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Abstract

Most of the work has been done on the optical properties of the rare earth doped
CePO4, so there are few studies on the effect of metal ion doping on CePO4. The
doping improves the properties of the compounds and can lead to new properties. It
is the first time, that multi- ionic doping process is used in the CePO4 matrix, in
order to improve the ionic conductivity and the electrochemical stability. The
low percentage of (Cd2+, Li+), Cr3+, Bi3+ dopant affect the structure showing a weak
decrease in the lattice parameters compared to the CePO4. Impedance spectroscopy
analysis was used to analyze the electrical behavior of samples as a function of
frequency at different temperatures. The total electrical conductivity plots obtained
from impedance spectra shows an increase of the total conductivity as Li, Cr-
content increases. The determined energy gap values decrease with increasingly Li+,
Cr3+ and Bi3+ doping content. Electrochemical tests showed an improved capacity
when increasing the Li+, Cr3+ and Bi3+ content and a stable cycling performance.

Keywords: phosphate materials, doping, optical properties, impedance
spectroscopy, electrochemical properties

1. Introduction

Nanoscience and nanotechnology is a rapid-developing field which has
demanded the technologist to innovate applicable nanomaterials with manipu-
lated shape and size to explore their principal chemical and physical charac-
teristics [1]. In recent years, rare earth phosphates have attracted many researchers
because of their technological applications [2, 3]. Cerium orthophosphate
nanomaterials have important properties: high thermal stability [4], very low
solubility in water, their use in the production of moisture sensors for lumi-
nescent materials, a poison for automotive catalysts and a novel oxygen sens-
ing material on the basis of its redox responsive reversible luminescence [5–7].
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Most of the work has been done on the optical properties of the rare earth
doped CePO4, so there are few studies on the effect of metal ion doping on CePO4.
Additionally, CePO4 materials have been used in hydrogen fuel cells [8]. To better
understand the mechanism of conduction, information on the behavior and ionic
conductivities of charge carriers located in phosphates, electrical studies have been
carried out.

Generally, the doping process improves the properties of the compounds and can
lead to new properties [9, 10]. Trivalent elements have been known as doping ele-
ments, improving the physico-chemical properties of cerium phosphate-based mate-
rials [11]. In order to improve the electrical and optical properties, the cerium
phosphate was partially substituted by divalent transition metal ions. The doping with
Ca and Sr. has improved the electrical conductivity of (La, Ce) PO4 [12, 13]. The high
conductivity of the Sr-doped CePO4 under wet oxidizing conditions due to electronic
and ionic conduction is shown byMoral et al. [12]. Norby et al. studied the effect of the
substitution of lanthanum by calcium and strontium on the conductivity, described by
the dependence on humidity and the effect of H/D isotopic exchange [13].

The substitution effect depends on the nature of the doping elements. Chro-
mium shows the stability of the valence state (+ III) in conductive p-type SOFC
interconnection materials [14]. Numerous reports show that substitution with Cr3+

ions introduces interesting properties in ferrites [15, 16]. Cr-doping CePO4 is
expected to improve its optical and electrical properties.

Bismuth-based materials have been studied because of their excellent
photocatalytic activities in the reduction of NO [17], the generation of O2 [18, 19]
and the decomposition of organic compounds [20, 21]. It was founded that
Y2SiO5:Bi

3+ gives rise to three emission bands centering at: 355, 408, and
504 nm upon UV excitation possibly from three types of bismuth emission
centers in the compound, respectively [22]. The broad absorption band of Bi3+

improves the emission process which could be varied from the UV to the NIR,
depending on its final valence in the compounds [23]. The Bi3+ ions combined
with rare earth ions such as cerium, Ce3+, can improve the optical properties of
CePO4 nanomaterials. The study of the effect of doping with Bi3+ ions on the
structural and electrical properties of CePO4 is virgin. This leads to new optical and
electrical properties for application in electronic devices.

Divalent cations were doped inmonophosphates, giving variations in the electrical
properties of these doped materials. The aim is to study the combined effect of
monovalent Li+ and divalent Cd2+ ions on structural, electrical and optical properties.
Indeed, the electrical and electrochemical properties of cadmium allow it to be used
in mobile phone batteries [24, 25]. Also lithium Li+ ions associated with the divalent
Fe2+, Mn2+ and Co2+ ions favor the increase of the capacity, the lifetime, diffusion
process and the electrochemical stability of a phosphate-based electrode [26–28].
The adjustment of the size, shape, density, optical, electrical and dielectric
properties of nanoparticles could help tune their broad spectral resonance
wavelength [29]. Microemulsion approach associated to the hydrothermal con-
ditions could be used to fabricate single crystalline CePO4 nanowires with con-
trolled aspect ratios [30]. Hydrothermal process has emerged as a powerful tool
due to some significant advantages such as cost-effective, controllable particle
size, low-temperature and less-complicated techniques [31].

