, N2O is 265 times greater than carbon dioxide in global warming potential on 
100-year scale. To mitigate soil N2O emissions and soil acidification, soil ameliora-
tion, including applications of biochar, nitrification inhibitors, and urease inhibi-
tors, played an important role in sustainable management of C. oleifera plantations. 
This chapter reviewed soil nitrogen cycling, N2O emissions, and soil amelioration in 
C. oleifera plantations, which will benefit the sustainable management of C. oleifera 
plantations and hence the development of C. oleifera industries.

Keywords: Camellia oleifera, biochar, nitrification inhibitor, soil amelioration, 
sustainable forest management, urease inhibitor

1. Camellia oleifera

Camellia oleifera Abel. as a native edible oil tree has a long cultivation history 
in subtropical China [1]. It is a perennial and evergreen species with synchronous 
flowers and fruits. The cultivation area and total product value of C. oleifera have 
reached 4.47 million ha and 102.4 billion Chinese yuan, respectively [2]. With rapid 
development, the C. oleifera oil accounted for 80% domestic high-end vegetable 
edible oils in 2018 from China. High habitat suitability area for C. oleifera cultivation 
in China has been up to 4.94% [3].

Specially, C. oleifera oil and oils derived from palm, olive, and coconut are the 
four major woody edible oils in the world [4]. The C. oleifera oil is characterized 
by remarkable antioxidant activity [5] and high content of unsaturated fatty acids 
(about 83%) [6].

Camellia oleifera can survive and adapt to low-fertility acid soil. Generally, 
it usually is used in the conservation of soil and water as well as afforestation in 
barren hill. Therefore, C. oleifera is an excellent species with both ecological and 



Advances in Forest Management under Global Change

2

economic advantages. Development of C. oleifera industry would be beneficial for 
the safety of edible oil and the conservation of soil and water in China.

As a typical economic tree, intensification such as water management, fertil-
ization, and trimming takes an important part in the management of C. oleifera 
plantations. Notably, organic matter, available phosphorus, and pH value was low 
in C. oleifera plantation soils [7], constraining the yield of C. oleifera oil. Therefore, 
intensive management with fertilization is often performed in C. oleifera planta-
tions [1].

2. Challenges

Fertilization is the major way of intensive management, efficiently improving 
the yield of oil in C. oleifera plantations. However, a large amount of nitrogen (N) 
input increased the risk of soil N leaching and gaseous N (e.g., nitrous oxide (N2O), 
nitric oxide (NO), ammonia (NH3)) losing [8]. In addition, excessive N input 
induced soil acidification [9].

2.1 Nitrous oxide emissions

Nitrous oxide, as the major ozone-depleting substance [10], has been recognized 
to be an important greenhouse gas. Especially, the potential of N2O for global 
warming is 265 times than that of carbon dioxide [11]. The concentration of N2O is 
ranging from 270 ppb in pre-industrial period to 329.9 ppb in 2017 [12].

Soil systems contributed the largest source of N2O emissions (13 Tg N2O-N yr−1), 
of which human activities accounted for 54% [13]. Nitrogen input such as N deposi-
tion and N fertilization often increased N2O emissions and altered the process of N 
transformation [14–17]. Generally, soil N2O emissions had a positive and linear rela-
tionship with N input [18]. About 120 Tg N was contributed by human activities per 
year [13]. Therefore, intensive N input often leads to high emissions of soil N2O [19].

2.1.1 Nitrification and denitrification

Nitrification and denitrification are the two main pathways of N2O emissions 
(Figure 1) [20–22], which produced global 70% soil N2O emissions [13].

Figure 1. 
Nitrification- and denitrification-related pathways [20–22].
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2.1.2 Influence factors

Soil N2O emissions can be influenced by soil environmental factors such as soil 
moisture, temperature, oxygen (O2), and pH condition [23, 24].

