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Chapter

Moments of Catalan Triangle
Numbers
Pedro J. Miana and Natalia Romero

Abstract

In this chapter, we consider the Catalan numbers, Cn ¼ 1
nþ1

2n

n

� �

, and two of

their generalizations, Catalan triangle numbers, Bn,k and An,k, for n, k∈. They are
combinatorial numbers and present interesting properties as recursive formulae,
generating functions and combinatorial interpretations. We treat the moments of

these Catalan triangle numbers, i.e., with the following sums:
Pn

k¼1k
mB

j
n,k,

Pnþ1
k¼1 2k� 1ð ÞmA j

n,k, for j, n∈ and m∈∪ 0f g. We present their closed expres-

sions for some values of m and j. Alternating sums are also considered for particular
powers. Other famous integer sequences are studied in Section 3, and its connection
with Catalan triangle numbers are given in Section 4. Finally we conjecture some
properties of divisibility of moments and alternating sums of powers in the last
section.

Keywords: Catalan numbers, combinatorial identities, binomial coefficients,
moments

1. Introduction

After the binomial coefficients, the well-known Catalan numbers Cnð Þn≥0 are

the most frequently occurring combinatorial numbers. They are treated deeply in
many books, monographs, and papers (e.g., [1–20]). Catalan numbers play an
important role and have a major importance in computer science and
combinatorics.

They appear in studying astonishingly many combinatorial problems. They
count the number of different ways to triangulate a regular polygon with nþ 2
sides; or, the number of ways that 2n people seat around a circular table are
simultaneously shaking hands with another person at the table in such a way that
none of the arms cross each other, and also in tree enumeration problem, see these
examples and others in [19, 20].

Other applications of the Catalan numbers appear in engineering in the field of
cryptography to form keys for secure transfer of information; in computational
geometry, they are generally used in geometric modeling; they may be also found in
geographic information systems, geodesy, or medicine.
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There are several ways to define Catalan numbers; one of them is recursively by

C0 ¼ 1 and Cn ¼
Pn�1

i¼0CiCn�1�i for n≥ 1; the first terms in this sequence are

1, 1, 2, 5, 14, 42, 132, … (1)

The generating formula for Catalan numbers is

C xð Þ ≔ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x
p

2x
¼
X

n≥0

Cnx
n, 0< x< 1=14 (2)

[10] and ([20], Proposition 1.3.1).
Catalan triangle numbers Bn,kð Þn,k≥ 1 and An,kð Þn,k≥ 1 are defined by

Bn,k ≔
k

n

2n

n� k

� �

, An,k ≔
2k� 1

2nþ 1

2nþ 1

nþ 1� k

� �

n, k∈, k≤ nþ 1: (3)

Notice that Bn,1 ¼ An,1 ¼ Cn. In [14], Shapiro introduced Catalan triangles
whose entries are given by the coefficients

X

n≥ k

Bn,kx
n ¼ xkC2k xð Þ, (4)

see a more general approach in [10].
Although the numbers Bn,k (and also An,k) are not as well-known as Catalan

numbers, they have also several applications, for example, Bn,k is the number of
walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in
the upper half-plane and ending at height k; see more details in [4, 13, 14, 16] for
additional information.

Both Catalan triangle numbers may be written in unified expression. We con-
sider combinatorial numbers Cm,kð Þm≥ 1,k≥0, given by

Cm,k ≔
m� 2k

m

m

k

� �

: (5)

These combinatorial numbers Cm,kð Þm≥ 1,k≥0 are suitable rearrangements of the

known ballot numbers am,kð Þ with am,k ¼ kþ1
mþ1

2m� k

m

� �

for m≥0 and 0≤ k≤m,

i.e.,

am,k ¼ C2mþ1�k,m�k, Cm,k ¼ am�k�1,m�2k�1, (6)

see example [21]. Note that C2n,n�k ¼ Bn,k and also C2nþ1,nþ1�k ¼ An,k. In ([9],
Theorem 1.1), the authors show that any binomial coefficient can be written as
weighted sums along the rows of the Catalan triangle, i.e.,

nþ kþ 1

k

� �

¼
X

k

j¼0

Cn,j2
k�j: (7)

The generalized kth Catalan numbers kCn ≔
1
n

nk

n� 1

� �

, k≥ 1, are presented in

[17] to count the number of ways of subdividing a convex polygon into k disjoint
nþ 1ð Þ-polygons by means of nonintersecting diagonals, k≥ 1; see also [2, 11].
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In this paper, our main objective is to study in detail the moments of Catalan
triangle numbers:

X

n

k¼1

kmB
j
n,k,

X

nþ1

k¼1

2k� 1ð ÞmA j
n,k, (8)

for j, n∈ and m∈∪ 0f g. In previous papers, the authors have considered
some particular cases of these sums: for j ¼ 1 andm ¼ 0 in [14], for j ¼ 2 in [12, 13],
and for j ¼ 3 and m ¼ 0 in [22]. In [7], the authors solved a conjecture posed in [22]
about divisibility properties in the case m ¼ 0. However, there are no results in the
literatures for moments for j> 2. We complete and present a full treatment of these
moments, for j ¼ 1 in Section 2 and for j ¼ 2 and for some cases of j ¼ 3 in Section 4.

