
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Rock Physics: Recent History and
Advances
Jack Dvorkin

Abstract

This chapter presents the basics of rock physics, the science exploring
quantitative relations between various properties (attributes) of the holistic object
we call natural rock. This chapter includes several sections, starting with the history
and basics; proceeding to the effects of the pore fluid on rock properties; discussing
several variables that influence the elastic properties of rocks; presenting selected
theories that relate the elastic properties to the porosity, mineralogy, and texture of
rocks; and introducing the latest development, digital rock physics. Data examples
shown here illustrate qualitative reasoning. Equations are presented as well to
mathematically express the conceptual theories discussed. Most importantly, rock
physics references are listed to help the reader become willing to delve deeper into
the topic and start applying rock physics theories, concepts, and ideas to field data.

Keywords: rock physics, elastic-wave velocities, mineralogy, porosity,
permeability, effective medium models

1. Introduction: subject of rock physics, background, and brief history

Rock physics is often called a “velocity-porosity” science. The idea behind this
name is to predict the elastic-wave velocities in porous rock from its porosity or
implement an inverse operation and interpret the velocity measured in a well or
using seismic tomography or reflection techniques for the porosity of rock. It is
important to mention that the elastic-wave velocities are related to the elastic
moduli of rock as follows:

Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ 4=3G

ρb

s

;V s ¼

ffiffiffiffiffi

G

ρb

s

, (1)

where Vp and V s are the P- and S-wave velocities, respectively; K and G are the
bulk and shear moduli, respectively; and ρb is the bulk density. The latter quantity is
related to the total porosity ϕ as

ρb ¼ 1� ϕð Þρs þ ϕρ f , (2)

where ρs is the density of the mineral matrix also called the solid component of
the rock, while ρ f is the density of the pore fluid.
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Important elastic constants used in rock physics are the bulk (K), shear (G), and
compressional (M) moduli, as well as the P-wave (Ip) and S-wave (Is) impedances
and Poisson’s ratio (ν):

M ¼ ρbV
2
p; G ¼ ρbV

2
s ; K ¼ M� 4=3G;

Ip ¼ ρbVp; Is ¼ ρbVs; ν ¼
1

2

Vp=Vs

� �2
� 2

Vp=Vs

� �2
� 1

:
(3)

Most of natural rocks contain more than one mineral. In this situation, ρs can be
computed as the arithmetic average of the densities of the individual components:

ρs ¼
X

N

i¼1

fiρi, (4)

where fi is the volume fraction of the i-th mineral component in the mineral
matrix and ρi is its density. These individual densities can be found in handbooks,
such as Mavko et al. [1]. They can vary between, e.g., 2.58 g/cc in clay and 4.93 g/cc
in pyrite.

The same rule applies to the density of the pore fluid:

ρ f ¼ Swρw þ Soρo þ Sgρg, (5)

where Sw, So, and Sg are the water, oil, and gas saturations in the pore space,
respectively, and ρw, ρo, and ρg are the densities of these pore fluid components. Of

course, it is required that

X

N

i¼1

fi ¼ 1 (6)

and

Sw þ So þ Sg ¼ 1: (7)

Because of the link between the elastic-wave velocities and elastic moduli as
given by Eq. (1), it is often instructive to relate these elastic moduli to porosity.
Such approach opens an avenue to using the so-called effective medium theories
where the elastic moduli are theoretically related to porosity and the geometry of
rock, referring to the spatial arrangement of pores and grains, as well as shapes of
these pores and grains.

It has been discovered early that the velocity and elastic moduli not only depend
on porosity, but also on the properties of the mineral frame. A rule of thumb is that
at the same porosity, the softer the mineral frame, the smaller the elastic moduli of
rock. For example, at the same porosity, rocks containing soft clays have velocities
smaller than rocks dominated by stiffer quartz. Hence, rock physics is not only a
“velocity-porosity” science but also a “velocity-porosity-mineralogy” science.

The situation becomes more complex if we consider the effects of the pore fluid
on the elastic moduli (and velocities) of a porous composite. It is intuitively clear
that the less compressible the pore fluid (water versus gas), the stiffer the entire
rock, meaning that its bulk modulus is higher. Now we are talking about “velocity-
porosity-mineralogy-fluid.”
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The science of rock physics also includes understanding and quantification of
other rock properties, such as hydraulic permeability and electrical resistivity, and
their relation to other attributes, namely, porosity, rock texture, and mineralogy.

Generally, contemporary rock physics treats natural rock as a holistic object
whose various properties (attributes) are extracted from experiments simulating
processes, such as elastic-wave propagation, fluid and electrical transport, nuclear
magnetic resonance (NMR), and breakage. We seek a theoretical understanding of
interrelations between such attributes and their mathematical quantification. Such
relations are also called rock physics models (RPM) or transforms. Needless to say
that such quantification has to be “as simple as possible but not simpler.”