2.1.2.1 Soil moisture

Soil moisture is a vital factor that affects soil N2O emissions. Generally, soil N2O 
emission rates reached the peak when soil water-filled pore space (WFPS) was 
60–70% [25]. For example, soil N2O emissions were significantly higher under 60% 
WFPS conditions than that under flooded conditions [26].

2.1.2.2 Soil temperature

Effects of soil temperature on N2O emissions were more complex than that of 
soil moisture. For example, warming increased soil N2O emissions from boreal 
peatland [27] and alpine meadow [28]. Soil N2O emissions had an exponential 
increased relationship with incubation temperatures [29]. A significant positive 
correlation was presented in N2O emissions and soil temperature from different 
soil types (paddy, orchard, forest, and mountain) [30]. Although warming did 
not affect soil N2O emissions from northern peatlands, it suppressed N2O emis-
sions under N addition conditions [31]. By contrast, the effects of warming on soil 
N2O emissions from alpine meadow soil were not observed [32]. Consistently, no 
significant increase of soil N2O emissions was found with increasing incubation 
temperatures [33]. Previous study reported that soil moisture and temperature can 
explain 86% of soil N2O emissions [34].

2.1.2.3 Soil O2 concentration

Soil O2 concentration was closely related with soil moisture and soil mechani-
cal composition. Generally, soil with higher water content and larger clay fraction 
had lower soil O2 concentrations. Lower soil O2 concentrations mainly promoted 
soil N2O emissions via denitrification [20, 35]. The production of N2O and NO was 
increased when O2 concentration decreased from 21% to 0.5% in a laboratory study 
[36]. Similarly, field study reported that soil N2O emissions increased with increas-
ing soil O2 concentrations in wetland [37].

2.1.2.4 Soil pH

pH played an important role in the activity of microbes [38]. Indeed, soil acidifi-
cation [39] and soil pH amelioration [40] significantly influenced soil N2O emis-
sions. However, other researchers reported that there was no significant correlation 
between N2O emissions and pH [41].

pH influenced the activity of nitrification- and denitrification-related enzymes 
[42]. Generally, soil acidification increased N2O emissions [42]. Compared with 
ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) were 
higher in activity and resistance from acid soil [43]. However, the domination of 
AOB was increased by increasing soil pH [44]. Additionally, archaeal amoA genes 
had a wide pH range of about 3.7–8.65, which had high activity in extreme environ-
ments such as high temperature and extreme acid [45].
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2.1.3 Nitrous oxide emissions from Camellia oleifera plantation soils

Our previous field study (1 year) found that soil N2O emissions were 
92.14 ± 47.01 mg m−2 in control treatment and were 375.10 ± 60.30 mg m−2 in 
fertilization treatment (400 kg NH4NO3-N ha−1) from C. oleifera plantations [1].

2.2 Soil acidification

Acid soil (pH < 5.5) as a main soil type covers about 30% free ice land [46]. 
However, soil acidification has been becoming more and more serious [47]. Soil 
acidification should be taken into consideration due to its constraint in the sustain-
able development of agricultural sector [48]. In China, soil pH (except alkaline soils 
at pH 7.10–8.80) from crop fields reduced by 0.13–0.76 during the year 1980–2000 
[49]. For example, soil pH (surface layer) decreased by 0.30 units from 1981 to 
2012 in Sichuan Province, China [47].

With a long cultivation history, C. oleifera was widely cultivated in acid or 
strongly acid soil in subtropical China [7]. The optimum pH for the growth of C. 
oleifera is 5.5–6.5 [50]. However, acid deposition [51] and intensive N input [49] may 
stimulate soil acidification from C. oleifera plantations. Additionally, long-term N 
input may also increase the toxicity of aluminum (Al) [52], limiting the sustainable 
development of C. oleifera.

Soil acidification from C. oleifera plantations is mainly related to the following 
factors.

