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Chapter

Characteristics of Radiation of a
round Waveguide through a Flat
Homogeneous Heat Shield
Viktor F. Mikhailov

Abstract

The problem of obtaining an analytical description of the radiation characteris-
tics of a circular waveguide closed by a flat homogeneous dielectric plate is solved.
The radiation characteristics include: the radiation field; the conductivity of the
aperture radiation; and the fields of surface, flowing, and side waves, as well as
energy characteristics. In such a statement, a strict solution of Maxwell’s equations
is required. The paper uses the method of integral transformations and the method
of eigenfunctions. In this case, the assumption is used that the electrical parameters
of the dielectric plate (thermal protection) and the geometric dimensions do not
depend on time. The relations describing the directional diagram of a circular
waveguide with dielectric thermal protection and taking into account the electrical
parameters of thermal protection and its thickness are obtained. Expressions are
also obtained for the fields of lateral, surface, and outflow waves, from which it is
possible to calculate the power taken away by these fields. Numerical calculations
were made for some of the obtained relations. The results showed that the power of
the side waves is zero. It also follows from the calculations that the radiation field of
surface and flowing waves is absent, that is, their contribution to the directional
diagram is not.

Keywords: circular waveguide, a flat, uniform thermal protection, the radiation
characteristics

1. Introduction

The onboard antennas of the returned spacecraft are subjected to intensive
aerodynamic heating when the spacecraft passes through the dense layers of the
atmosphere [1]. In these conditions, radio-transparent heat-resistant thermal pro-
tection is used to protect the antennas from external influences. The open ends of
the transmission lines are used as the emitter to obtain a wide directional pattern.
The most offer used radiation from the open end of the round waveguide. In the
first approximation, we consider a flat uniform thermal protection. Under the
conditions of aerodynamic heating, the electrical parameters of thermal protection
significantly change (relative permittivity ε and tangent of the dielectric loss angle
tgδ). These changes lead to a noticeable increase in absorption losses in the heat
shield, reflection from its boundaries, as well as to the appearance of surface and
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side waves. Together, all this leads to a change in the directional pattern and a
decrease in the efficiency of the onboard antenna.

Evaluation of these changes is absolutely necessary to determine the radio tech-
nical characteristics of the onboard radio equipment. The paper solves the problem
of determining the characteristics of the radiation of a circular waveguide through a
heat shield subjected to aerodynamic heating.

The problems of calculating the interaction of the onboard antenna with a heat-
shielding dielectric insert are very difficult and poorly developed. The development
of mathematical models of antenna windows is reduced to solving an external
problem of electrodynamics—electromagnetic excitation of bodies or diffraction of
radio waves. At the same time, we will use well-known analytical methods of
solution. The radio technical characteristics of the antenna window, for which we
obtain an analytical description, include a radiation pattern, radiation conductivity,
antenna temperature, and a number of other characteristics that describe more
subtle electrodynamic effects, as well as energy characteristics.

In theoretical terms, the electrodynamic problem in general can be formulated as
follows. There is a radiating, open antenna a, located on an infinite screen, in front
of which is a dielectric layer of thickness d with a complex permittivity-bridge
εα(x, y, z, t) (see Figure 1).

In this general formulation, the solution of the electrodynamic problem is asso-
ciated with significant mathematical difficulties, the main problem being the need
to solve the Maxwell equations for an arbitrary law of change in the parameters of
media in space and time. With some simplifying assumptions, the problem was
solved in the ray approximation. In [2], the wave front method is used to analyze
the radiation diagram of an antenna covered by a dielectric layer. In [3–5], the
method proposed in [6] is used to find the radiation diagram, according to which
the antenna radiation diagram in the presence of an infinite flat dielectric layer is
simply multiplied by the diagram in the free space by the flat wave transmission
coefficient for the flat layer, taking into account the corresponding angle of arrival
and the plane of polarization of the wave.

At their core, all these methods are close to each other and are essentially based
on the approximation of geometric optics, which is true in the quasi-optical domain.
In relation to the problem under consideration (the resonance region), a strict
solution of the Maxwell equations is required. From analytical methods of the
solution, it is possible to apply the method of integral transformations and the
method of eigenfunctions. Both of these methods will be used in the future. In this
case, we assume that the parameters of thermal protection do not depend on time,

Figure 1.
Electrodynamic model of radiation from a circular waveguide with thermal protection.
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that is, in fact, the slow-moving processes of heating of the dielectric thermal
protection are considered. This approach and methods of solution were used in a
number of works, for example [7].

