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Chapter
Uncertainty Relations

Kenjiro Yanagi

Abstract

Uncertainty relations are inequalities representing the impossibility of
simultaneous measurement in quantum mechanics. The most well-known
uncertainty relations were presented by Heisenberg and Schrddinger. In this
chapter, we generalize and extend them to produce several types of uncertainty
relations.

Keywords: trace inequality, variance, covariance, skew information, metric
adjusted skew information, noncommutativity, observable, operator inequality

1. Introduction

Let M,,(C) (resp. M, 5,(C)) be the set of all # x n complex matrices (resp. all
n x n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
(A,B) = Tr[A"B]. Let M,, , (C) be the set of strictly positive elements of M, (C) and
M, . 1(C) c M, . (C) be the set of strictly positive density matrices, that is
M, +1(C) = {peM,(C)|Tr[p] =1, p> 0}. If not otherwise specified, hereafter, we
address the case of faithful states, that is p > 0. It is known that the expectation of an
observable A e M, ;,(C) in state p € M, . 1(C) is defined by

E/)(A) - TV[pA]’

and the variance of an observable A € M, ,(C) in state peM,, ; 1(C) is
defined by

Vo (A)=Tr [P(A - EP(A)I)Z} = Tr[pA®] — E,(A)* = Tr[pAg),

where Ag =A —E,(A)lL

In Section 2, we introduce the Heisenberg and Schrédinger uncertainty relations.
In Section 3, we present uncertainty relations with respect to the Wigner-Yanase
and Wigner-Yanase-Dyson skew information. To represent the degree of
noncommutativity between p e M, ; 1(C) and A e M,, ;,(C), the Wigner-Yanase
skew information I,(A) is defined by

_1 [ 172 2| _ 2 1/2 4 1/2
I(A) = 5T7[<1 [p ,AD } = Tr[pA?] - Tr[p Ap A],
where [X, Y] = XY — YX. Furthermore, the Wigner-Yanase-Dyson skew

information I, ,(A) is defined by
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Quantum Mechanics

Tl ) = S Tr[(alp A) [0 4])] = Tr[pA?) — Tr[p*Ap* 4], (a€[0,1]).

The convexity of I, ,(A) with respect to p was famously demonstrated by Lieb
[1], and the relationship between the Wigner-Yanase skew information and the
uncertainty relation was originally developed by Luo and Zhang [2]. Subsequently,
the relationship between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was provided by Kosaki [3] and Yanagi-Furuichi-Kuriyama
[4]. In Section 4, we discuss the metric adjusted skew information defined by
Hansen [5], which is an extension of the Wigner-Yanase-Dyson skew information.
The relationship between metric adjusted skew information and the uncertainty
relation was provided by Yanagi [6] and generalized by Yanagi-Furuichi-Kuriyama
[7] for generalized metric adjusted skew information and the generalized metric
adjusted correlation measure. In Sections 5 and 6, we provide non-Hermitian
extensions of Heisenberg-type and Schrodinger-type uncertainty relations related
to generalized quasi-metric adjusted skew information and the generalized quasi-
metric adjusted correlation measure. As a result, we obtain results for non-
Hermitian uncertainty relations provided by Dou and Du as corollaries of our
results. Finally, in Section 7, we present the sum types of uncertainty relations.

2. Heisenberg and Schrédinger uncertainty relations

Theorem 1.1 (Heisenberg uncertainty relation). For A,Be M, ,,(C),
P EMn,+,1(C)’

V,(A)V,(B)2 ¢ |Tr[olA, B M

where [A, B] = AB — BA is the commutator.
Theorem 1.2 (Schrodinger uncertainty relation). For A,BeM,, ,,(C),
P EMn,+,1(C)’

1

V,(A)V,(B) — | Re {TrlpAoBo]}|* 2 7 Tr [p[A,B]HZ.