In the paper [23], the authors treat several families of binomial sum identities
whose definition involves the absolute value function. Here we present alternating
sums of for several powers of Catalan triangle numbers (Theorem 2.2, Proposition
4.1 (iii), and Proposition 4.4 (iii)). In ([24], Theorem 2.3), the following identityis
proved:

X

n

k¼1

�1ð Þkk2B2
n,k ¼ n n� 2ð Þ 2n� 1ð ÞCn�1, n≥ 1: (9)

In this paper, we treat
Pn

k¼1 �1ð Þkk2B j
n,k and

Pnþ1
k¼1 �1ð Þkk2A j

n,k for j∈ 1, 2, 3, 4, 5f g,
and we conjecture some divisibility properties in Conjecture 5.7.

The WZ theory is a powerful tool to show hypergeometric identities. We have
applied this tool in Theorem 2.1 to check certain identities. In detail, we have used
the Maple program and the EKHAD package as software for the WZ method; see
([25], Example 7.5.3). Although analytic proofs are not presented, alternative proofs
as to apply WZ theory [26, 27] or some mathematical software indicate us what
these identities hold. Note that an analytic proof will give us some extra information
about these natures of the sums.

In Section 3, we prove new identities involving sequences a nð Þð Þn≥0 and

b nð Þð Þn≥ 1 where

a nð Þ ≔
X

n

k¼0

nþ k

n

� �2

, b nð Þ ≔
X

n

k¼0

n� k

n

n� 1þ k

n� 1

� �2

n∈, (10)

and Catalan numbers Cnð Þn≥0. In Theorems 3.1 and 3.2, we show that for n≥ 1,

2 2nþ 1ð Þa nð Þ � na n� 1ð Þ ¼ 21nþ 8ð Þ nþ 1

2

� �2

C2
n, (11)

2 2nþ 1ð Þb nþ 1ð Þ � nb nð Þ ¼ 7n2 þ 8nþ 2
� �

C2
n: (12)

Lemma 3.3 shows that sequences a nð Þð Þn≥ 1 and b nð Þð Þn≥ 1 are deeply connected

with Catalan numbers. Recurrence relations (30) and (36) (and polynomials in
these relations) play delicate roles which allow to give proof of the identity:

nþ 1ð ÞCnð Þ2 ¼ 4 3a n� 1ð Þ � 2b nð Þð Þ, n≥ 1, (13)

(Theorem 3.4).
In Section 4, we give the moments of second order in Theorem 4.2 and 4.3, and

for third order, we present that
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X

n

k¼0

B3
n,k ¼

nþ 1

2
Cnb nð Þ,

X

nþ1

k¼1

A3
n,k ¼ nþ 1ð ÞCn 2 nþ 1ð ÞCnð Þ2 � 3a nð Þ

� �

, (14)

for n≥ 1; see also ([22], Section 3).
Finally, we conjecture some divisibility properties in Section 5; in particular

X

n

k¼1

k2mBn,k ¼
nþ 1

2
CnnPm�1 nð Þ, (15)

X

n

k¼1

k2m�1Bn,k ¼ 2n�m�1Qm�1 nð Þ, (16)

X

nþ1

k¼1

k2mAn,k ¼ nþ 1ð ÞCnRm�1 nð Þ, (17)

X

nþ1

k¼1

k2m�1An,k ¼ 22nSm�1 nð Þ, (18)

where Pm�1,Qm�1,Rm�1 and Sm�1 are polynomials of integer coefficients at the
degree at most m� 1 (Conjectures 5.1 and 5.2). In Conjecture 5.3, we state that the

factor nþ1
2 Cn could divide

Pn
k¼0k

2mB3
n,k for m, n∈; similarly the factor nþ 1ð ÞCn

might divide
Pnþ1

k¼0 2k� 1ð Þ2mA3
n,k for m, n∈ (Conjecture 5.4). Similar conjectures

about moments of fourth order and alternating sums are also presented in
Conjectures 5.5–5.7.

2. Sums and alternating sums of Catalan triangle numbers

Catalan triangle numbers Bn,kð Þn≥ 1,1≤ k≤ n were introduced in [14]. These combi-

natorial numbers Bn,k are the entries of the following Catalan triangle:

ð19Þ

which are given by

Bn,k ≔
k

n

2n

n� k

� �

, n, k∈, k≤ n: (20)

Notice that Bn,1 ¼ Cn and Bn,n ¼ 1 n≥ 1.
In the last years, Catalan triangle (19) has been studied in detail. For instance,

the formula

X

i

k¼1

Bn,kBn,nþk�i nþ 2k� ið Þ ¼ nþ 1ð ÞCn

2 n� 1ð Þ
i� 1

� �

, i≤ n, (21)
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which appears in a problem related with the dynamical behavior of a family of
iterative processes has been proved in ([8], Theorem 5). These numbers Bn,kð Þn≥ k≥ 1

have been analyzed in many ways. For instance, symmetric functions have been
used in [1], recurrence relations in [15], or in [6] the Newton interpolation formula,
which is applied to conclude divisibility properties of the sums of products of
binomial coefficients.