2. Main part

The problem can be formulated as a boundary with respect to the tangent
magnetic field in the material, and with respect to the tangent electric field. The
second method is more convenient because of the simple form of boundary condi-
tions for z = 0 [8].

The magnetic component of the electromagnetic field Hy at z ≥ 0 must satisfy
the following wave equation in a Cartesian coordinate system x, y, z:

∂
2Hy

∂x2
þ ∂

2Hy

∂y2
þ ∂

2Hy

∂z2
þ k2εHy ¼ 0, (1)

where ε= ε1 for 0 ≤ z ≤ d, ε = 1 for z > d, and k is the wave number.
We apply the Fourier transform for x and y coordinates to equation (Eq. (1)).

We get

∂
2Ĥy

∂z2
þ k2ε� k2x � k2y
� �

Ĥy ¼ 0, (2)

where is the direct Fourier transform,

Ĥy ¼
ð ð

∞

�∞

Hy x, y, 0ð Þ exp �j kxxþ kyy
� �� �

dxdy:

Solution of equation (Eq. (2)) satisfying the radiation conditions (for z≥ d) has
the form for area 1, that is, the area occupied by the dielectric plate (0 < z < d),

Ĥ
1ð Þ
y ¼ D exp �jkz1z

� �

þ L exp jkz1z
� �

:

For region 2, that is, the region behind the plate (z ≥ d), we get

Ĥ
2ð Þ
y ¼ M exp �jkzz

� �

,

where kz1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε� k2x � k2y

q

; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2x � k2y

q

:

Reasoning in a similar way, with respect to the tangent magnetic component of
the field, we obtain the following equations for the spectral component:

Ĥ
1ð Þ
x ¼ A exp �jkz1z

� �

þ B exp jkz1z
� �

,

Ĥ
2ð Þ
x ¼ C exp �jkzz

� �

:

Satisfying the equations arising from the Maxwell equation, we obtain expres-
sions for the spectral components of the electric field
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Ê
1ð Þ
x ¼ � kz1

ωε0ε1
Dexp �jkz1z

� �

� Lexp jkz1z
� �� �

;

Ê
2ð Þ
x ¼ � kz

ωε0
Mexp �jkzz

� �

;

Ê
1ð Þ
y ¼ kz1

ωε0ε1
Aexp �jkz1z

� �

� Bexp jkz1z
� �� �

;

Ê
2ð Þ
y ¼ kz

ωε0
Cexp �jkzz

� �� �

:

Unknown functions A, B, C, D, L, and M are determined from the boundary
conditions for z = 0 and z = d. In this case, the boundary conditions for radiation
from a circular waveguide, when the field in the aperture is determined by H11

waves, have the form

� kz1
ωε0ε1

D� Lð Þ ¼ Êx0 ; (3)

kz1
ωε0ε1

A� Bð Þ ¼ Êy0
; (4)

D exp �jkz1d
� �

� L exp jkz1d
� �

¼ ε1kz
kz1

M exp �jkzd
� �

; (5)

A exp �jkz1d
� �

� B exp jkz1d
� �

¼ ε1kz
kz1

C exp �jkzd
� �

; (6)

�kxky Dexp �jkz1d
� �

þ Lexp jkz1d
� �� �

þ k21 � k2x
� �

Aexp �jkz1d
� �

þ Bexp jkzd
� �

� �

¼

¼ ε1 k2 � k2x
� �

Cexp �jkzd
� �

� kxkyMexp �jkzd
� �� �

;

(7)

k21 � k2y

� �

Dexp �jkz1d
� �

þ Lexp jkz1d
� �� �

� kxky Aexp �jkz1d
� �

þ Bexp jkz1d
� �� �

¼

¼ k2 � k2y

� �

Mexp �jkzd
� �

� kxkyCexp �jkzd
� �

� �

ε1

(8)

where

Êx0 ¼
ðð

П

Ex x0, y0, 0ð Þ exp �j kxx
0 þ kyy

0� �

Þdx0dy0:
�

(9)

Êy0
¼
ðð

П

Ey x0, y0, 0ð Þ exp �j kxx
0 þ kyy

0� �

Þdx0dy0:
�

(10)

Here, П is the area of integration on the opening of the waveguide and x0,y0 are
the coordinates counted in the opening of the studied waveguide.