Proof of Theorem 1.2. By the Schwarz inequality

s = o) (0]

<o) )] ()" (0]

= Tr[pA§] - Tr[pB3] = V,(A) - V,(B).
Since

TVLD[A(),B()” = TVLOA()B()] — TVLOBvo] = TVLDA()B()] — TV[A()B()/)]
= TV[pA()Bo] — TV[pAoB()] = ZiIm{TV[pA()Bo]},

we have

ITr[pAoBo]|> = (Re{Tr[pAoBo|})* + (Im{Tr[pAoBol})*
= (Re {Tr[pAoBo]})” + % | Tr(p[Ao, Bo]]I*.
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Since Tr[p[Ao, Bo|| = Tr|p|A, B]|, we obtain

V,(A) - V,(B) — |Re {Tr[pAoBo} [2> %Tr [p[A,B]HZ. O

3. Uncertainty relation for Wigner-Yanase-Dyson skew information
3.1 Wigner-Yanase skew information

To represent the degree of noncommutativity between p € M, ; 1(C) and
A eM,;,(C), the Wigner-Yanase skew information I,(A) and related quantity J ) (A)

are defined as
I(A) = %Tr[(i [pl/z,AO} )2} = Tr[pA2] — Tr [pl/onpl/on} .

1
J,(A) =5 Tr|p{Ao, Bo’| = Tr[pA}] + Tr|p"/*A0p" A0,

where {A,B} = AB + BA. The quantity U,(A) representing a quantum
uncertainty excluding the classical mixture is defined as

U, (4) = \/I(A) -],(4) = \[V, (A7 = (V,(4) — L,(4))".

We note the following relation:

0<I,(A)<U,(A)<V,(A). (2)

Luo [8] then derived the uncertainty relation of U,(A).
Theorem 1.3. For A,BeM,, ,(C), peM, . 1(C),

1
U)(4) - U,(B)> 5 |Tr[olA, B, 3)
Inequality (3) is a refinement of (1) in terms of (2).

3.2 Wigner-Yanase-Dyson skew information

Here, we introduce a one-parameter inequality extended from (3). For
0<a<1,A,BeM,(C)and peM, ;1(C), we define the Wigner-Yanase-Dyson
skew information as follows:

I,.(A) = %Tr[(iLo“,Ao]) (i[p"% Ao])] = Tr[pA§] — Tr[p"Aop' *Ao].
We also define
JpulA) = %TV [{p", Ao} {p" % Ao}] = Tr[pAs) + Tr[p*Aop* “Aq].
We note that

Tl Ad) (0" Ao])) = 3 Re [(i0% A)) i A])];
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however, we have

1 1
i Tr [{pa’ AO}{plia’AO }] 7& i Tr [{paaA} {plia,A }] .
We then have the following inequalities:
I/’,U((A) SIP(A) S]p<A) S]p,a(A), (4)

because Tr[pY2ApY/2A] < Trjp®Ap'~*A]. We define

Upal4) = \/1alB) palA) = V(A = (V,(4) ~ Lu(d).  (5)

From (2), (4), and (5), we have
and

We provide the following uncertainty relation with respect to U, ,(A) as a direct
generalization of (3).
Theorem 1.4 ([9]). For A,BeM,, ,,(C), peM,, . 1(C),

UpalA) - Upa(B) 2 a(1 — )| Tr o[, B])- (6)

Proof of Theorem 1.4. By spectral decomposition, there exists an orthonormal
basis {|¢1), |¢3), ..., |¢,)} consisting of eigenvectors of p. Let 14, 43, ..., 4, be the
corresponding eigenvalues, where " ;4 = 1and 4; > 0. Thus p has a spectral

representation p = >, i|¢;)(¢;]. We can obtain the following representations of
I,«(A)and ], ,(A):
1- 1- 2
a(A) = 3 (i 4y = 225 = 22 ) b o)
i<j
aql-a 1-aja 1
JoalA) 2 (A A+ 42237+ 21725 ) (iAol )|