Other combinatorial numbers An,k defined as follows

An,k ≔
2k� 1

2nþ 1

2nþ 1

nþ 1� k

� �

, n, k∈, k≤ nþ 1, (22)

appear as the entries of this other Catalan triangle,

ð23Þ

which is considered in [13]. Notice that An,1 ¼ Cn and C2nþ1,n�kþ1 ¼ An,k for
k≤ nþ 1.

Entries Bn,k and An,k of the above two particular Catalan triangles satisfy the
recurrence relations

Bn,k ¼ Bn�1,k�1 þ 2Bn�1,k þ Bn�1,kþ1, k≥ 2, (24)

and

An,k ¼ An�1,k�1 þ 2An�1,k þ An�1,kþ1, k≥ 2: (25)

For m∈∪ 0f g, we define the moments of order m by the sum

Δm nð Þ ≔
X

n

k¼0

kmBn,k, Λm nð Þ ≔
X

nþ1

k¼0

2k� 1ð ÞmAn,k, n≥ 1: (26)

As it was shown in [14], the values of the sums (or moments of order 0) of Bn,k

and An,k are expressed in terms of Catalan numbers; see item (i) and (iii) in the next
theorem. We apply the WZ theory to show the following moments for
m∈ 0, 1, … 7f g.

Theorem 2.1. For n∈, the following identities hold:

i: Δ0 nð Þ ¼ nþ 1

2
Cn,

Δ2 nð Þ ¼ n
nþ 1

2
Cn,

Δ4 nð Þ ¼ n 2n� 1ð Þ nþ 1

2
Cn,

Δ6 nð Þ ¼ n 6n2 þ 4nþ 1
� � nþ 1

2
Cn:
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ii: Δ1 nð Þ ¼ 22n�2,

Δ3 nð Þ ¼ 22n�3 3n� 1ð Þ,
Δ5 nð Þ ¼ 22n�4 15n n� 1ð Þ þ 2ð Þ,
Δ7 nð Þ ¼ 22n�5 105n3 � 210n2 þ 147n� 34

� �

:

iii: Λ0 nð Þ ¼ nþ 1ð ÞCn,

Λ2 nð Þ ¼ nþ 1ð ÞCn 4nþ 1ð Þ,
Λ4 nð Þ ¼ nþ 1ð ÞCn 32n2 þ 8nþ 1

� �

,

Λ6 nð Þ ¼ nþ 1ð ÞCn 384n3 � 32n2 þ 12nþ 1
� �

:

iv: Λ1 nð Þ ¼ 22n,

Λ3 nð Þ ¼ 22n 6nþ 1ð Þ,
Λ5 nð Þ ¼ 22n 60n2 þ 1

� �

,

Λ7 nð Þ ¼ 22n 840n3 � 420n2 þ 126nþ 1
� �

:

For alternating sums, the following theorem was proved in [5] and ([22],
Corollary 1.3).

Theorem 2.2. For n≥ 1, we have

i.
P

n

k¼1

�1ð ÞkBn,k ¼ �Cn�1,

ii.
P

nþ1

k¼1

�1ð ÞkAn,k ¼ 0.

Other interesting combinatorial numbers which have been deeply studied in the
last decade are the well-known harmonic numbers Hnð Þn≥ 1. These numbers are

given by the following formula:

Hn ¼
X

n

k¼1

1

k
, n∈: (27)

A deep treatment of closed formulas for the sums of the form
Pn

k¼1akHk is given
in [18]. Also, the WZ theory is applied to get identities in [26], and infinite series
involving harmonic numbers is presented in [3]. See other approaches in ([28],
Chapter 7) and reference therein.

In ([22], Corollary 1.5) the next relationships between Catalan triangle numbers
and harmonic numbers Hnð Þn≥ 1 are given.

Corollary 2.3. For n≥ 1, we have

i.
P

n�1

k¼0

Bn,kHn�k ¼ 2nHn�1ð Þ nþ1ð Þ
4n Cn � 22n�1�1

2n ,

ii.
P

n

k¼1

An,kHn�kþ1 ¼ Hn nþ 1ð ÞCn � 22n�1
2nþ1 :

Remark. It is worth to consider other powers of Catalan triangle numbers and
harmonic numbers to obtain, for example, formulae of

6
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X

n�1

k¼0

B2
n,kHn�k, and

X

n

k¼1

A2
n,kHn�kþ1: (28)

3. Sums of squares of combinatorial numbers

We consider the sequence of integer numbers defined by

a nð Þ ≔
X

n

k¼0

nþ k

n

� �2

, n∈∪ 0f g: (29)