We present in full the expression of the coefficients included in the solution of
the wave equations of spectral components. In this case, we use the following
variable replacement:

kx ¼ β cos α, ky ¼ β sin α, kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

, kz1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

:
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Since the coefficient expressions are very cumbersome, we use the following
notation to obtain a compact form of the record:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

¼ a,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

¼ b,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d ¼ c,

β2 sin α cos α ¼ e, k2 � β2 cos 2α ¼ f, k2ε1 � β2 cos 2α ¼ g,

k2 � β2 sin 2α ¼ h, k2ε1 � β2 sin 2α ¼ l,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

d ¼ p:

As a result

A ¼ ωε0ε1

b

exp jcð Þ
Δ

Êx0eabk
2 1� ε1ð Þ cos c� j sin cð Þ þ

�

þ Êy0
e2 aþ bð Þ jb sin cþ a cos cð Þ þ bf þ agð Þ �j sin ch nb cos clað Þ
� �

�;
(11)

B ¼ A� Êy0

ωε0ε1

b
; (12)

C ¼ b

a
exp j pþ cð Þ½ � Êy0

ω

b
� j

2A

ε1
sin c exp �jcð Þ

� 	

; (13)

D ¼ ωε0ε1 exp jcð Þ
bΔ

Êx0 e2 aþ bð Þ jb sin cþ a cos cð Þ � bhþ alð Þ �
�

� jfb sin cþ ag cos cð Þ þ Êy0
aebk2 1� ε1ð Þ j sin c� cos cð Þ�; (14)

L ¼ Dþ Êxo

ωε0ε1

b
; (15)

M ¼ � b

a
exp j pþ cð Þ½ � Êx0

ωε0

b
þ j

2D

ε1
sin c exp �jcð Þ

� 	

: (16)

In the expressions (Eqs. (11)–(16))

Δ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

k2 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

sin



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d

� �

þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

"

ε1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

þ

þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β

q

d


 �

#

:

Using the obtained expressions of the angular spectrum of plane waves and apply-
ing the inverse Fourier transform, taking into account (Eqs. (9) and (10)), we write

E 1,2ð Þ
x ¼

ðð

П

F 1,2ð Þ
x1

x, y, z, x0, y0, 0ð ÞEx x0, y0, 0ð Þdx0dy0þ

þ
ðð

П

F 1,2ð Þ
x2

x, y, z, x0, y0, 0ð ÞEy x0, y0, 0ð Þdx0dy0;
(17)

E 1,2ð Þ
y ¼

ðð

П

F 1,2ð Þ
y1

x, y, z, x0, y0, 0ð ÞEx x0, y0, 0ð Þdx0dy0þ

þ
ðð

П

F 1,2ð Þ
y2

x, y, z, x0, y0, 0ð ÞEy x0, y0, 0ð Þdx0dy0;
(18)
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The functions Fx in these expressions are determined based on equations
(Eqs. (11)–(16)). After a series of transformations, you can write

F 2ð Þ
x1

¼ 1

4π2

ð

∞

�∞

ð2π

0

(

j2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d

Δ

" 

� β4 sin 2α cos 2 α

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

!

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q


 �

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �	

þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

k2 � β2 sin 2a
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

 

k2ε1 � β2 sin 2a

" !#

�

j k2 � β2 cos 2a
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

�

� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

dÞ þ k2ε1 � β2 cos 2a
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 	�

� 1

)

�

� exp ½�jðkz� kz þ kz1ð Þd exp� ½ � jβ x0 � xð Þ cos aþ y0 � yð Þ sin a½ ��β dβ da ¼

¼ 1

4π2

ð

∞

�∞

ð2π

0
φ 2ð Þ
x exp �jkzz

� �

exp �jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��βdβ da;

(19)

F 2ð Þ
x2

¼ 1

4π2

ð

∞

�∞

ð2π

0

j2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

Δ
β2 sin α cos α

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

k2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

d


 �

exp ½�j kzz� kz þ kz1ð ÞdÞð ��

� exp �jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��β dβ da ¼

¼ 1

4π2

ð

∞

�∞

ð2π

0
φ 2ð Þ
y exp �jkzz

� �

�jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��βdβ da;