1<j

Since (1 — 2a)*(t —1)* — (t* — tl_"‘)2 >0 for any >0 and 0 <a <1, we define

r= /’11—’ and have
J
2
(1-2a)* (— - 1) - (—) — <—) > 0.
Aj Aj 4j

Then,

2
(i 25)° = (22 As) > 4a(1 - @) (3 — 4)) )

Since
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Trlp[A,B]] = Trlp[Ao,Bo]] = 2ilmTr[pA¢Bo| = 21'17”2(/%‘ —2j) <¢i|Ao|¢j><¢j|Bo|¢i>

i<j

=26y (h — 4;)Tm (b Aol ) ¢1Bol ),
i<j

ITrlplA, BJl| = 213 (4 = ;) Im{ /Aol ) (1Bolt; )| <2 1A
i<j

1<j

_ ,1j||Im<¢i|Ao|¢j><¢J’|B°|¢i>|'

We then have

\TVMA,BHIZQ{ZW —zjr|1m<¢,-|Ao\¢j><¢jrBo\¢i>r} .

i1<j

By (7) and the Schwarz inequality,

2
a(1 - @)|TrlplA, B <4a(1- a){Zui —z]-rum<¢i\Ao¢j><¢jrBor¢i>\}

i<j

= {sz/a(l —a)|lk — /1]-||Im<¢i|A0|¢j><¢j|Bo|¢i>}

i<j

< {ZZ\/a(l —a)|k — /1j||<¢i|A0|¢j><¢j|Bo|¢i>|}

i<j
2

1/2
< {Z{ (i +2)" = (w23 H}“ﬂ?)z} <¢i\Aor¢j>H<¢jrBor¢i>r}

i<j
2
<3 (34 2y = AT = ) (iAo
i<j
aqrl—a 1-aqa B 2
XZ(AZ-HJ-HZ.AJ. + 4] Aj)|<¢l-| o]rﬁj)( :
i<j
Then, we have
Iy.(A)],.(B) > a(1 — a)|Tr[p[A, B]]|*.
We also have

1,u(B)],a(A) 2 a1 — )| Tr[p[A, B]]".

Thus, we have the final result, (6). ]
When a = %, we obtain the result in Theorem 1.3.

4. Metric adjusted skew information and metric adjusted correlation
measure

4.1 Operator monotone function

A functionf : (0, +o0) — R is considered operator monotone if, for any n €N,
and A, Be€ M, such that 0 <A < B, the inequalities 0 <f(A) <f(B) hold. An operator
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monotone function is said to be symmetric if f (x) = xf (x~!) and normalized if

f) =1

Definition 1 F,, is the class of functionsf : (0, +-00) — (0, +-00) such that:
1.f(1) =1.

2471 = £(¢).

3.f is operator monotone.

Example 1. Examples of elements of F,, are given by the following:

frp (%) :3%’ fwy(x) = (\/—;_ 1) s ferm(x) = 9;0;};,
_x+ 1 _ B (x — 1)
fSLD(x) 5 fWYD(x) (1(1 a) (xa — 1)(9(?1_0‘ — 1) , A€ (0, 1)

Remark 1. Any f € F,, satisfies

2x 1
sf(x)sx;r , x>0,

For f € F,,, we define f(0) = lim ,_of (x). We introduce the sets of regular and
non-regular functions

={ feF,lf(0) #0}, ﬂp{fE}—OMf ) =0}

and notice that trivially F,, = .7:"“ U J’ng.

Definition 2. For f € 77, we set

R L

Theorem 1.5 ([10]). The correspondence f — f is a bijection between F op and 75,

x> 0.