Note that a 0ð Þ ¼ 1, a 1ð Þ ¼ 5, a 2ð Þ ¼ 46, a 3ð Þ ¼ 517, a 4ð Þ ¼ 6376, etc. This
sequence appears indexed in the On-Line Encyclopedia of Integer Sequences by N.J.
A. Sloane [16] with the reference A112029. V. Kotesovec in 2012 proved the fol-
lowing recurrence relation:

p1 nð Þa nð Þ ¼ p2 nð Þa n� 1ð Þ þ p3 nð Þa n� 2ð Þ, n≥ 2, (30)

where polynomials pi
� �

i∈ 1,2,3f g are defined by

p1 nð Þ ≔ 2 2nþ 1ð Þ 21n� 13ð Þn2, (31)

p2 nð Þ ≔ 1365n4 � 1517n3 þ 240n2 þ 216n� 64, (32)

p3 nð Þ ≔ � 4 n� 1ð Þ 2n� 1ð Þ2 21nþ 8ð Þ: (33)

Next, in the following theorem, we provide an identity which relates the square
of Catalan numbers and a nð Þð Þn≥0.

Theorem 3.1. For n≥ 1, the following identity holds

2 2nþ 1ð Þa nð Þ � na n� 1ð Þ ¼ 21nþ 8ð Þ nþ 1

2

� �2

C2
n: (34)

Proof. We show this identity by induction method. For n ¼ 1, we check directly

that 29 ¼ 21 � 1þ 8ð ÞC2
1. Now suppose that the identity holds for any m≤ n. Note

that

21nþ 8ð Þ nþ 2

2

� �2

C2
nþ1 ¼ 21nþ 8ð Þ4 2nþ 1ð Þ2 nþ 1

2

� �2

C2
n

¼ 4 2nþ 1ð Þ2 2 2nþ 1ð Þa nð Þ � na n� 1ð Þð Þ,

where we have applied the induction hypothesis. Then we apply the law of
recurrence (30) to get that

21nþ 8ð Þ 21nþ 29ð Þ nþ 2

2

� �2

Cnþ1

¼ 8 21nþ 29ð Þ 2nþ 1ð Þ3a nð Þ þ p3 nþ 1ð Þa n� 1ð Þ

¼ p1 nþ 1ð Þa nþ 1ð Þ þ 8 21nþ 29ð Þ 2nþ 1ð Þ3 � p2 nþ 1ð Þ
� �

a nð Þ

¼ 2 2nþ 3ð Þ 21nþ 8ð Þ nþ 1ð Þ2a nþ 1ð Þ � 21nþ 8ð Þ nþ 1ð Þ3a nð Þ
¼ 21nþ 8ð Þ nþ 1ð Þ2 2 2nþ 3ð Þa nþ 1ð Þ � nþ 1ð Þa nð Þð Þ,

7
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and we conclude the proof. □

Now we consider this second sequence of integer numbers defined by

b nð Þ ≔
X

n

k¼0

k

n

2n� k� 1

n� 1

� �2

¼
X

n

k¼0

n� k

n

n� 1þ k

n� 1

� �2

, n∈: (35)

Note that b 1ð Þ ¼ 1, b 2ð Þ ¼ 3, b 3ð Þ ¼ 19, b 4ð Þ ¼ 163, b 5ð Þ ¼ 1625, etc. This
sequence also appears indexed in the On-Line Encyclopedia of Integer Sequences by
N.J.A. Sloane [16] with the reference A183069, and V. Kotesovec proved the
following recurrence relation:

q1 nð Þb nð Þ ¼ q2 nð Þb n� 1ð Þ þ q3 nð Þb n� 2ð Þ, n≥ 3, (36)

where polynomials qi
� �

i∈ 1,2,3f g are defined by

q1 nð Þ ≔ 2n2 2n� 1ð Þ 7n2 � 20nþ 14
� �

, (37)

q2 nð Þ ≔ 455n5 � 2427n4 þ 4850n3 � 4406n2 þ 1728n� 216, (38)

q3 nð Þ ≔ � 4 n� 2ð Þ 2n� 3ð Þ2 7n2 � 6nþ 1
� �

: (39)

In a similar way, we obtain an identity which relates numbers b nð Þð Þn≥ 1 to the

square of Catalan numbers.
Theorem 3.2. For n≥ 1, the following identity holds

2 2nþ 1ð Þb nþ 1ð Þ � nb nð Þ ¼ 7n2 þ 8nþ 2
� �

C2
n: (40)

Proof. We prove the identity by the induction method. For n ¼ 1, we directly
check the identity. Suppose that the identity holds for a given number n. Since
nþ 2ð ÞCnþ1 ¼ 2 2nþ 1ð ÞCn, we have that