Finally, the newest branch of rock physics is digital rock physics (DRP) whose
mandate is to “image and compute,” image rock at the pore scale and digitally
simulate various processes within the digital image. For example, simulations of
viscous fluid flow yield permeability, simulations of electrical charge transport yield
resistivity, and simulations of deformation under stress yield the elastic moduli.

Let us now review some of historic developments in rock physics.
Arguably, the first rock physics velocity-porosity transform was introduced by

Wyllie et al. [2]. It simply states that the total P-wave traveltime through rock with
porosity ϕ is the sum of the travel times through the mineral and fluid parts of the
rock. This is why it is called the time-average equation. In terms of the P-wave
velocities, this formulation is

1

Vp
¼

1� ϕ

Vps
þ

ϕ

Vpf
, (8)

where Vp is the P-wave velocity, Vps is the velocity in the mineral phase, and Vpf

is that in the fluid phase. Examples for 100% quartz and 100% dolomite rock are
shown in Figure 1. Also shown is an example for rock with mixed 50% quartz and
50% dolomite mineralogy. At the same porosity, Vp is highest in stiffer dolomite,
lowest in softer quartz, and falls in between for the mixed mineralogy. The pore
fluid was water with Vpf = 1500 m/s.

Equation (8) is purely empirical in spite of its physically meaningful form.
Indeed, in real rock, the mineral and fluid parts are not arranged in layers to enable
a simple summation of the respective traveltimes. Still, this equation gives a rea-
sonably accurate approximation for Vp in “fast” sediments as discussed in Mavko
et al. [1]. Also note that it can only work for rock with liquid since in vacuum dry
rock, Vpf = 0. Yet, as have been shown by seismic experiments on the moon, Vp in

such sediment is finite.

Figure 1.
Vp versus porosity according to the Wyllie et al. [2] and Raymer et al. [3] transforms for quartz, dolomite, and
mixed mineralogy. Legend in the middle refers to all plots.
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Equation (8) has dominated petrophysical interpretation of velocity for porosity
for a long time. It gave rise to the so-called sonic porosity computed from wireline
velocity data as

ϕ ¼
V�1

p � V�1
ps

V�1
pf � V�1

ps

: (9)

The next historic equation was introduced by Raymer et al. [3]:

Vp ¼ 1� ϕð Þ2Vps þ ϕVpf : (10)

As Eq. (8), it is purely empirical, derived from wireline data. Still, it is very
meaningful as it can be applied to rock with any fluid inside, even where Vpf = 0. As

shown in Dvorkin et al. [4], it is more accurate than the Wyllie et al. [2] time
average if applied to “fast” consolidated sediments. Velocity-porosity examples
according to this equation are also shown in Figure 1.

We conclude this section by presenting equations relating the electrical resistiv-
ity to porosity and absolute hydraulic permeability to porosity.

The former transform relates the resistivity Rt of rock fully saturated with
conductive fluid (brine) with resistivity Rw as

F ¼
Rt

Rw
¼

1

ϕm , (11)

where F is called the formation factor and m is the cementation exponent. In
many sandstones m is approximately 2; however it may be much larger in carbon-
ates [1]. Figure 2 shows experimental data for Fontainebleau sandstone [5] with
Eq. (11) curves for m = 1.5, 2.0, and 2.5 superimposed.

At partial brine saturation, Sw < 1, the resistivity of rock RtS not only depends on
porosity but also on saturation Sw as

RtS

Rw
¼

1

ϕmSnw
¼

F

Snw
, (12)

Figure 2.
Left: F versus porosity according to Eq. (11) for m = 1.5, 2.0, and 2.5 with Fontainebleau experimental data
shown as symbols. Right: RtS/Rw ratio versus water saturation for ϕ = 0.2 and m = n = 2.0 (Eq. (12)).

4

Geophysics and Ocean Waves Studies



where n is the saturation exponent. This exponent is much more elusive than m
since laboratory experiments measuring resistivity at partial saturation are scarce.
Generally, n should be larger than 1.0 and approach 2.0. An example of RtS=Rw

versus Sw is shown in Figure 2 for porosity 0.2, m = 2.0, and n = 2.0.
Both Eqs. (11) and (12) were discovered by Archie in 1942 [6] and remain the

cornerstone of resistivity interpretation for hydrocarbon saturation in the wellbore.
Various modifications of these equations dealing with resistivity interpretation in
sediments containing clays and shales are discussed in Mavko et al. [1].