2. Characterizations

Cerium orthophosphate has two crystalline phases [32, 33]. At low temperature
this material crystallizes in the hexagonal system. At high temperature cerium
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orthophosphate crystallizes in the monoclinic system. The hexagonal structure is
characterized by the existence of large tunnels parallel to the c-axis in which the
water present in the compound appears to be localized. The CePO4 produced in
aqueous solution at room temperature crystallizes in a hexagonal form [34, 35].
After heat treatment at 650°C, the hexagonal phase (CePO4) started converting into
a monoclinic structure.

The ions (Cd2+, Li+), Cr3+, Bi3+ doped CePO4 materials were characterized by
X-ray diffraction (XRD). All samples are single phase having a hexagonal struc-
ture similar to CePO4. The 2θ values of doped materials shift slightly higher angles
with increasing Cr, Bi, Cd and Li content, confirming the complete dissolution of
dopants (Figure 1). The same behavior was observed when Fe3+ ion substitutes
La3+ ion in LaPO4 [36]. The average crystallite size of all samples decreases with
increasing the amount of doping. The main reason for the decrease of the grain
size may be due to the fact that doping introduced defects and the defects prevent
grain to grow [37].

Many parameters affecting the morphological characteristics of the hexagonal
cerium phosphate nanocrystals such as the cerium concentration, the treatment
temperature, the reaction time, the nature of the surfactant, the pH value of the
solution and the synthesis method. The materials take on a similar shape to the
nanorod morphology with the size depending on the dopant-content.

3. Optical properties

The band gap energy of the as-prepared samples was calculated using the
Kubelka-Munk plot. The Kubelka-Munk function for diffuse reflectance [38] is

f ðRÞ ¼
1� R2

2:R
(1)

where R is the reflectance. The optical band gap, Eg, can be determined using the
Tauc relation:

½FðRÞ:hν� ¼ A½hν� Eg�
n (2)

where A is an energy-independent constant, Eg is the optical band gap and n can
take values of 0.5, 1.5, 2 and 3 depending on the mode of transition [39]. The band
gap energies can be estimated by extrapolating the linear portions to the hν axis and
from the corresponding intercept of the tangents to the plots of [F(R)*hν]2 vs. hν.

The determined energy gap values decrease with increasing Cr, Bi, Cd and
Li-doping content in CrxCe1-xPO4 (x = 0.00, 0.08, 0.10 and 0.20), BixCe1-xPO4

(x = 0.00, 0.02 and 0.08), Ce0.9Cd0.15-xLi2xPO4 (x = 0 and 0.02) nanorods,

Figure 1.
X-ray diffraction pattern of CePO4, Bi0.02Ce0.98PO4 and Li0.06Cd0.12Ce0.90PO4.
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respectively, showing a red-shift trend when the doping- substitution percentage
increases (Figure 2). Table 1 summarizes the gap energy values of nanomaterials.

The size, morphology and substitution of crystallites affect the energy of the
band gap. The substitution of Ce3+ by a transition metal could induce the formation
of several structural defects, creating different energy levels below the conduction
band. The same behavior has been observed in Cr-doped Ni3(PO4)2 where the band
gap decreases when Cr3+ replaces Ni2+ [43].

4. Electrical conductivity

The dc-conductivity (σdc) of BixCe1-xPO4 could be calculated using the Formula’s

σdc ¼
t

A 
�
1

R
(3)

Figure 2.
[f(R) � hν]2 versus the hν (eV) plots of: (a) CePO4; (b): Ce0.9Cd0.13Li0.04PO4; and (c) Cr0.20Ce0.80PO4.

CrxCe1-xPO4

Eg (eV) [40]

BixCe1-xPO4

Eg (eV) [41]

Ce0.9Cd0.15-xLi2xPO4

Eg (eV) [42]

CePO4

Eg = 4.14

CePO4

Eg = 4.00

CePO4

Eg = 4.00

Cr0.08Ce0.92PO4

Eg = 4.10

Bi0.02Ce0.98PO4

Eg = 3.96

Ce0.9Cd0.15PO4

Eg = 3.95

Cr0.10Ce0.90PO4

Eg = 3.09

Bi0.08Ce0.92PO4

Eg = 3.84

Ce0.9Cd0.13Li0.04PO4

Eg = 3.73

Cr0.20Ce0.80PO4

Eg = 2.87

Table 1.
Gap energy values of CrxCe1-xPO4, BixCe1-xPO4 and Ce0.9Cd0.15-xLi2xPO4 nanomaterials.