7n2 þ 8nþ 2
� �

7n2 þ 22nþ 17
� �

nþ 2ð Þ2C2
nþ1

¼ 7n2 þ 8nþ 2
� �

7n2 þ 22nþ 17
� �

4 2nþ 1ð Þ2C2
n

¼ 4 2nþ 1ð Þ2 7n2 þ 22nþ 17
� �

2 2nþ 1ð Þb nþ 1ð Þ � nb nð Þð Þ

¼ 8 2nþ 1ð Þ3 7n2 þ 22nþ 17
� �

b nþ 1ð Þ þ q3 nþ 2ð Þb nð Þ

¼ q1 nþ 2ð Þb nþ 2ð Þ þ 8 2nþ 1ð Þ3 7n2 þ 22nþ 17
� �

� q2 nþ 2ð Þ
� �

b nþ 1ð Þ

¼ 2 7n2 þ 8nþ 2
� �

2nþ 3ð Þ nþ 2ð Þ2b nþ 2ð Þ � 7n2 þ 8nþ 2
� �

nþ 2ð Þ2 nþ 1ð Þb nð Þ,

where we have applied the recurrence relation (36), we obtain the identity for
nþ 1, and we conclude the result. □

Sequences a nð Þð Þn≥0 and b nð Þð Þn≥ 1 are jointly connected as the next lemma

shows. The proof is left to the reader.
Lemma 3.3. For n≥ 1, the following two identities hold

q1 nð Þ q3 nð Þ
p1 n� 1ð Þ p3 n� 1ð Þ

	

	

	

	

	

	

	

	

	

	

¼ �8Q nð Þ 2n� 1ð Þ 2n� 3ð Þ2 n� 2ð Þ; (41)

q1 nð Þ q2 nð Þ
p1 n� 1ð Þ p2 n� 1ð Þ

	

	

	

	

	

	

	

	

	

	

¼ 16Q nð Þ 2n� 1ð Þ 2n� 3ð Þ3, (42)

8
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where Q nð Þ ≔ 147n4 � 546n3 þ 666n2 � 293nþ 34.
Our last aim of this section is to show an alternative of the following identity

2n

n

� �2

¼
X

n

k¼0

3n� 2k

n

2n� 1� k

n� 1

� �2

, (43)

in Theorem 3.4. An original proof is presented in ([22], Theorem 2.3 (ii)), and it
is a straightforward consequence of a more general identity in combinatorial num-
bers ([22], Theorem 2.3 (i)). The proof which we present here allows to recognize
the natural connection among the sequences a nð Þð Þn≥0 and b nð Þð Þn≥ 1 and the

Catalan numbers Cnð Þn≥0. Note that one may rewrite the identity (43) in an

equivalent way.
Theorem 3.4. For n≥ 1, the following identity holds

nþ 1ð ÞCnð Þ2 ¼ 4 3a n� 1ð Þ � 2b nð Þð Þ, n≥ 1: (44)

Proof.We write by c nð Þ ¼ nþ 1ð ÞCnð Þ2 ¼
2n

n

� �2

, and then we have to check the

following identity

c nð Þ ¼ 4 3a n� 1ð Þ � 2b nð Þð Þ, n≥ 1, (45)

where sequences a nð Þð Þn≥0 and b nð Þð Þn≥ 1 are considered in the second section.

Note that

p1 n� 1ð Þq1 nð Þ4 3a n� 1ð Þ � 2b nð Þð Þ
¼ 12q1 nð Þ p2 n� 1ð Þa n� 2ð Þ þ p3 n� 1ð Þa n� 3ð Þ

� �

�8p1 n� 1ð Þ q2 nð Þb n� 1ð Þ þ q3 nð Þb n� 2ð Þ
� �

¼ 12a n� 2ð Þðp1 n� 1ð Þq2 nð Þ þ 16Q nð Þ 2 n� 1ð Þ 2n� 3ð Þ3
� �

þ12a n� 3ð Þ p1 n� 1ð Þq3 nð Þ � 8Q nð Þ 2n� 1ð Þ 2n� 3ð Þ n� 2ð Þ
� �

�8p1 n� 1ð Þðq2 nð Þb n� 1ð Þ � 2p1 n� 1ð Þq3 nð Þb n� 2ð Þ
¼ p1 n� 1ð Þq2 nð Þ 12a n� 2ð Þ � 8b n� 1ð Þð Þ
þp1 n� 1ð Þq3 nð Þ 12a n� 3ð Þ � 8b n� 2ð Þð Þ
þ96 2n� 1ð Þ 2n� 3ð Þ2Q nð Þ 2 2n� 3ð Þa n� 2ð Þ � n� 2ð Þa n� 3ð Þð Þ,

where we have applied the recurrence relations (30) and (36) and Lemma 3.3.
By the induction method and Theorem 3.1, we have that

p1 n� 1ð Þq1 nð Þ4 3a n� 1ð Þ � 2b nð Þð Þ ¼ p1 n� 1ð Þq2 nð Þc n� 1ð Þ þ p1 n� 1ð Þq3 nð Þc n� 2ð Þ
þ24 2n� 1ð Þ 2n� 3ð Þ2Q nð Þ 21n� 34ð Þc n� 2ð Þ

for n≥ 2. Since 4 2n� 3ð Þ2c n� 2ð Þ ¼ n� 1ð Þ2c n� 1ð Þ for n≥ 2, we have that

24 2n� 1ð Þ 2n� 3ð Þ2Q nð Þ 21n� 34ð Þc n� 2ð Þ ¼ 3p1 n� 1ð ÞQ nð Þc n� 1ð Þ, n≥ 1: (46)