The historic absolute permeability prediction equation is called the Kozeny-
Carman [7] formula. It is based on an extremely idealized representation of pores as
a set of parallel pipes inclined to the direction of pore pressure gradient at an angle α.
The tortuosity τ of these pores is defined as

τ ¼ 1= cos α≥ 1: (13)

The permeability k is also a function of the specific surface area S defined as the
ratio of surface of the pore space SPore to the total volume V of the rock sample:

S ¼ SPore=V: (14)

A variable alternative to S is the grain size (or grain diameter) d.
The Kozeny-Carman equation reads [1]

k ¼
1

2

ϕ3

S2τ2
¼

1

72
d2

ϕ3

1� ϕð Þ2τ2
: (15)

A modified version of this equation is based on the assumption that k becomes
zero not at zero porosity but at a finite and very small porosity value ϕp called the

percolation porosity:

Figure 3.
Permeability versus porosity plots as explained in the text.
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k ¼
1

72
d2

ϕ� ϕp

� �3

1� ϕ� ϕp

� �h i2
τ2
: (16)

It follows from Eq. (15) that the unit of absolute permeability is length squared.
However, traditionally, the permeability unit is Darcy (D) or milli-Darcy (mD).
One D is 10�13 m2, while one mD = 10�15 m2.

Figure 3 shows experimental permeability data for Fountainebleau sandstone
and two North Sea sand sets with an Eq. (16) curve superimposed for d = 0.25 mm,
τ = 2.5, and ϕp = 0.02. This theoretical curve matches the Fountainebleau data, while

the permeability from the other two datasets falls below this curves. The reason is
the varying grain size as discussed in Mavko et al. [1].

2. Effect of pore fluid on elastic properties

Laboratory experiments measuring the elastic-wave velocities in rock often show
that the presence of the fluid in the pores strongly affects the elastic properties
(Figure 4). Such dramatic results, especially for Vp, are in part due to the fact that
such experiments are commonly conducted at very high frequencies, on the order of
1 MHz. In this frequency range, the fluid in the pores is “unrelaxed” and acts to
strongly reinforce the soft mineral frame, thus increasing the bulk modulus (e.g., [1]).

Arguably, the most important contribution to rock physics is Gassmann’s fluid
substitution theory [9]. This theory allows us to compute the bulk modulus of
porous rock filled with Fluid A if this modulus is known (measured) in the same
rock but filled with Fluid B. These derivations were conducted under the assump-
tion that the wave-induced pore pressure oscillations equilibrate within the sample
over the wave period, meaning that Gassmann’s is a low-frequency theory. Hence, it
is applicable at the wireline and seismic frequency ranges. It helps predict the
seismic response of rock filled with any hypothetical fluid if it is measured in situ
where the pore fluid is known. For example, if the elastic properties of rock are
measured in situ in rock 100% filled with water, we can predict these properties in
the same rock but filled with oil or gas.

Figure 4.
Vp (left) and Vs (right) of high-porosity unconsolidated sand versus hydrostatic confining pressure. The pore
pressure is constant 0.1 MPa. Squares are data obtained in ultrasonic pulse transmission experiments on the
water-saturated sample. Circles are for the room-dry sample (after Zimmer [8]).
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Gassmann’s theory provides the bulk modulus in fluid-saturated rock (KSat) as a
function of the dry rock bulk modulus (KDry), the bulk modulus of the solid phase
(Ks), that of the pore fluid (K f ), and total porosity (ϕ). It assumes that the shear

modulus is fluid-independent

KSat ¼ Ks

ϕKDry � 1þ ϕð ÞK fKDry=Ks þ K f

1� ϕð ÞK f þ ϕKs � K fKDry=Ks
, GSat ¼ GDry: (17)

The latter equation can be rearranged as follows:

KDry ¼ Ks

1� 1� ϕð ÞKSat=Ks � ϕKSat=K f

1þ ϕ� ϕKs=K f � KSat=Ks
, GDry ¼ GSat: (18)

Equations (17) and (18) provide us with a fluid substitution recipe as follows.
Assume that we know the bulk modulus KSatA of rock saturated with Fluid A whose
bulk modulus is KfA and density is ρfA. Then from Eq. (17), we obtain:

KDry ¼ Ks

1� 1� ϕð ÞKSatA=Ks � ϕKSatA=KfA

1þ ϕ� ϕKs=KfA � KSatA=Ks
: (19)

The bulk modulus KSatB of the same rock saturated with Fluid B is (Eq. (17)):

KSatB ¼ Ks

ϕKDry � 1þ ϕð ÞKfBKDry=Ks þ KfB

1� ϕð ÞKfB þ ϕKs � KfBKDry=Ks
, (20)

where KfB is the bulk modulus of Fluid B.
Of course, the shear modulus of the rock remains the same, no matter what fluid

it is saturated with.
It is important to remember that the bulk density ρb of the rock is also a function

of the pore fluid. It depends on the porosity and density of the fluid (ρfA or ρfB):

ρbB ¼ ρbA � ϕρfA þ ϕρfB, (21)

where ρbA and ρbB are the bulk densities of the rock with the two pore fluids,
respectively.