Figure 3.
Arrhenius plot of the electrical conductivity of CePO4, Ce0.9Cd0.15PO4 and Ce0.9Cd013Li0.04PO4.
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(A = area of the sample surface and t = sample thickness). The temperature
dependence of dc-conductivity could be plotted based on the Arrhenius law with
the following expression:

σdc ¼
A0

T
 e�

Edc
K:T (4)

where A0 is the pre-exponential factor, Ea the activation energy and K the
Boltzmann constant.

The activation energy of the undoped CePO4 nanorods (Ea = 1.08 eV) is com-
parable to that obtained for CePO4 nanosheets (Ea = 1.06 eV) [44]. It seems that the
change of the morphology and the synthesis route used weakly affect the activation
energy of the cerium phosphates. The activation energy deduced from Log (σT) as a
function of 103/T (Figure 3) are summarized in Table 2.

The effect of Cr3+, (Cd2+, Li+) substitutions decreases the activation energies
with the increase in Cr, (Cd, Li)-concentration (Table 2). Consequently, the
dc-conductivity of the as-prepared samples increases with temperature and with
doping concentration. Lattice defects and distortions in the phosphate structure
produced by the substitution allow the increase of the DC conductivity. The
enhancement of activation energy could be related to the mobility of oxygen ions
(O2

�). This phenomenon has been observed by Nandini et al. [45]. They show that
with an appropriate ratio of magnesium and strontium, the ionic conductivity
increases as compared to that exhibited by ceria singly doped with Mg.

The difference in the electrical transport process between the Cr, Cd, Li doped
CePO4 and the Bi-doped CePO4 results from the difference in atomic weight of Bi
and Cr, Cd, Li. The atomic weight affects the mobility of the ions and therefore the
Bi3+ ions remain close to their initial positions.

5. Electrochemical measurements

In order to explore the potential application of nonmaterials as cathode mate-
rials, their electrochemical performance with respect to Li insertion/extraction was
investigated. Cyclic voltammograms (CVs) for CePO4, Ce0.9Cd0.15PO4 and
Bi0.02Ce0.98PO4 nanorods (examples) at 20 mV/s are shown in Figure 1. For all the
as-prepared compounds, the cyclic voltammograms are well superposed indicating
the relative structural stability under these conditions. The same shape of the CV
curves slightly is observed for Nanoplate-like CuO in the presence of LiClO4 in
propylene carbonate [46].

CrxCe1-xPO4

Ea (eV) [40]

BixCe1-xPO4

Ea (eV) [41]

Ce0.9Cd0.15-xLi2xPO4

Ea (eV) [42]

CePO4

Ea = 1.08

CePO4

Ea = 0.84

CePO4

Ea = 1.08

Cr0.08Ce0.92PO4

Ea = 0.90

Bi0.02Ce0.98PO4

Ea = 0.87

Ce0.9Cd0.15PO4

Ea = 0.99

Cr0.10Ce0.90PO4

Ea = 0.84

Bi0.08Ce0.92PO4

Ea = 1.09

Ce0.9Cd0.13Li0.04PO4

Ea = 0.72

Cr0.20Ce0.80PO4

Ea = 0.80

Table 2.
Activation energy of CrxCe1-xPO4, BixCe1-xPO4 and Ce0.9Cd0.15-xLi2xPO4.
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CePO4, Cd0.15 Ce0.90PO4 and Bi0.02Ce0.98PO4 based electrode cyclic
voltammogramm.

These voltammograms indicate the intercalation/de-intercalation process of Li+

ions. During the electrochemical redox processes, the intercalation/de-intercalation
process of Li+ ions can be represented by the following reaction:

MxCe1�xPO4 þ ye� þ yLiþ $ Liy MxCe1�xPO4

Intercalation of Li!