Finally, we get that

p1 n� 1ð Þq1 nð Þ4 3a n� 1ð Þ � 2b nð Þð Þ

¼ p1 n� 1ð Þc n� 1ð Þ q2 nð Þ þ q3 nð Þ n� 1ð Þ2

4 2n� 3ð Þ2
þ 3Q nð Þ

 !
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and

c n� 1ð Þ q2 nð Þ þ q3 nð Þ n� 1ð Þ2

4 2n� 3ð Þ2
þ 3Q nð Þ

 !

¼ c n� 1ð Þ8 7n2 � 20nþ 14
� �

2n� 1ð Þ3

¼ c nð Þn22 7n2 � 20nþ 14
� �

2n� 1ð Þ ¼ c nð Þq1 nð Þ,

and we conclude the proof. □

4. Moments of squares and cubes of Catalan triangle numbers

In this section, we present some moments of squares and cubes of Catalan
triangle numbers Bn,kð Þn≥ 1,n≥ k≥ 1 and An,kð Þn≥ 1,nþ1≥ k≥ 1, i.e.,

X

n

k¼1

kmB
j
n,k,

X

nþ1

k¼1

2k� 1ð ÞmA j
n,k, (47)

for j ¼ 2, 3 and m∈. For m ¼ 0, these identities are shown in [14, 24]. See a
unified proof in ([22], Corollary 2.2).

Proposition 4.1. For n≥ 1, we have

i.
P

n

k¼1

B2
n,k ¼ C2n�1,

ii.
P

nþ1

k¼1

A2
n,k ¼ C2n,

iii.
P

n

k¼1

�1ð ÞkB2
n,k ¼ � nþ1

2 Cn:

Remark. The first values of
Pnþ1

k¼1 �1ð ÞkA2
n,k are

0, 4, 32, 236, 1865, 16080, (48)

for 1≤ n≤ 6. We are not able to find any closed formula for the general
expression.

In ([13], Theorem 2), the closed expression of

Ωm nð Þ ≔
X

n

k¼1

kmB2
n,k, (49)

is given for m∈∪ 0f g. We present now for m∈ 0, 1,⋯, 7f g. Previously, the
WZ theory was used to show them in ([12], Theorem 2.1, 2.2). See also ([1],
Section 5).

Theorem 4.2. For n∈,

10

Number Theory and Its Applications



i: Ω0 nð Þ ¼ C2n�1

Ω2 nð Þ ¼ 3n� 2ð Þn
4n� 3

C2n�1,

Ω4 nð Þ ¼ 15n3 � 30n2 þ 16n� 2ð Þn
4n� 3ð Þ 4n� 5ð Þ C2n�1,

Ω6 nð Þ ¼ 105n5 � 420n4 þ 588n3 � 356n2 þ 96n� 10ð Þn
4n� 3ð Þ 4n� 5ð Þ 4n� 7ð Þ C2n�1:

ii: Ω1 nð Þ ¼ 2n� 3ð Þ nþ 1ð ÞCnCn�2,

Ω3 nð Þ ¼ n 2n� 3ð Þ nþ 1ð ÞCnCn�2,

Ω5 nð Þ ¼ n 3n2 � 5nþ 1
� �

nþ 1ð ÞCnCn�2,

Ω7 nð Þ ¼ n 6n n� 1ð Þ2 � 1
� �

nþ 1ð ÞCnCn�2:

In ([13], Theorem 4, 8), the closed expression of

Ψm nð Þ ≔
X

n

k¼1

2k� 1ð ÞmA2
n,k, (50)

is obtained for m∈∪ 0f g. Now, we present the particular cases for
m∈ 0, 1,⋯, 7f g in the next theorem.

Theorem 4.3. For n∈,

i: Ψ0 nð Þ ¼ C2n,

Ψ2 nð Þ ¼ �1þ 4nþ 12n2

4n� 1
C2n,

Ψ4 nð Þ ¼ 3� 16n� 104n2 þ 240n4

4n� 1ð Þ 4n� 3ð Þ C2n,

Ψ6 nð Þ ¼ �15þ 92nþ 1116n2 þ 2080n3 � 4368n4 � 6720n5 þ 6720n6

4n� 1ð Þ 4n� 3ð Þ 4n� 5ð Þ C2n:

ii: Ψ1 nð Þ ¼ nþ 1ð ÞCnCn�1 4n� 2ð Þ,
Ψ3 nð Þ ¼ nþ 1ð ÞCnCn�1 16n2 � 2

� �

,

Ψ5 nð Þ ¼ nþ 1ð ÞCnCn�1 96n3 þ 32n2 � 4n� 2
� �

,

Ψ7 nð Þ ¼ nþ 1ð ÞCnCn�1
1536n5 � 1536n4 � 960n3 � 160n2 þ 20nþ 6

2n� 3
:

Integer sequences of numbers a nð Þð Þn≥0 and b nð Þð Þn≥ 1 were treated in Section 3.