Finally, we can compute the elastic-wave velocities, as well as other seismic
attributes, once we know the elastic moduli:

VpB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KSatB þ 4=3GDry

ρbB

s

; V sB ¼

ffiffiffiffiffiffiffiffiffiffi

GDry

ρbB

s

, (22)

and

IpB ¼ ρbBVpB; νB ¼
1

2

VpB=VsB

� �2
� 2

VpB=VsB

� �2
� 1

, (23)

where IpB and νB are the P-wave impedance and Poisson’s ratio of the rock
filled with Fluid B, respectively. Although the shear modulus G is pore-fluid-
independent, Vs is since the bulk density varies with varying fluid.

Let us refer to a later important development in theoretical fluid substitution. It
stemmed from the fact that Gassmann’s theory [9] requires the knowledge of the
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bulk modulus that can only be computed using Eq. (1) if both Vp and Vs (and the
bulk density ρb) are known. In practice, the shear wave velocity may not be
available. To address this issue, Mavko et al. [10] derived an approximate (but quite
accurate) Vp—only fluid substitution theory that uses the compressional modulus

M ¼ ρbV
2
p instead of the bulk modulus K. The functional form in this theory is the

same as that in Gassmann’s:

MSat ≈Ms

ϕMDry � 1þ ϕð ÞK fMDry=Ms þ K f

1� ϕð ÞK f þ ϕMs � K fMDry=Ms
,

MDry ≈Ms

1� 1� ϕð ÞMSat=Ms � ϕMSat=K f

1þ ϕ� ϕMs=K f �MSat=Ms
:

(24)

Figure 5 shows an example of the results of fluid substitution (pure water) on
the elastic properties of high-porosity sand measured in the laboratory [11] at room-
dry conditions. Clearly, the pore fluid has a dramatic effect on Poisson’s ratio. Such
plots are basis for in situ fluid identification from seismic data.

Let us finally describe the details required in practical fluid substitution, specif-
ically the computation of Ks, ρs, K f , and ρ f .

The elastic moduli of the multi-mineral rock matrix Ks and Gs can be obtained
using Hill’s average (e.g., [1]) as

Ks ¼
KV þ KR

2
,Gs ¼

GV þGR

2
, (25)

where

KV ¼
X

N

i¼1

fiKi,GV ¼
X

N

i¼1

fiGi,

K�1
R ¼

X

N

i¼1

fiK
�1
i ,G�1

R ¼
X

N

i¼1

fiG
�1
i ,

(26)

where N is the number of the mineral components, fi is the volume fraction of ith

mineral, and Ki and Gi are the bulk and shear moduli of the ith component. The
pure-mineral elastic moduli, as well as their densities, can be found in various
sources, including Mavko et al. [1].

The bulk modulus of the pore fluid is

Figure 5.
Sand experimental data and fluid substitution. Left. The bulk and shear moduli versus confining pressure as
measured (dry) and water-substituted using Gassmann’s theory [9]. Middle. Vp and Vs versus confining
pressure as measured (dry) and water-substituted. Right. The P-wave impedance versus Poisson’s ratio as
measured (dry) and water-substituted, color-coded by the confining pressure.
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1

K f
¼

Sw
Kw

þ
So
Ko

þ
Sg
Kg

, (27)

where Kw, Ko, and Kg are the bulk moduli of water, oil, and gas, respectively. To
estimate these moduli, as well as the densities used in Eq. (5), we refer to [12].

3. Variables influencing the elastic properties of rocks

In addition to the pore fluid, there are two more important variables influencing
the elastic properties of rocks, their mineralogy and the differential pressure PDiff

(or stress) defined as the difference between the confining PConfining (the overbur-

den) and pore pressure PPore:

PDiff ¼ PConfining � PPore: (28)

Of course there are other influencing factors, such as rock texture (clastics
versus carbonates versus unconventional shale), temperature, and diagenetic
history. Here we only concentrate on the abovementioned two.

Mineralogy. As an example, let us examine the Han [13] laboratory dataset
obtained on a large suite of sandstones with porosity ranging from zero to 30% and
clay content between zero and 50%. Figure 6 shows Vp and V s versus porosity and
color-coded by the clay content.

Figure 6.
Dry rock Vp (top) and Vs (bottom) versus porosity, color-coded by the clay content, at confining pressure
50 MPa (left) and 5 MPa (right) (after Han [13]).
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Obviously, the clay content plays a dramatic role acting to reduce both Vp and
Vs at the same porosity. Also notice that the velocity-porosity-mineralogy trends are
much more pronounced at 50 MPa. This is a commonly observed effect due to much
clearer manifestations of key rock properties at high confining stress. The high-
porosity data point in Figure 6 at porosity about 0.33 is for unconsolidated Ottawa
sand sample. The effect of pressure on its velocities is very strong, similar to what
we observe in Figure 5 for a sand of different provenance.

Another striking example of velocity discrimination due to mineralogy comes
from unconventional shale with data obtained by wireline logging in a vertical well
(Figure 7). The data shown in this figure is for 100% wet rock, obtained by fluid
substitution from in situ conditions. The velocity-porosity dataset forms an amor-
phous cloud (Figure 7, top) with both Vp and Vs varying by almost 1.5 km/s at the
same porosity. However, as soon as we introduce a third variable, the sum of the
clay and kerogen contents, we observe a clear velocity discrimination with the
velocity decreasing as the fraction of this softest component of the solid matrix
increasing (Figure 7, bottom).