2.2.1 Precipitation

Long-term precipitation increased the loss of base cations such as Ca2+, Mg2+, 
K+, and Na+, reducing the soil pH buffering capacity. In addition, long-term pre-
cipitation promoted the accumulation of Al3+ and Fe3+ in soil, which could further 
hydrolyze to Fe(OH)3 or Al(OH)3 and release 3H+.

2.2.2 Plant physiology

When plant roots absorb a NH4
+ from soil, an H+ will release into soil; in turn, 

absorbing a NO3
− from soil will release an OH− into soil [53].

Organic acid (R▬COOH) from root exudates can release an H+ after hydrolysis. 
In addition, anions of organic acids (e.g., citric acid and malic acid) can chelate with 
Al3+ in the soil and inhibit the root system that absorbs Al3+, alleviating Al3+ toxicity 
to plant growth [48, 54, 55].

Plants such as C. oleifera [56] can uptake Al3+ by roots, promoting the accumula-
tion of Al3+ in surface soil via litter decomposition [57]. The accumulation of Al3+ 
can replace the base cations such as Ca2+, Mg2+, K+, and Na+ and accelerate leaching, 
hence reducing the pH buffering capacity of top soil.

2.2.3 Microbial-mediated nitrification

For example, NH4
+ transfers to NO3

− along with the 2H+ release 
(NH4

+ + 2O2 → NO3
− + H2O + 2H+) [53]. AOB, AOA, and fungi can participate in 

the process of nitrification [20]. Nitrification includes the pathway of ammonia 
oxidation to hydroxylamine, the pathway of hydroxylamine oxidation to nitrite, 
and the pathway of nitrite oxidation to nitrate (Figure 1) [58]. Ammonia can be 
oxidized by AOA or AOB to hydroxylamine via ammonia monooxygenase (amo). 
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Hydroxylamine can be oxidized to nitrite by hydroxylamine oxidoreductase. Nitrite 
can be oxidized to nitrate by nitrite oxidoreductase.

2.2.4 Oxidation of sulfur-containing organics

Oxidation of sulfur mineral, for example, oxidation of FeS2, will produce 2H+ 
(2FeS2 + 7O2 + 2H2O → 2Fe2+ + 4SO4

2− + 4H+).
Oxidation of sulfur-containing organics will release 4H+ (2Organic-S + 3O2 + 

2H2O → 2SO4
2− + 4H+).

2.2.5 Intensive nitrogen fertilization

Intensive NH4
+ input can replace the base cations such as Ca2+, Mg2+, K+, 

and Na+ and accelerate leaching, reducing the pH buffering capacity of top 
soil [59]. Hydrolysis of soil NH4

+ will generate NH3 (gas) and consume an OH− 
(NH4

+ + OH− = NH3↑ + H2O) [60].
Acidic fertilizers such as Ca(H2PO4)2 will gradually release H+, hence increasing 

soil acidification (Ca(H2PO4)2 → CaHPO4 + H3PO4, H3PO4 → H+ + H2PO4 → 2H+ + 
HPO4

2− → 3H+ + PO4
3−).

2.2.6 Acid deposition

Acid deposition (water-soluble acid gases such as CO2 and sulfur dioxide) and N 
deposition (especially NH4

+-N) increased soil acidification [51]. Precipitation with 
H+ can replace the soil base cations such as Ca2+, Mg2+, K+, and Na+, which directly 
reduce the soil pH buffering capacity [51].

2.2.7 Other factors

For example, deforestation and other land uses can reduce litter accumulation 
in surface soil, hence declining the accumulation of base cations such as Ca2+, Mg2+, 
K+, and Na+ that generate from litter decomposition [61].