They play a very interesting role to describe the sums of cubes of Catalan triangle
numbers, as the next result shows. See proofs and more details in ([22], Section 3).

Theorem 4.4. For n≥ 1, we have

i.
P

n

k¼0

B3
n,k ¼ nþ1

2 Cnb nð Þ,

ii.
P

nþ1

k¼1

A3
n,k ¼ nþ 1ð ÞCn 2 nþ 1ð ÞCnð Þ2 � 3a nð Þ

� �

,
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iii.
P

nþ1

k¼1

�1ð ÞkA3
n,k ¼ n�1

2nþ1

2n

n

� �

3n

n

� �

:

Remark. To check
Pn

k¼1B
3
n,k in Theorem 4.4 (i), we need to show the identity:

2n

n

� �2

¼
X

n

k¼0

3n� 2k

n

2n� 1� k

n� 1

� �2

, n≥ 1, (51)

see ([22], Theorem 3.3). In Theorem 3.4, we have presented an alternative proof
of this identity.

The first values of
Pn

k¼1 �1ð ÞkB3
n,k are

�1, � 7, � 62, � 215, 17332, 945342, (52)

for 1≤ n≤ 6. We are not able to find any closed formula for the general
expression.

5. Conclusions and future developments

In this paper we have studied in detail

X

n

k¼1

kmB
j
n,k,

X

nþ1

k¼1

2k� 1ð ÞmA j
n,k, (53)

for n∈ and several values of j∈. The main objective is to give a closed

formula where a factor is nþ1
2 Cn, nþ 1ð ÞCn, C2n, or other Catalan number, for

example, in Theorem 2.1, Proposition 4.1, and Theorems 4.2 and 4.3. These results
complete previous studies for m ¼ 0, 1 and 2. In the case of j ¼ 3 and m ¼ 0, some
known integer sequences a nð Þð Þn≥0 and b nð Þð Þn≥ 1 appear in Theorem 4.4. Also the

alternating sums

X

n

k¼1

�1ð ÞkB j
n,k,

X

nþ1

k¼1

�1ð ÞkA j
n,k, (54)

are considered in Theorem 2.2, Proposition 4.1 (iii), and Proposition 4.4 (iii).
To show these identities, we have combined the analytic proofs and the WZ

theory which is useful to show combinatorial identities. Our results allow continu-
ing this research, and future developments could be made.

In the following, we present some conjectures about new identities in Catalan
triangle numbers. These conjectures are about the properties of divisibility of sums
and alternating sums of powers of Catalan triangle numbers Bn,k and An,k. The

factors which we consider are nþ1
2 Cn and nþ 1ð ÞCn.

Conjecture 5.1. After Theorem 2.1 (i) and (ii), it is natural to conjecture that for
m, n∈

Δ2m nð Þ ¼ nþ 1

2
CnnPm�1 nð Þ, (55)

Δ2m�1 nð Þ ¼ 2n�m�1Qm�1 nð Þ, (56)
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where Pm�1 and Qm�1 are polynomials of integer coefficients at degree at most
m� 1.

Conjecture 5.2. After Theorem 2.1 (iii) and (iv), it is also natural to conjecture
that for m, n∈,

Λ2m nð Þ ¼ nþ 1ð ÞCnRm�1 nð Þ, (57)

Λ2m�1 nð Þ ¼ 22nSm�1 nð Þ, (58)

where Rm�1 and Sm�1 are polynomials of integer coefficients at degree at most
m� 1.

Conjecture 5.3. In Table 1, we present the moments
Pn

k¼1k
mB3

n,k for

m∈ 1, 2, 3, 4f g and n∈ 1, 2, 3, 4, 5f g. Then we conjecture that the factor nþ1
2 Cn

divides
Pn

k¼0k
2mB3

n,k for m, n∈.

Conjecture 5.4. In Table 2, we give the moments
Pnþ1

k¼1 2k� 1ð ÞmA3
n,k for

m∈ 1, 2, 3, 4f g and n∈ 1, 2, 3, 4, 5f g. We conjecture that the factor nþ 1ð ÞCn divides
Pnþ1

k¼0 2k� 1ð Þ2mA3
n,k for m, n∈.

Conjecture 5.5. We give the moments
Pn

k¼1k
mB4

n,k for m∈ 1, 2, 3, 4f g and

n∈ 1, 2, 3, 4, 5f g in Table 3. Then we conjecture that the factor nþ1
2 Cn divides

Pn
k¼0k

2m�1B4
n,k for m, n∈.