The Raymer et al. [3] model also predicts a strong dependence of the velocity on
mineralogy (Figure 8), as well as the pore fluid, the latter well pronounced at
higher porosity.

Stress. The effect of the confining pressure on the velocity in sand can be clearly
seen in Figure 5 with Vp in dry rock increasing by about 2.0 km/s and Vs by 1.5 km/
s as PDiff varies from almost zero to 50 MPa. Two more examples are shown in

Figure 7.
100% wet rock Vp (left) and Vs (right) without accounting for mineralogy (top) and color-coded by the sum of
clay and kerogen contents (bottom) (adopted from Dvorkin et al. [14]).
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Figure 9, one for a sandstone from the North Sea and the other from the Gulf of
Mexico.

The velocity in carbonate rocks is often not as affected by stress as it is in clastic
samples. The magnitude of this effect is often influenced by the presence of com-
pliant cracks in the rock. Such cracks act to strongly affect the velocity at low

Figure 8.
Vp versus porosity according to the Raymer et al. [3] model for dry rock (left) and 100% water-saturated rock
(right). The mineralogy is quartz and clay. The upper curves is for zero clay content, while the bottom curve is
for 100% clay. The in-between curves are for gradually increasing clay content with increment 10% (top to
bottom).

Figure 9.
Vp (left) and Vs (right) versus pressure for two dry sandstone samples from the North Sea (top) and Gulf of
Mexico (bottom).
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pressure while they are open. As the pressure increases, these cracks close acting to
increase the velocity (Figure 10, Sample A). In samples where the cracks are absent,
the velocity hardly varies as a function of pressure (Figure 10, Sample B).

Notice that both historic velocity-porosity model byWyllie et al. [2] and Raymer
et al. [3] do not account for the dependence of the elastic-wave velocities on the
confining stress. Both models are suitable for predicting the elastic properties at
high, but not at low stress.

The velocity-stress dependence is important in understanding and predicting the
seismic responses during hydrocarbon recovery, a process where the differential
pressure may increase during production if the reservoir is depleted and the pore
pressure is reduced, while the overburden remains constant. This differential pres-
sure may decrease during enhanced oil recovery where water or gas are injected into
the reservoir at high pressure, acting to reduce the difference between the overbur-
den and pore pressure. Plots similar to that shown in Figure 5 (right-hand frame)
are useful in simultaneously assessing the effects of the pore fluid and differential
pressure on the elastic attributes.

4. Theoretical velocity-porosity models

There are two kinds of elastic moduli versus porosity effective medium models:
(a) inclusion models and (b) grain-based models. The first kind models build a rock
from the zero-porosity endpoint by placing inclusions into the solid matrix [1].
These models are perhaps relevant to some carbonate rocks where the pores appear
as inclusions in calcite or dolomite matrix. The second kind assumes that the rock is
formed by solid grains which comprise an uncemented grain pack at the high-
porosity endpoint (also called the critical porosity) and, as the porosity is reduced,
the original pack is altered either by grain contact cement or by smaller grains
deposited in the pore space between the original larger grains, or a combination of
these two processes.

As an example of the inclusion models, consider the differential effective
medium model (DEM), where spheroidal pores are placed inside the solid matrix. A
spheroid is an ellipsoid with two large diameters equal to each other and the third
diameter smaller or equal to these two. The ratio of the small to large diameter is
called the aspect ratio α≤ 1. If the spheroid is a sphere, α = 1. The inputs are the bulk
and shear moduli of the mineral matrix and those of the inclusions.

Figure 10.
Same as Figure 9 but for two chalk samples from Ekofisk field in the North Sea. Velocities in sample A (porosity
0.38) is pressure dependent, while the velocities in sample B (porosity 0.31) hardly vary with pressure.
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Figure 11 (top) shows how the bulk and shear moduli depend on the total
porosity for pure calcite rock with the bulk and shear moduli of the mineral 76.8 and
32.0 GPa, respectively, and its density 2.71 g/cc. The pores are empty, meaning the
bulk and shear moduli of the inclusions are zero. In the same figure (bottom), we
plot the respective Vp and V s. The aspect ratio is different for each of the curves
shown. It is 1.00 for the upper curves and gradually decreases to 0.50, 0.20, 0.10,
and 0.01 for the curves below. The smaller the aspect ratio, the smaller the elastic
moduli and velocities at a fixed porosity.

Figure 12 is the same as Figure 11 except that we use a single aspect ratio 0.10
and compare the results for empty inclusions with those for water-filled inclusions
where the bulk modulus is 2.25 GPa and density is 1.00 g/cc.