4.2 Metric adjusted skew information

In the Kubo-Ando theory [11] of matrix means, a mean is associated with each
operator monotone function f € ,, by the following formula:

m (A, B) :A1/2f<A‘1/zBA‘1/2)A1/2,

where A, BeM, . (C). Using the notion of matrix means, the class of monotone
metrics can be defined by the following formula:

<A’B>pf =Tr [A “mg (Lﬂ’Rﬂyl(B)} >

where L,(A) = pA,R,(A) = Ap.
Definition 3. For A € M, ;,(C), we define as follows:
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@) =L iy, a4,

CI(A) = Tr[ms(L,,R,)(A) - Al

2

tﬁmwszmf—(wmydﬁm)
Quantity Ig (A) is referred to as the metric adjusted skew information, and

(A,B), is referred to as the metric adjusted correlation measure.
Proposition 1. The following holds:

LI (A) = I (Ao) = Tr(pAB) = Tr(m; (L, R,) (o) - Ao ) = V,(A) — G (Ao).
271 (A) = Tr(pA2) + TV(WL]; (L,»R,)(Ao) -Ao) — V,(4) + C,(Ao).
3.0<I/(A) <UL (A) <V, (A).

4.US(A) = /IL(A) - TS (A).

Theorem 1.6 ([6]). ForfeF;p, if

2 ) ®)
then it holds that
US(A) - U (B) >f(0)|Tr(p[A, B])[, 9)

where A,BeM,, ,,(C).
To prove Theorem 1.6, several lemmas are used.
Lemma 1. If (8) holds, then the following inequality is satisfied:

x + P\ 2
(552) —msey) 2f(0)(x =),
Proof of Lemma 1. By (8), we have
x+y

T+mf(x,y)22mf(x,y). (10)
Since
o) = () 22 E (2o L@ _x by fO)6 -y
7(%.9) _yf<y) _2{y+1 (,v 1) f(x/y)} - 2mp(x,p)
we have

() =ity = 22 o) A2 )}

RV
- fégn)f(cx,yy)) - ;Ly () | 2£(0)(x = y). (by (10))
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Lemma 2. Let {|¢,), |¢,), --*> |¢,) } be a basis of eigenvectors of p, corresponding
to the eigenvalues {41, 43, -+, 4, }. We set aj, = <¢j ]A0|¢k>,b]~k = <¢j ]B0\¢k>. Then,

we have

I(A) =

NI =

(ﬂ —|—/1k)a]kak] Zm l],/lk)a]kak],
-k jik

1
]’[J;(A> = E (A —f-ﬂk)ﬂ]kﬂk] + Zm ﬂj,lk)ﬂ]kﬂlkj,

Jik jik
2 2
o) = 1
(U/) (A)> =2 (’11' + Ak ‘“Jk‘ Zm ’11”116 |“Jk‘
ok
Proof of Theorem 1.6. Since
Tr(plA,B]) = Tr(plAo, Bo)) = > _ (4; — M) abus,

jrk

we have

FOITABT < ( S0, kakj)
2 +/1k 12
(S55) =) Lol
]
A A 2
{5 z],m}ajk)

X (} {ﬂ];ﬂk—%m x],xk)}wka) = I (A)J/(B).

2

IA

IA

We also have

11 (BJ](A) 2f(0)|Tr(p[A, B])".

Thus, we have the final result (9). ]

5. Generalized metric adjusted skew information

We assume that f € F, satlsfles the following condition (A):

(x—1)°

g(x) >k

, for some k> 0.

Let
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Definition 4. For A,BeM,,,,(C), p €M, ; 1(C) we define the following:

Corr/)(A, B) = k(ilp, Ao), ilp, Bol) ¢
— Tr[Aomy (L, R,)Bo] — Tr|Aom,/ (L, R,)Bo|.

I/(;gf) (A) = Cowl(;g’f) (A,A)
= Tr[Aomy (L,,R,)Ao] — Tr [Aom (Ly»R,) Ao — TV[AOWL (Lo Ry)Ao.

TE(A) = T [Aom, (L, R,) o] T Ao (L, R,) o] + T Aoy (0, R, ) o]

U (A) = \/[[(;gf)(A) JED (A).