Conjecture 5.6. In Table 4, we give the moments
Pnþ1

k¼0 2k� 1ð ÞmA4
n,k for

m∈ 1, 2, 3, 4f g and n∈ 1, 2, 3, 4, 5f g. We conjecture that nþ 1ð ÞCn divides
Pnþ1

k¼0 2k� 1ð Þ2m�1A4
n,k for m, n∈.

Conjecture 5.7. The sums of alternating powers of Catalan triangle numbers Bn,k

and An,k,

n P

n

k¼1

kB
3
n,k

P

n

k¼1

k
2
B
3
n,k

P

n

k¼1

k
3
B
3
n,k

P

n

k¼1

k
4
B
3
n,k

1 1 1 1 1

2 10 12 16 24

3 256 390 664 1230

4 8884 15, 680 30, 592 64, 400

5 356, 374 701, 820 1, 523, 158 3, 569, 580

Table 1.
Moments of cubes of Bn,k.

n P

nþ1

k¼1

2k� 1ð ÞA3
n,k

P

nþ1

k¼1

2k� 1ð Þ2A3
n,k

P

nþ1

k¼1

2k� 1ð Þ3A3
n,k

P

nþ1

k¼1

2k� 1ð Þ4A3
n,k

1 4 10 28 82

2 94 276 862 2820

3 2944 9860 35, 776 139, 700

4 111, 010 417, 200 1, 713, 826 7, 610, 960

5 4, 677, 160 19, 342, 008 87, 730, 360 430, 535, 448

Table 2.
Moments of cubes of An,k.
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X

n

k¼1

�1ð ÞkB j
n,k, and

X

nþ1

k¼1

�1ð ÞkA j
n,k, (59)

have been considered in this paper: in Theorem 2.2 (i) and (ii) for j ¼ 1, in
Proposition 4.1 (iii) for j ¼ 2, and in Theorem 4.4 (iii) for j ¼ 3. In Table 5, we
present the alternating sums of the fourth and fifth powers of Catalan triangle
numbers. All these results join to conjecture that the factor nþ1

2 Cn divides
Pn

k¼0 �1ð ÞkB2m
n,k for m, n∈ and nþ 1ð ÞCn divides

Pnþ1
k¼0 �1ð ÞkA2m�1

n,k for m, n∈.

Finally we give some general comments and ideas which could be followed in
future works.

i. The generating formula (1) allows an interesting way to show some
combinatorial identities in an analytic way.

n P

n

k¼1

kB
4
n,k

P

n

k¼1

k
2
B
4
n,k

P

n

k¼1

k
3
B
4
n,k

P

n

k¼1

k
4
B
4
n,k

1 1 1 1 1

2 18 20 24 32

3 1140 1658 2700 4802

4 119, 140 203, 760 380, 800 758, 304

5 15, 339, 240 29, 193, 890 60, 190, 200 132, 142, 274

Table 3.
Moments of the fourth power of Bn,k.

n P

nþ1

k¼1

2k� 1ð ÞA4
n,k

P

nþ1

k¼1

2k� 1ð Þ2A4
n,k

P

nþ1

k¼1

2k� 1ð Þ3A4
n,k

P

nþ1

k¼1

2k� 1ð Þ4A4
n,k

1 4 10 28 82

2 264 770 2328 7202

3 23, 440 75, 348 256, 240 925, 092

4 2, 699, 200 9, 688, 050 37, 458, 400 155, 596, 914

5 368, 708, 256 1, 458, 679, 508 6, 249, 158, 496 28, 738, 974, 308

Table 4.
Moments of the fourth power of An,k.

n P

n

k¼1

�1ð ÞkB4
n,k

P

nþ1

k¼1

�1ð ÞkA4
n,k

P

n

k¼1

�1ð ÞkB5
n,k

P

nþ1

k¼1

�1ð ÞkA5
n,k

1 �1 0 �1 0

2 �15 64 �31 210

3 �370 5312 �2102 52, 800

4 �1295 418, 640 �7775 13, 489, 350

5 1, 669, 374 32, 351, 744 109, 796, 596 3, 453, 624, 720

Table 5.
Sums of alternating powers of Bn,k and An,k.
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ii. Alternating moments of Catalan triangle numbers Bn,k and An,k, i.e.,

P

n

k¼1

�kð ÞmB j
n,k,

P

nþ1

k¼1

� 2k� 1ð Þð ÞmA j
n,k, (60)

are a new interesting research which could be considered in later articles,
compared with ([24], Theorem 2.3).

iii. In a similar way, weight moments of Catalan triangle numbers Bn,k and An,k,

P

n

k¼1

akB
j
n,k,

P

nþ1

k¼1

bkA
j
n,k, j, n∈, (61)

are worth studying them for some a, b∈, compared with ([9], Theorem 1.1).
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Appendix

In this appendix, we present some tables of powers of Catalan triangle numbers
Bn,k and An,k. As we have mentioned above, they are used to conjecture some
statements in the Section 5.
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