We observe that both the bulk and shear moduli increase for pores filled with
water as compared to empty pores. So do Vp and Vs. This means that DEM is not
consistent with Gassmann’s fluid substitution theory [9] which predicts that the
shear modulus is pore-fluid-independent and Vs reduces upon saturation due to
increasing bulk density.

Notice that DEM curves connect two endpoints, one at zero porosity where the
elastic moduli of rock are those of the mineral matrix and the other at 100%
porosity where the elastic moduli are those of the inclusions (fluid in the pores).
About three decades ago, Nur observed that most natural rocks simply do not exist
in the entire zero to 100% porosity range. The maximum geologically plausible
porosity for clastic rocks (sands and sandstones) is about 0.40. It may be higher in

Figure 11.
Elastic moduli (top) and velocities (bottom) versus porosity computed using DEMmodel for a pure calcite rock.
The aspect ratio corresponding to the top curves is 1.00 and for the bottom curve 0.01. The aspect ratio
gradually decreases to 0.50, 0.20, and 0.10 for the curves in between (top to bottom).
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carbonates, such as chalks, that can have porosity up to 0.50. This porosity can be
even higher for foam-like formations, such as volcanic rock (pumice) or artificially
manufactured glass foam. This maximum porosity is called the critical porosity.
This concept was formalized in Nur et al. [15].

One implication of the critical porosity concept is that the high-porosity end-
point should be at the critical porosity rather than at 100% porosity. It gave rise to
the so-called modified elastic bounds. The simplest example is based on the upper
elastic bound (also called the Voigt bound) for a composite made of two elastic
components (“1” and “2”) with the compressional and shear moduliM1, G1 andM2,
G2, respectively.

Assume thatM2 =G2 = 0. Then the respective moduli of this composite (M andG)
at porosity ϕ cannot exceed

M ¼ 1� ϕð ÞM1;G ¼ 1� ϕð ÞG1: (29)

These two curves are plotted in Figure 13. In the same figure, we plot Han’s [13]
data for low-clay-content samples at 50 MPa confining pressure. These data fall way
below the upper bound curves for pure quartz withM1 = 96.6 GPa andG1 = 45.0 GPa.

The modified bounds use the same equations, but with porosity scaled by the
critical porosity ϕc:

M ¼ 1� ϕ=ϕcð ÞM1;G ¼ 1� ϕ=ϕcð ÞG1;ϕ≤ϕc, (30)

giving modified curves that are much closer to the data (Figure 13).

Figure 12.
Same as Figure 11 but for a single aspect ratio 0.10 and for empty pores (black) and pores filled with water
(blue).
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All grain-based theories exploit the critical porosity concept. We start with the
contact-cement theory where it is assumed that the grains are not subjected to any
confining stress at ϕc, and, as a result, the elastic moduli are zero, and porosity
reduction is due to cement rims enveloping the grains (Figure 14). Such contact
cement acts to rapidly increase the elastic moduli of the grain pack due to the
dramatically expanding contact areas between the grains as porosity decreases, as
explained in Dvorkin et al. [4], where the theoretical equations are given as well.
This model is only valid in the very high-porosity range.

The soft-sand model assumes that at the critical porosity and the elastic prop-
erties of the grain pack are given by the Hertz-Mindlin [16] contact theory. This
theory assumes that the grain pack is made of identical spherical grains whose
elastic properties are those of the mineral (solid) matrix as given by Eq. (25).
Combined with the mean field approximation that assumes that all grains are
subject to identical local stresses and have the same average number of contacts per

Figure 13.
Upper and modified upper elastic bounds for the compressional (left) and shear (right) moduli versus porosity.
The critical porosity is 0.36. Data are from Han’s [13] sandstone dataset for the clay content below 7% and
with the elastic-wave velocities measured on dry samples at 50 MPa confining pressure.

Figure 14.
Schematic modes of porosity reduction. From top to bottom: Contact-cement and stiff-sand model; soft-sand
model; and constant-cement model (adopted from Dvorkin et al. [4]).
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grain n (also called the coordination number), the respective dry rock bulk (KHM)
and shear (GHM) moduli are

KHM ¼
n2 1� ϕcð Þ2G2

s

18π2 1� νsð Þ2
P

" #1
3

, GHM ¼
5� 4νs
5 2� νsð Þ

3n2 1� ϕcð Þ2G2
s

2π2 1� νsð Þ2
P

" #1
3

, (31)

where P is the differential pressure (Eq. (28)) and Gs and νs are the shear
modulus and Poisson’s ratio of the solid matrix, respectively. This model implies
that porosity reduction is not due to contact-cement deposition but instead due to
smaller particles deposited away from grain contacts (Figure 14).

The coordination number n in an identical grain pack at the critical porosity is
about 6.

