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Chapter

Introductory Chapter: 4D Imaging
Jinfeng Yang and Hidehiro Yasuda

1. Introduction

The study of ultrafast phenomena, including structural dynamics and molecular 
reactions, is of great interest for physics, chemistry, biology, and materials science. 
There are numerous examples of phase transitions in condensed materials and 
chemical reactions in free molecules proceeding on nanosecond, picosecond, and 
even femtosecond time scales. To study processes or reactions on such intricate 
scales, more sophisticated apparatus would be needed. It is well known that elec-
tron microscopy is a powerful imaging technique and is applied to a wide research 
field. The progress of electron microscopy has shown that three-dimensional (3D) 
material structures can be observed with an atomic spatial resolution. However, 
the conventional electron microscopy does not allow studying ultrafast processes 
because of the limitation of the speed of video camera.

The study of ultrafast structural dynamics or molecular reactions requires the 
use of probes ensuring not only high spatial but also high temporal resolutions. For 
this purpose, the new development of ultrafast electron microscopy (UEM), by 
combining temporal resolution into conventional electron microscopy, has been 
begun in the world. UEM uses a short pulsed electron beam replacing the continu-
ous electron beam in the conventional electron microscopy to image the atomic 
motion by time-resolved recording in real time. By introducing temporal resolu-
tion into 3D electron microscopy, UEM allows us to observe the four fundamental 
dimension structures of matter: three spatial and one temporal, which is called 4D 
imaging.

Recent developments in UEM have shown that spatial and temporal information 
of matter can be obtained simultaneously on very small and fast scales. The first 
UEM was proposed to observe fast processes using a modified 120-keV electron 
microscope by Ahmed H. Zewail, Nobel Prize winner in Chemistry 1999, in the 
California Institute of Technology [1, 2]. He and his colleagues succeeded to observe 
the laser-photon-induced picosecond structural phase transition in vanadium 
dioxide film using a stroboscopic method with “single” electron pulses [3]. Later, 
a hybrid 200-keV apparatus was developed. A spatial-temporal resolution of 3.4 Å 
and 250 fs has been achieved. Recently, there are many research activities focused 
on improving the electron source and electron optics inside the microscope to 
achieve better temporal and spatial resolutions [4–9]. However, in the current UEM, 
the samples must be pumped 107 times or more by the laser. The process being stud-
ied must be perfectly reversible. To study the irreversible processes, it is necessary 
to record images with a larger number of electrons per pulse possible.

In this chapter, we introduce a novel UEM method with relativistic-energy elec-
tron pulses. In this relativistic UEM, an advanced radio-frequency (rf) acceleration 
technology is used to generate relativistic femtosecond electron pulses containing a 
large number of electrons in pulse and to achieve single-shot femtosecond imaging 
for the study of ultrafast irreversible structural processes.
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2. UEM with relativistic femtosecond electron pulses

The relativistic UEM [10–14] is constructed with three principal components: 
a rf acceleration-based electron gun, a condenser system, and an imaging system. 
Figure 1 shows a photo of the relativistic UEM, which is 3.5 m in height and 0.8 m 
in diameter. The rf electron gun is driven by a high power of rf to generate a high-
peak rf electric field of 100 MV/m, which is 10 times higher than that of direct 
current gun in the conventional electron microscopy. The electrons emitted from 
photocathode are then quickly accelerated by the rf electric field into the relativ-
istic energy region to reduce the effect of space charge, yielding ultrashort pulses 
containing a large number of electrons in pulse. The details of the rf electron gun 
and the generation of femsecond electron pulses are described in Chapter 2 [15].