I/(;g’f J(A) is referred to as the generalized metric adjusted skew information, and

Cowlgg’f J(A, B) is referred to as the generalized metric adjusted correlation measure.
Theorem 1.7 ([7]). Under condition (A), the following holds:

1. (Schrédinger type) For A, BE€M,,4(C), p € My, +1(C),
, ’ ; 2
I/(;gf)(A) -I;gf)(B)Z Cow,(;gf)(AaBﬂ :

2. (Heisenberg type) For A,BeM,, ;,(C),p €M, 1 1(C), we assume the
following condition (B):

g(x) + Ag(x) > ¢f (x) for some £ > 0.
Then,

U (4) - UEH (B >kf’Tr[ (4, B]] >

6. Generalized quasi-metric adjusted skew information
In this section, we present general uncertainty relations for non-Hermitian
observables X, Y e M,,(C).
Definition 5. For X, Y e M, (C),A,BeM, . (C) we define the following:
r$7 (X, Y) = k{(La — Rp)X, (La — Rp)Y)
— kTr [X (La — Rg)ms(La,Rs) " (La — RB)Y}
= Tr[X " my(La,Rs)Y] — Tr [X m, (LA,RB)Y}

W) (X, V) = Tr[X*m,(La, Rp)Y] —i—Tr[X m, (LA,RB)Y}

1) ) = 140 (%, %), ¥ x) = 9§ (x,%), UE) ) = I8 () 155 (x).
I%)’J;) (X) is referred to as the generalized quasi-metric adjusted skew information,
and F%:];) (X,Y) is referred to as the generalized quasi-metric adjusted correlation
measure.



Quantum Mechanics

Theorem 1.8 ([12]). Under condition (A), the following holds:

1. (Schrédinger type) For X, Y e M,,(C),A,BeM, . (C),

1 2
5500 I ) 2 (V)P 2 o (& +v) I x - v))

2. (Heisenberg type) For X,Y e M, (C),A,BeM,, . (C), we assume condition
(B). Then,

U ) - USH () 2 kATr [X7 La — R[]

In particular,

k£|Tr(X* |La — Rg|X]|* < Tr [X (mg(LA,RB) —mys (LA,RB)>X}
(11)
xTV[X* (mg(LA,RB) +mAgf(LA,RB))X],

where X € M,,(C) and A,Be M, . (C).
Proof of 1 in Theorem 1.8. By the Schwarz inequality, we have

15500 - 1§D (v) = T8 x,x) - T4 (v, v) 2 [r¥f o, )P
Now, we prove the second inequality. Since

I (X +Y) = Tr[(X* + Y* )my(La, Rp)(X + Y)]
- TV[(X* + " )m s (La, Re)(X + Y)],

1) (X~ Y) = Tr[(X* — Y*)my(La, Rp)(X — Y)]
~Tr|(X* —¥*)my (LasR)(X - Y),

we have

& +y) -1 x-v)

= 2Tr[X*mqy(La, R)Y] + 2TrY *my(La, Rp)X] — 2Tr [X*mAf(LA,RB)Y}

14

2Ty [Y*mA ; (LA,RB)X} — D (X, V) + 2040 (v, X) = 4Re {r%) (X, Y)}.
g

Similarly, we have
X+ V) + 1§ x - v) =2(18) x) + 15 (7).

Then,

) (X,Y) = Re {r§£> (X, Y)} + ilm{rfjf;) (X, Y)}

10
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1
= (@ +v) - 15 x - V) + im{T§]) (x,v).
Thus,
2 1 2
eS| — g (P n -t -n) + (m{rif @ n})

We use the following lemma to prove 2:
Lemma 3

mg(x,y)" = m s (,9)° 2k (x —y)*.