It is assumed in Eq. (31) that the grains have infinite friction (no slip) at their
contacts. If we allow only the fraction f of these contacts to have infinite friction
while the rest of the contacts are frictionless and can slip, the equation for KHM does
not change but GHM becomes now

GHM ¼
2þ 3f � ν 1þ 3fð Þ

5 2� νð Þ

3n2 1� ϕcð Þ2G2

2π2 1� νð Þ2
P

" #1
3

: (32)

This parameter f is called the shear stiffness correction factor.
Finally, to obtain the dry rock bulk (KSoft) and shear (GSoft) moduli at any

porosity ϕ < ϕc, we use the modified (critical porosity scaled) lower Hashin-
Shtrikman bound (e.g., [4]):

KSoft ¼
ϕ=ϕc

KHM þ 4
3GHM

þ
1� ϕ=ϕc

K þ 4
3GHM

" #�1

�
4

3
GHM,

GSoft ¼
ϕ=ϕc

GHM þ zHM
þ
1� ϕ=ϕc

Gþ zHM

� ��1

� zHM, zHM ¼
GHM

6

9KHM þ 8GHM

KHM þ 2GHM

	 


:

(33)

It is important to emphasize that the critical porosity endpoints here do not
necessarily have to be given by the Hertz-Mindlin contact theory. Alternatively,
these values can be selected from experimental data. What is most important in this
model is the usage of the “soft” connection between the two porosity endpoints.

An alternative “stiff” connection between the aforementioned endpoints is
given by the modified upper Hashin-Shtrikman bound as

KStiff ¼
ϕ=ϕc

KHM þ 4
3Gs

þ
1� ϕ=ϕc

K þ 4
3Gs

" #�1

�
4

3
Gs,

GStiff ¼
ϕ=ϕc

GHM þ z
þ
1� ϕ=ϕc

Gs þ z

� ��1

� z, z ¼
Gs

6

9Ks þ 8Gs

Ks þ 2Gs

	 


,

(34)

where, once again, Gs and Ks are the shear and bulk moduli of the solid matrix,
respectively.

This stiff connection, also called the stiff-sand model, can serve to connect the
contact-cement curve with the zero-porosity endpoint.

Yet another model belonging to this family is the constant-cement model. It
assumes that the grains have initial contact cementation with further porosity
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reduction due to the placement of small particles away from grain contacts
(Figure 14). The functional form of this model is the same as in the soft-sand model
(Eq. (33)) but with artificially high coordination number.

Examples of velocity-porosity curves according to the aforementioned grain-
based theories are shown in Figure 15, where we assumed that both the grain and
cement materials are pure quartz; n for the soft-sand model is 6, while it is 20 for
the constant-cement model; and the differential pressure is 20 MPa. The shear
stiffness correction factor is 1.

Figure 16 shows an example of using the constant-cement model to describe the
elastic behavior of unconventional gas shale, while Figure 17 is an example of
applying the stiff-sand model to carbonate reservoirs. The parameters of the models
are provided in the captions. These two examples show that the grain-based theo-
ries given here are appropriate not only for clastic sediments but also in very
different lithological settings.

Figure 18 shows laboratory data obtained at 30 MPa confining pressure on dry
high-porosity, almost pure-quartz sand samples from the North Sea. In this classic
example, the higher-velocity dataset is contact-cemented turbidite sand, while the

Figure 15.
Velocity-porosity curves according to the soft-sand, stiff-sand, contact-cement, and constant-cement models as
explained in the text.

Figure 16.
Vp (left) and Vs (right) versus porosity for gas shale from wireline data adjusted for 100% water saturation.
The color code is the sum of the clay and kerogen volume fractions (red for high and blue for low). The model
curves are computed to bound the data. These curves are from the constant-cement model with the coordination
number 12, differential pressure 26 MPa, critical porosity 0.40, and shear stiffness correction factor 1 (adopted
from Dvorkin et al. [14]).
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lower-velocity dataset is friable and virtually uncemented sand. The former data
can be matched by the contact-cement curves transitioning into the stiff-sand
trajectories. The latter data are matched by the soft-sand curves.

5. Digital rock physics

Digital rock physics is based on the concept “image and compute,” image rock at
the pore scale (Figure 19) and then simulate in the computer various processes in
such an image to arrive at a desired rock property. These simulations include
viscous fluid flow to arrive at hydraulic permeability, electrical charge flow to arrive
at electrical resistivity, as well as elastic deformation to arrive at the elastic moduli
and velocities.

The advantage of such digital approach is that the same sample can be reused
multiple times, unlike in physical experiments where a sample is altered after every
test; the sample can be digitally altered by, e.g., introducing digenetic cementation,
which is hardly possible in physical experiments, as well as subsampling of a digital
volume to investigate how various rock properties vary within the volume and how
relations between rock properties depend on the spatial scale of investigation.

Figure 17.
Velocity- (left) and impedance-porosity (middle) plots showing chalk (gray) and lower-porosity carbonate
(black) data points from wireline data adjusted for 100% water saturation. Graph on the left is the impedance
versus Poison’s ratio plot, also for 100% water saturation conditions. The curves are from the stiff-sand model
with the coordination number 6, differential pressure 30 MPa, critical porosity 0.40, and shear stiffness
correction factor 1. The two model curves are for the two slightly different properties of the pure calcite end
member (adopted from Dvorkin and Alabbad [17]).