2.3 Effects of soil acidification on nitrous oxide emissions

Acid soils have been facing an increased risk of acidification due to human 
activities, especially intensive N fertilization [47, 49, 62]. For example, after 6 years 
of application of 600 kg Urea-N ha−1 yr−1, soil pH was significantly decreased (soil 
pH in control and fertilization treatment was 5.1 and 4.9, respectively) from a tea 
plantation in Yixing City, Jiangsu Province, China [63]. A meta-analysis of 1104 
field data showed that a negative correlation between soil N2O emissions and pH 
(3.34–8.7) (N2O-N = −0.67x + 6.55, R = 0.22) is negatively related with N fertiliza-
tion [9]. Moreover, deposition of sulfur dioxide increased soil acidification, stimu-
lating soil N2O emissions [64].

The mechanism of soil acidification on the stimulation of soil N2O emissions is 
complex, which may include (but not limited to) the following points.

2.3.1 Chemical decomposition of nitrous acid

Under acidic conditions, pH < 5.5, NO2
− (HNO2, pKa = 3.3) will natu-

rally decompose into NO and/or NO2 (3HNO2 ⇌ 2NO + HNO3 + H2O or 
2HNO2 ⇌ NO + NO2 + H2O) [65]. Soil NO can be further transformed to N2O with 
Fe2+ when it was not escaping soil [65].
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2.3.2 Shifts in microbial communities and abundance

Generally, the abundance of AOB was lower in soil pH < 5.5 than that in neutral 
soil pH. Here, nitrification was weak and almost disappears at soil pH < 4 [66]. 
However, AOA could mediate the process of ammonia oxidation in extremely strong 
acidity soil (pH: 4.2–4.47) [43]. Another study reported that the abundance of AOB 
was positively correlated with pH (R2 = 0.2807), while the abundance of AOA was 
negatively correlated with pH (R2 = 0.2141) [67]. For example, AOA dominated in 
acid paddy soil (pH 5.6), while AOB dominated in alkaline soil (pH 8.2) [68]. Previous 
research indicated that fungi were the main microbial community that mediated N2O 
emissions in acid soil [69, 70]. Additionally, fungi-mediated denitrification accounted 
for 70% soil N2O emissions from a 100-year-old tea plantation (soil pH 3.8) [71].

In acid soils, the activity of N2O reductase was inhibited, leading to higher N2O 
emissions in lower soil pH [72]. Indeed, there was a positive correlation between 
the abundance of nirS, nirK, or nosZ and soil pH (4.0–8.0) and a negative correla-
tion between N2O/(N2O + N2) and soil pH [73]. In agreement, N2O/(N2O + N2) 
was negatively correlated with soil pH (3.7–8.0) (R2 = 0.759, P < 0.001), and lime 
addition decreased N2O/(N2O + N2) [74]. The ratio of N2O/(N2O + N2) increased 
with decreasing pH (5.57–7.06) (R2 = 0.82) [75]. Consistently, soil pH was nega-
tively correlated with N2O/N2 [76]. Intensive management consistently decreased 
soil pH and increased the ratio of N2O/(N2O + N2) [77]. Increasing dolomite dosage 
increased soil pH and hence increased the transcription of nosZ genes and reduced 
the potential of N2O production in acid soils [26].

2.3.3 Microbes increased resistance to soil acidification

Laboratory study showed that the potential of soil N2O emissions was increased 
with decreasing pH (soil pH ranging from 2.96 to 6.26) from tea plantations in 
Japanese [78]. In addition, higher soil N2O emissions and lower abundance of nosZ 
genes were observed in soil pH at 3.71 (control) than in pH at 5.11, 6.19, and 7.41 
(lime amelioration) under NO3

−-N fertilization (50, 200, and 1000 mg kg−1) from a 
100-year-old tea plantation [79]. Field study found a negative correlation between 
soil N2O emissions and pH (pH 3.6–5.9) (N2O-N = 636.6* e−0.8028 * pH, R = −0.93) 
from Betula pendula Roth forest [80]. Thus, denitrifying microorganisms may have 
been adapted extremely to acid soil environments, resulting in high N2O emissions 
when soil acidification happened.

3. Sustainable forest management

Soil amelioration (e.g., application of lime, biochar nitrification inhibitors, and 
urease inhibitors) plays an important role in mitigation of soil acidification and N2O 
emissions.