Next, the electrons pass through a series of condenser lenses, which use mag-
netic field to precisely control the intensity of the beam, and its illumination angle 
on the sample. A relativistic-energy electron imaging system, including an objective 
lens, an intermediate lens and two projector lenses, is used to magnify the micro-
scopic images. Finally, the images are recorded with a viewing screen (scintillator) 

Figure 1. 
Photo of UEM with relativistic-energy femtosecond electron pulses constructed at Osaka University [13, 14].
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via a charge-coupled device camera [16]. The relativistic UEM is also an ultra-high 
voltage transimission electron microscopy (TEM). It exhibits many significant 
advantages over nonrelativistic-energy UEMs:

1. High temporal resolution of 100 fs or less is achievable, because the ultrashort 
electron pulses of <100 fs can be produced by the rf gun. The transit-time 
broadening due to the relative energy spread is reduced using the relativistic-
energy electrons.

2. The relativistic UEM enables to observe the irreversible processes in materials 
by single-shot imaging with high-intensity femtosecond electron pulses.

3. The high-energy electrons significantly increase the extinction distance of 
elastic scattering. Our previous studies [17, 18] indicate that the kinematic 
theory with the assumption of single elastic scattering events can be applied 
in the relativistic UEM. This enables one to easily explain structural dynamics 
from the experimental results.

4. A thick sample can be used for measurement, thus obviating the requirement 
to prepare suitable thin samples.

5. The relativistic UEM is suitable for in situ observations. A large pole piece of 
the objective lens can be applied for installing various specimens.

The structural dynamics is observed in UEM with a pump-and-probe method, 
as shown in Figure 2. The femtosecond laser pulse is used as a pump pulse to excite 
the sample, while the electron pulse is used to record the time evolution of image 
of the structure by changing the time interval between the electron pulse and the 
laser pump pulse. The time resolution of UEM is determined mainly by the pulse 
duration s of the probe electrons and the pump laser. A high temporal resolution 
can be achieved with the ultrashort electron pulse and the ultrashort laser pump 
pulse. In this UEM, many demonstrations have been carried out and summarize as 
the followings:

1. A 100-fs-long pulsed beam containing 106–107 electrons at an energy of 3 MeV 
has been generated using the rf gun [10–12].

2. In the imaging experiments using these femtosecond pulses, we successfully 
observed contrast TEM images of 200-nm-diameter gold nanoparticles and 
other materials. At a low-magnification observation, single-shot imaging with 
the 3 MeV fs electron pulse is achievable [11, 12].

3. In the electron diffraction measurement, we successfully detected high-
contrast electron diffraction images of single crystalline, polycrystalline, and 
amorphous materials. An excellent spatial resolution of diffraction images was 
obtained as 0.027 Å−1 [19, 20].

4. In the pump-and-probe experiments using the relativistic femtosecond pulses, 
a laser-induced ultrafast melting dynamics in crystalline gold [17, 18] and a 
laser-excited ultrafast electronically driven phase transition in single-crystal-
line silicon [19, 20] were observed. The best temporal resolution of 100 fs has 
been achieved [20].
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The details of the above experiments have been reported in the related refer-
ences. The results demonstrate the advantages of relativistic UEM, including access 
to high-order Bragg reflections, single-shot imaging with the relativistic femtosec-
ond electron pulse, and the feasibility of time-resolved imaging to study ultrafast 
structural dynamics.

3. Conclusion

Ultrafast electron microscopy with relativistic femtosecond electron pulses is 
a very promising 4D imaging technique for scientists wishing to study ultrafast 
structural dynamics in materials. It is an unprecedented innovative technology that 
enables femtosecond atomic-scale imaging using single-shot measurement and 
paves the way for the study of irreversible processes in physics, chemistry, biology, 
and materials science.

The relativistic UEM is also a very compact, ultra-high voltage electron micros-
copy. It can be used in a variety of settings such as general research institutions and 
laboratories. Furthermore, by providing a femtosecond temporal resolution, the 
relativistic UEM will constitute the next generation of electron microscopes. It will 
allow the study of structural dynamics to be broken into unprecedented time-
frames, further encouraging the discovery of new knowledge.
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