Proof of Lemma 3. By conditions (A) and (B), we have

(x —y)*
mf(x’y) ’

mg(x,y) +ma, (x,9) 2 Emp(x,y).

mys(6,y) =mg(x,y) —k

We then have

my(,9)" = m, (o) = {mg(6e,y) = s (e,9) {mg(e,9) +m, s (e,3) |

k(x —y)°
mf(x’y>

> tmp(x,y) =kt (x —y)%

Proof of 2 in Theorem 1.8. Let

A= Zﬂi|¢i><¢i|, B = Zﬂi|l//i><l//i|
i—1 i—1

be the spectral decompositions of A and B, respectively. Then, we have

15500 = " {mg (i) = mys (o) X
L]

TR ) = S e (o) g (o) f1igav )
2y)

2

bl

2

bl

Since
[ILa = Rgl = 14 — 1 \L1gy g Ry 15

we have

11
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n n

Tr[X*|La — Ry|¥] = i = w1 Xl ) (1Yl ).
i=1 j=1
Then, by Lemma 3, we have
n n 2
keI TrIX* |La — Ry|Y]] < {z > Vkel - u]-u<¢iwxrwj>u<¢jmw,->|}
i=1 j=1

Similarly, we have kZ|Tr[X ™ |Ls — Rp|Y] 2 SIE,J;) (Y)- %”{;) (X). Therefore,
USH(X) - USY (¥) 2 ke 1Tr | X 1Ly — R|Y]P. u

WhenA =B=peM, . ,(C),X =AeM,(C)),and Y = BeM,(C), we obtain
the result in Theorem 1.7.
We assume that

) =5 fl) =l - o) o k=T o2

We then obtain the following trace inequality by substituting X = I in (11).

2 2
(1(1 — a)(TV“LA — RB|I]>2 < (% TV[A —|—B]> i (% TV[A“Bl—a _I_AlaBa]> . (12)

This is a generalization of the trace inequality provided in [13]. In addition, we

produce the following new inequality by combining a Chernoff-type inequality
with Theorem 1.8.

Theorem 1.9 ([14]). We have the following:

1
STrlA+B—|La — Rgll] < _inf Tr[A'B*|<Tr [Al/zBl/z}

<a<l

<

N =

Tr[A“BY + AY“B%] < \/G Tr[A + B])2 —a(l—a)(Tr[|La — Rp|I)>.

The following lemma is necessary to prove Theorem 1.9.

Lemma 4. Let f(s) = Tr[A'B’] for A,BEM,(C) and 0 <s <1. Thenf(s) is
convex ins.

Proof of Lemma 4. f'(s) = Tr[—A"" log AB’ + A" B log B]. And then

12
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£(s) = Tr [AH( log A’B — A" log AB' logB] — Ty [Af log AB logB — A™B'( logB)z}
=Tr [Alf‘( logA)zBS} — Tr[A"*log Alog BB'] — Tr[log Blog AA'*B’| + Tr [Alf‘( logB)zBS}
=Tr[A"*logA(logA — logB)B’] — Tr[A'*(log A — log B) log BB’|
=Tr[A"*(logA — log B)B'log A] — Tr[A'*(log A — log B) log BB’|
=Tr[A"*(logA — log B)B’(logA — logB)]
= Tr[A0=)2(log A — logB)B(log A — logB)A~)"] > 0.

f(s) is convex in s. ]
Proof of Theorem 1.9. The third and fourth inequalities follow from Lemma 4
and (12), respectively. Thus, we only prove the following inequality:

TrlA + B—|La — Rp|l] <2Tr[A*B*] (0<a<1).

Let
A= iji|¢i><¢i|= ;ai|¢i><¢,-|wj><wj|,
B = ]Zuj|wj><wj|: ;uj|¢i><¢,-|wj><wj|.
Then, we have

TrlA] = Al(#;
i,

2
l//j>‘ :

Wj>

2
. TrlBl =) (¢
i,j
And since

ILa — Rp| = ZM HilLigy (g Riy iy 15
we have
ILa = Roll = Y1 — w1} (il ) (w1
i,j
Then, we have

2
t//ﬂ‘ :