3.1 Lime

Lime as an ameliorant was often used to amend acid soils in southern China due 
to increasing soil pH. It can relieve the toxic effect of soil Al3+ on plant growth by 
reducing soil exchangeable H+ [81]. Lime addition increased soil pH and salt satura-
tion [82]. In addition, application of lime can reduce soil N2O emissions [40]. For 
example, under 60% WFPS or flooded conditions, dolomite addition at medium- or 
high-dose levels (1 or 2 g kg−1 soil) can reduce N2O emissions and increase the tran-
scription of nosZ genes (N2O → N2) by increasing acid soil pH from a rice-rapeseed 
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rotation system [26]. However, lime addition reduced the content of soluble organic 
carbon in the soil layer 10–30 cm [83]. Consistently, long-term lime addition 
increased the soil pH but stimulated the decomposition of soil organic carbon [84].

3.2 Biochar

Biochar was stable in the soil from Amazon basin of Brazil, and biochar input 
improved soil fertility [85]. This discovery accelerated the development of tech-
nologies for biochar application in soil amelioration.

Biochar is a carbon (C)-rich solid material by pyrolyzing of organic biomass such as 
crop straw, forestry by-products, urban waste, industrial by-products, animal manure, 
and urban sludge at low oxygen and high temperature (250–700°C) condition [86]. 
Biochar has been characterized by a high pH, specific surface area, degree of aroma-
tization, and porosity. In addition, biochar is rich in C-containing functional groups 
(e.g., C–H, C–O, C=C and C=O) and relatively stable organic C. The physicochemical 
properties of biochar were mainly determined by pyrolysis temperature [87].

Presently, biochar was widely used as a soil ameliorant in agriculture and 
forestry field. For example, our previous studies reported that C. oleifera fruit shells 
are ideal feedstock for producing biochar as they are rich in C and N [1, 88]. Biochar 
includes the following advantages:

1. Carbon recalcitrance of biochar can increase soil C pool. The potential of bio-
char in mitigation of greenhouse gas emissions was 1.0–1.8 Pg CO2-Ceq yr−1 [89].

2. Biochar had excellent physicochemical characteristics in soil nutrient retention 
and utilization [90, 91] and water conservation [92]. Additionally, biochar can 
increase the plant resistance to Al3+ toxicity [81], the clone of arbuscular my-
corrhizal fungi, and crop yield [93, 94]. It can decrease continuous cropping 
obstacles such as root-knot nematode [95] and Ralstonia solanacearum [96].

3. Biochar is rich in macro- and microelements [97], which can reduce the dosage 
of fertilizer.

3.2.1 Effects of biochar on soil nitrous oxide emissions

The physicochemical properties of biochar and soil can interactively influence 
soil N2O emissions [98]. However, the effects of biochar on soil N2O emissions 
varied, including positive effects [99], negative effects [100], and no effects [101].

Biochar addition increased soil N2O emissions with the release of N from biochar 
[102]. By contrast, biochar reduced soil N2O emissions with (1) increased NO3

−-N 
immobilization [103]; (2) increased copy numbers of nosZ gene [104, 105]; and 
(3) increased toxic effects of polycyclic aromatic hydrocarbons and other toxic 
substances (pyrolysis by-products) on N-cycle microorganisms [106].

3.2.2 Effects of biochar on soil pH buffer capacity

Biochar that increased soil pH buffer capacity may predominantly correlate 
with biochar riches in oxygen-containing functional groups in surface. The anions 
of weakly acidic functional groups can associate with H+, hence increasing soil 
pH. Meanwhile, exchangeable base cations can release into the solution, thus 
increasing soil pH buffer capacity [107, 108]. In addition, soluble silicon (Si) such as 
H3SiO4

− (present at a high pH) can combine with H+ and generate H2SiO3 precipita-
tion [107, 108].
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3.3 Nitrification inhibitor

Nitrification inhibitors are a class of organic compounds that can inhibit the 
activity of nitrifying bacteria.