Figure 18.
Vp (left) and Vs (right) versus porosity for two high-porosity sand datasets as explained in the text. The model
curves marked in the plots are computed for 30 MPa differential pressure, critical porosity 0.40, coordination
number 7, shear stiffness correction factor 1, and dry rock.
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Although the aforementioned concept is simple, its implementation is not. First,
the imaging has to be conducted at the appropriate scale and resolution to reveal the
salient features of natural rock relevant to the process under examination. Second,
the image has to be segmented to separate minerals from pores and segregate
various minerals within the solid matrix, as well as fluid phases inside the pores.
Third, powerful computational engines have to be utilized and verified to simulate
processes relevant to the physical experiment.

In spite of these complexities, during the last decade, DRP has emerged as a
powerful technique complementing (if not replacing) physical testing, mostly due
to the recent advances in imaging hardware and image processing and computa-
tional software, the latter combined with steadily improving computational power.
Not only DRP has become a novel research tool in academia and national labs, but is
has also been adopted by leading oil and service companies.

There is one more inherent feature of DRP that needs to be accounted for. Pore-
scale rock images are only a few mm in size, and the higher the resolution needed to
revel the salient features, the smaller the field of view. At the same time, these
computational results have to be relevant at much larger spatial scales of feet for
wireline measurement interpretations in the well or tens and hundreds of feet in
seismic prospecting. Even such basic property as porosity may be different if mea-
sured on an inch-sized sample an on mm-sized fragment of the same sample.

One way out of this conundrum is instead of directly comparing data points
generated by different methods of measurement, compare trends formed by such
data points, such as permeability versus porosity trends. Dvorkin et al. [18] show
that such trends are often hidden inside a very small digital sample and can be
derived by subsampling it. Moreover, these computational trends often match

Figure 19.
Segmented digital images of loose sand (porosity about 30%), sandstone (porosity about 20%), and carbonate
(porosity about 15%) showing the mineral matrix and pores. The images are a few mm across.

Figure 20.
Illustration of the subsampling approach.
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relevant physical trends and/or theoretical rock physics transforms, hence validat-
ing computational results and making them relevant at much coarser spatial scales.

The approach is to subsample a digital volume into 23, 33, or 43 subvolumes
(Figure 20) and then compute the desired property pairs (e.g., porosity and per-
meability) on each of these subvolumes. Very often, the property pairs thus com-
puted form a meaningful trend supported by physical measurements and/or
theories (see examples in Figures 21–23). We can call this subsampling approach
“to see the rock in a grain of sand.”

These results open ways to a meaningful utilization of DRP in research and
industry. Publications related to DRP are many and the number is growing. We
refer the reader to Kameda and Dvorkin [19], Dvorkin et al. [20], Dvorkin and
Derzhi [21], and Andra et al. [22, 23].

Figure 21.
Permeability versus porosity in Fontainebleau sandstone. Left: Laboratory data matched with a Kozeny-
Carman theoretical curve. Right: Multiple permeability versus porosity data points computed from a few digital
Fontainebleau samples and subsamples thereof (adopted from Dvorkin et al. [18]).

Figure 22.
Formation factor versus porosity computed on carbonate cuttings. The curves are from Archie’s equation with
the cementation exponent m 2.0, 2.5, and 3.0 (bottom to top) (adopted from Dvorkin et al. [18]).
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6. Conclusion

This chapter presents an overview of rock physics, starting with its history and
ending with the most recent development, the digital rock physics. This chapter can
be used as a basic reference pointing towards published sources where the topic is
developed in-depth and detailed equations, tables, and experimental results are
given. One of such comprehensive sources is the third edition of the Rock Physics
Handbook [24].

Rock physics remains a key component in interpreting seismic and other remote
sensing data for the underlying properties and conditions of the subsurface. A
plethora of such practical results has appeared and continues to appear in geophys-
ical journals, such as Geophysics (Society of Exploration Geophysicists), Journal of
Geophysical Research (American Geophysical Union), and First Break (European
Association of Geoscientists and Engineers), as well as presented at conferences
worldwide.

An important topic not addressed in this chapter is a simultaneous interpretation
of different remote sensing sources, such as seismic prospecting, electric and elec-
tromagnetic sensing, and gravity methods. Once again, such materials can be found
in the proceedings and books from the aforementioned professional societies.

We feel that the material presented can serve as a detailed introduction into the
extensive field of physics of rocks and be of use to graduate students, as well as
advanced professional in earth and environmental sciences.

Figure 23.
Vp versus porosity for Fontainebleau sandstone as computed from a few digital samples and subsamples thereof
(squares). Gray circles are from laboratory measurements of dry samples. The curve is from the stiff-sand model
(adopted from Dvorkin et al. [18]).
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