Tr[|La — Rgll] = Z:I/1 uill (¢
Therefore,

Tr[A + B—|Ls — Rg|I] = Z(lli +ﬂj—|/1z‘ —#j|>|<¢i ’l/j>’2-

i,j

13
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However, since we have

At = Zﬂ?|¢i><¢i|: D?|¢i><¢i|wj><wj|,
i i,j
B = Z//‘}_a|‘/’j><‘//j‘: Zﬂ}_a|¢i><¢i|lﬂj><lﬂj|a
J L]

AB =S i) (il ) (v
isj
Then,
Tr[AB ) = S gt V)|

i,j

V/j>

Thus,

‘ 2

2Tr[ABY] — Tr[A + B—|La — Rg|l] = Z{zﬂ?u}‘“ - (A,- +pj—1Ai — uj!) }|<¢i
i

l//j>

Since 2x%y'~* — (x + y—|x — y|) > 0 for x,y > 0, 0 <a <1 in general, we can
obtain Theorem 1.9. O
Remark 2. We note the following 1, 2:

1.1Tr[A + B—|A — B|| < inf Tr[A" B <Tr [Al/zBl/z]
0<a<1

2
< \/G Tr[A +B]> —%(TVHA — B[])*.

2. There is no relationship between T7[|[Ls — Rp|I] and Tr[|A — B|]. When

(4 O)
B = ,
0 1

we have Tr[|La — Rp|I] =3, Tr[|A — B|] = v/10. When

S

I
N = N W
NIW NI R

13 7
_75 _20
a=|7 8] oo s)
2 2

we have Tr[|[Ls — Rp|l] =8, Tr[|A — BJ|] = v/58.

7. Sum type of uncertainty relations

Let A,Be M, ,,(C) have the following spectral decompositions:
A Zzﬂi|¢i><¢i|, B:Zﬂi|ll/i><ll/i|-
i—1 i—1
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For any quantum state |¢), we define the two probability distributions
P=pupy-pn) Q= 442 54),

Wherepi = ‘<¢z|¢>‘2> q]' = |<1//]‘¢>’2 Let

n

H(P) = - p,logp,, H(Q)=—) q,logq;
i=1

j=1

be the Shannon entropies of P and Q, respectively.
Theorem 1.10. The following uncertainty relation holds:

H(P)+H(Q)> —2logc,

where ¢ = maxi,]-|<¢i|l//]->|.
For details, see [15, 16].
Definition 6. The Fourier transformation of y € L?(R) is defined as

wlw) = [ wive e

We also define

QR) = { fer?(®); | FfOfdr<c.

Proposition 2. If y € L*(R), [ly/||* = 1 satisfies v,y € Q(R), then

" 4
S(w) +S(y) = log 5,

S(y) = j " O log (@), SGi) = —r (2) g i (¢) .

—00

For details, see [17].
Theorem 1.11 ([18]). For any X, Y € M,,(C), A, Be M, . (C), the following holds:

LIE 6, v) + 18 (v) > Y max {1 (x + V), 1) (x - ) }.

1
2

21 00 + i) 002 max {1 e+ 1)\l - 1)
1 00 + i ) s2man {\Eg v gD - v

Proof 1. The Hilbert-Schmidt norm || - || satisfies

1
X2+ Y12 =5 (IX + Y11+ 1X - YI%) 2 5 max {IX +YI%1X - Y|P} (13)

N =

15
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Since I%g) (X, X) is the second power of the Hilbert-Schmidt norm, || X|| =
11(4‘%}];) (X). We then obtain the result by substituting (13),

2. By the triangle inequality of a general norm, we apply the triangle inequality
for 1X || = /I3 (X).

3. We prove the following norm inequality:

IXI + Y <IX + Y[+ IX — Y. (14)
Since
1 1 1 1
IXI=I5X+Y)+s X -VI<SIX+ Y +51X - YI
2 2 2 2
and
1 1 1 1
1Yl =15 +X)+5 Y -XI<IY + X +5IIY — X,
2 2 2 2
we add two inequalities and obtain (14). O
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