Nitrification inhibitors, especially synthetic nitrification inhibitors (e.g., 
dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP)), were 
widely used in agriculture for improving N use efficiency. Ammonia-oxidizing 
bacteria and AOA are the major microbial communities in nitrification and deni-
trification, and both contain amo enzyme that can catalyze ammonia oxidation 
(NH4

+-N → NH2OH). Synthetic nitrification inhibitors such as DCD and DMPP 
mainly inhibit nitrification by suppressing the activity of amo enzyme (a Cu-copper 
cofactor enzyme). In addition, biological nitrification inhibitors also can inhibit soil 
nitrification [109, 110]. In the mid-1980s, researchers found that Brachiaria humidi-
cola cv. Tully (CIAT 679), a single community forage, had lower nitrification rates 
than a single legume community or bare land [111]. This phenomenon stimulated 
further studies on biological nitrification inhibitors. The first biological nitrification 
inhibitor (methyl 3-(4-hydroxyphenyl) propionate: MHPP) was identified from 
the root exudate of Sorghum bicolor in 2008, which mainly inhibited the activity of 
amo enzyme [112]. Subsequently, biological nitrification inhibitor (brachialactone) 
from the root exudate of Brachiaria humidicola was found to inhibit the activity of 
amo enzyme [113]. The Nanjing Soil Research Institute of China firstly found and 
identified a biological nitrification, 1,9-decanediol, from the root exudate of rice, 
which can inhibit the activity of amo enzyme [114].

Ammonium N can be adsorbed by soil colloids, while soil NO3
−-N (the end 

product of nitrification) easily can be leached to groundwater by precipitation. In 
addition, microbial-mediated nitrification is closely related with soil N2O emissions 
[20–22]. Nitrification inhibitors can effectively inhibit soil nitrification, slowing the 
transformation of NH4

+-N to NO3
−-N and hence reducing the NO3

−-N leaching and 
N2O emissions.

An evaluation from 62 field studies showed that although nitrification inhibi-
tors increased 20% NH3 emissions, they reduced 48% inorganic N leaching, 44% 
N2O emissions, and 24% NO emissions and increased 58% plant N utilization, 
9% grain yield, 5% straw yield, and 5% vegetable yield [115]. Consistently, other 
studies evaluated that nitrification inhibitors decreased by 38% [116], 50% [117], 
or 73% [118] N2O emissions and decreased by 0.3 t CO2e ha−1 yr−1 [119]. Similarly, 
DCD did not increase crop yields but reduced 35% N2O emissions [120]. A meta-
analysis showed that DCD rather than DMPP significantly increased 6.5% crop 
yield as well as DCD and DMPP decreased N2O emissions by 44.7% and 47.6%, 
respectively [121].

Therefore, application of nitrification inhibitors could reduce N2O emissions 
and mitigate environmental pollution after intensive N inputs.

3.4 Urease inhibitors

Urease inhibitors are a class of compounds that can slow soil urease activity 
(Figure 2). Addition of urease inhibitors after urea input can inhibit the hydrolysis 

Figure 2. 
The chemical equation of urea hydrolysis with urease catalysis.
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of urea via inhibiting the activity of urease, hence reducing NH3 volatilizations and 
N2O emissions. Additionally, the application of urease inhibitors also contributes 
to increase N utilization efficiency and reduce NO3

−-N leaching. N-(n-butyl)
thiophosphoric triamide (NBPT) is one of the most wide and effective urease 
inhibitors.

Urease, a Ni-copper enzyme, has two Ni−O bidentate ligands, specifically cata-
lyzing urea into NH3 and CO2. Urea only can bind with one specific Ni−O ligand of 
urease, but NBPT can bind with two Ni−O bidentate ligands of urease and generate 
a tridentate ligand [122], hence inhibiting the activity of urease.