 De� intercalation of Li

The lithium ion diffusion coefficients can be calculated from the Randles-Sevcik
law [47]:

ip ¼ ð2:69� 105Þ nð3=2Þ: A C D1=2
Li  v

1=2 (5)

where ip is the peak current (A), n is the number of electrons exchanged, A is
the apparent surface area of the electrode (cm2), Dli and C are the diffusion coeffi-
cient (cm2/s) and the analyte concentration (in moles/cm3) respectively, and V is
the potential scan rate (V/s). The lithium ion diffusion coefficients deduced are
2.5 � 10�9, 0.7 � 10�9, 4.6 � 10�9 cm2s�1 for CePO4, Ce0.9Cd0.15PO4 and
Ce0.9Cd0.13Li0.04PO4, respectively. The structure, surface area, grain size and mor-
phology affect the calculated lithium diffusion coefficient DLi of the electrode
materials. For example, Bi doping with the appropriate amount improved the elec-
trochemical performance of LiFePO4 cathode material, synthesized by the sol–gel
method [48].

For as-prepared BixCe1-xPO4 (x = 0.00, 0.02, 0.08) electrodes, The lithium ion
diffusion coefficient (DLi) values could be determined by using Nyquist plot
through the relation [49]:

DLi  ¼
R2 T2 V2

M 

2A2 n4 F4 σ2
(6)

Where: F, R and T indicate Faraday constant, gas constant and room tempera-
ture, respectively.

(1). DLi can be calculated as the Warburg impedance Zw is inversely propor-
tional to the square root of the diffusion coefficient as shown in [50]. The calculated
lithium diffusion coefficient of the CePO4 and Bi0.02Ce0.98PO4 and Bi0.08Ce0.92PO4

electrodes is 3.3 � 10�16, 40 � 10�16 and 12.8 � 10�16 cm2.s�1 respectively. The DLi

variation values n can be attributed to creating the defect and increasing disorder of
the lattice in doped CePO4, drives to the improvement of the electrochemical
performance. The structure of H-CePO4-type characterized by infinite tunnels
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provides fast ionic transport. The Li + ions can move quickly in an appropriate
direction [51].

The specific capacitance can be estimated by the following equation [52, 53]:

C ¼

Ð
Idv

s:w:ΔV  
(7)

where ΔV is the potential window, m is the mass of active material in one
electrode, I is the current, and s is the potential scan rate. The variation of the
specific capacitance of two prepared simples versus cycle number is given in
Table 3.We show that the partial substitution of Ce by Cd increase the capacitance.
The increasing of the capacitance can be attributed to the partial substitution and
the small crystal size which improves the kinetics of electrochemical reactions and
the structure which provides fast ionic transport.

The reason for the improvement of the discharge capacity can be explained as
follows: with Bi-doping, the grain size of the particles decreases, which leads to the
migration of the Li-ion.

The penetration of electrolyte ions and the electrochemical activation of the
materials may increase the specific capacitance. A similar phenomenon has been
observed by other authors [54, 55].

Doped samples show better performance in terms of discharge capacity than
undoped ones. These results could be attributed to the contribution of the nanorod
shape and the particle size. Indeed, the reduction of the size allows a faradic
reaction providing a short ion diffusion path and electron transport.

6. Conclusion

In summary, we have demonstrated a rapid and convenient hydrothermal
method for the preparation of doped and undoped CePO4 nanomaterials. The
Cr3+, Bi3+, Cd2+ and Li+ ions substitution affects the optical, electrical and electro-
chemical properties. The band gap energies of the as-prepared CePO4 nanorods
decreased with increasing doping-concentration showing a red-shift trend. Com-
parative experiments have witnessed that the doped-CePO4 electrode had the most
excellent electrochemical properties in comparison with undoped CePO4

nanomaterials. The electrochemical results show that the specific capacity and the
electrical conductivity increase with increasing doping content. The specific
capacitance of the hybrid electrode materials presents a good cyclic stability.
The improved specific capacitance is due to the surface morphology and the
decrease of grain size of the particles. The lowering in the crystal size allows a
fast faradaic reaction, giving a short ion diffusion path, which improves the
electrochemical properties. This simple synthesis methodology together with
the good optical and electronic properties makes this material scientifically;
technologically interesting and could find a potential use in nanoelectronics.

Specific capacitances C (Fg�1) [41] Specific capacitances C (Fg�1) [42]

CePO4 C = 58 CePO4 C = 58

Bi0.02Ce0.98PO4 C = 63 Ce0.9Cd0.15PO4 C = 76

Bi0.08Ce0.92PO4 C = 75 Ce0.9Cd0.13Li0.04PO4 C = 120

Table 3.
Specific capacitances of BixCe1-xPO4 and Ce0.9Cd0.15-xLi2xPO4 nanomaterials.
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