Presently, a meta-analysis reported that a nonlinear response was presented 
in soil NH3 volatilizations and N input [123]. Application of NBPT can effectively 
inhibit NH3 volatilizations. For example, 530 mg NBPT kg−1 urea treatment delayed 
NH3 volatilizations and decreased accumulation of NH3 volatilizations compared 
with the control treatment. NH3 volatilizations were linearly related with the 
NBPT dosage in the range of 0–1000 mg NBPT kg−1 Urea (0, 530, 850, 1500, and 
2000 mg NBPT kg−1 Urea) [124]. Other study reported that NBPT increased 27% 
oat yield and 33% crop N uptake [120].

The effects of NBPT on N2O emissions were controversial. For example, NBPT 
can reduce 80% N2O emissions [117]. No effects of NBPT (0.07%, NBPT/Urea-N, 
w/w) on N2O emissions were observed [125]. Similarly, there was no change of 
N2O emissions with NBPT (250 mg NBPT kg−1 Urea) addition from urea-fertilized 
(50 kg Urea-N ha−1) soil [126].

Additionally, NBPT can reduce N2O emissions from alkaline soils but has no 
effects on acidic soils [127], which indicated that pH plays a key role in the regula-
tion of NBPT effects on N2O emissions. Further laboratory study showed that NBPT 
inhibited nitrification, stimulating N2O emissions from alkaline soils (pH 8.05) but 
not affecting N2O emissions from acid soils (pH 4.85). This finding suggested that 
the effect of NBPT on soil N2O emissions is not only influenced by pH but also by 
other unknown factors [127].

Generally, urease inhibitors correlated with nitrification inhibitor could mitigate 
N2O emissions. A meta-analysis showed that urease inhibitors and nitrification 
inhibitors interactively reduced 30% N2O emissions [116]. For example, a field 
study reported that the combination of NBPT (0.3%, NBPT/Urea-N, w/w) and 
DCD (0.3%, DCD/Urea-N, w/w) reduced 32.1% soil N2O emissions with the addi-
tion of 519 kg Urea-N ha−1 from banana plantation, but did not affect the yield of 
banana [128].

4. Sustainable management in Camellia oleifera plantations

Our previous incubation study found that although biochar application 
increased N2O emissions, DCD addition decreased soil N2O emissions under urea 
fertilization from C. oleifera field [88]. Our field study showed that N2O emission 
rates were inhibited by biochar or DCD application and the effects of biochar 
application on mitigation of cumulative N2O were comparable to DCD addition in 
C. oleifera plantations [1]. Compared with control treatment, available N (NH4

+-N 
and NO3

−-N) was not affected by NH4NO3, NH4NO3 + DCD, or NH4NO3 + biochar 
treatment [1]. In addition, the seed yield of C. oleifera was higher in NH4NO3 or 
NH4NO3 + biochar treatment than that in control or NH4NO3 + DCD treatment 
(Figure 3). Soil amelioration is necessary and improves N use efficiency and pH, 
mitigating N2O emissions. Soil amelioration plays an important role in the sustain-
able management of oil safety in C. oleifera plantations.
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5. Conclusions

Soil acidification, especially induced by N fertilization, will inhibit the activ-
ity of N2O reductase and increase the abundance of N2O-producing fungi as well 
as the acid resistance of N2O-producing microorganisms, hence the ratio of N2O/
(N2O + N2). In addition, NO2

− will generate NO under soil pH < 5.5 condition, 
which will further transform into N2O. Under the background of global acidifica-
tion, the soil from C. oleifera forest also suffers the potential risks of soil acidifica-
tion and N2O emissions. Mitigation of soil acidification and N2O emissions by soil 
amelioration is necessary and improves N use efficiency and soil pH from C. oleifera 
plantations. Soil amelioration such as biochar and nitrification inhibitor plays an 
important role in sustainable forest management in C. oleifera plantations.
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