(20)

F 2ð Þ
y1

¼ 1

4π2

ð

∞

�∞

ð2π

0

j2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

Δ
β2 sin 2α cos 2α

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

k2 1� ε1ð Þ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

� j sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

�

� exp �jð kzzð Þ � kz þ kz1ð ÞdÞ½ � exp �jβ½ ½ x0 � xð Þ cos aþ

þ y0 � yð Þ sin a��β dβ da ¼ 1

4π2

ð

∞

�∞

ð2π

0
ξ 2ð Þ
x exp �jkzz

� �

�

� exp �jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��β dβ da;

(21)

F 2ð Þ
y2

¼ 1

4π2

ð

∞

�∞

ð2π

0

j2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

Δ

8

>

>

<

>

>

:

" 

β4 sin 2α cos 2 α

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

Þ
#" 

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2 ð
q

k2ε1 � β2 cos 2aÞ
#"

� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

k2ε1 � β2 sin 2a
� �

�

� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

k2ε1 � β2 sin 2a
� �

�

� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

#!

� 1

)

exp ½�j kzz� kz þ kz1ð ÞdÞð ��

� exp �jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��β dβ da ¼

¼ 1

4π2

ð

∞

�∞

ð2π

0
ξ 2ð Þ
y exp �jkzz

� �

exp �jβ½ ½ x0 � xð Þ cos aþ

þ y0 � yð Þ sin a��β dβ da:

(22)
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The obtained expressions (Eqs. (19)–(22)) together with (Eqs. (17) and (18))
determine the radiation field of a circular waveguide with uniform thermal protection
through the tangent components of the electric field in the opening of the waveguide.

To calculate the integrals (Eqs. (20) and (22)) by the saddle method, it should be
taken into account that, when the integration contour is deformed, it is necessary to
bypass the branch points of the integrand and that the saddle path intersects the
poles of the integrand. We determine which branch points and poles of the inte-
grands must be taken into account in the said approximation. Integrals (Eqs. (20)
and (22)) can be written as

I ¼
ð

∞

�∞

ð

2π

0

f βð Þ exp �j d� zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q


 �

exp �jβρ cos α� φ0ð Þð Þdβdα ¼

¼ 2π

ð

∞

�∞

f βð Þ exp j d� zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q


 �

J0 βρð Þdβ:

where φ0 ¼ arctg x0 � xð Þ= y0 � yð Þ, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � xð Þ2 þ y0 � yð Þ2
q

,

J0 βρð Þ is the Bessel function.
We use the asymptotic expression of the Bessel function for large arguments

J0 βρð Þ≈
ffiffiffiffiffiffiffiffi

2π

πβρ

s

exp j βρ� π=4ð Þð Þ þ exp �j βρ� π=4ð Þð Þð Þ:

Then, passing to the plane of the complex angle τ by replacing β = ksinτ, we obtain

I ¼
ð

∞

�∞

Af βð Þ exp jkL cos τ � φð Þð Þdτ (23)

where A ¼ 2k
ffiffiffiffi

2π
βρ

q

cos τ exp �jπ=4ð Þ, d� z ¼ L cosφ, ρ ¼ L sinφ:

Considering the obtained expression of the integral I, we find the analytical
expression of the saddle path from the following equation:

Jm j cos τ � φð Þð Þ ¼ const, sciliset Jm j cos τ � φð Þð Þ ¼ j. Means cos τ � φð Þ ¼ 1:.
Because theτ ¼ τr þ jτ j,

then cos τr � φð Þ ¼ cos τr � φð Þchτ j � j sin τr � φð Þshτ j, cos τr � φð Þ ¼ 1
chτ j

¼
schτ j:

Finally, we get the expression of the saddle path

τr � φ ¼ arccos schτ j

� �

: (24)

Satisfying the radiation condition at infinity, we obtain regions on the complex
plane τ in which the saddle path defined by (Eq. (24)) lies:

1.0< τr < π, τi >0;

2.�π < τr <0, τ j <0;

moreover, the second area of determination of the transit path in our case makes
sense, since from (Eqs. (20) and (22)) it is clear that the lower limit of β is 0.
Denoting the coordinates of the branch points τв and the pole τр, we obtain from
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(Eq. (24)) the condition that determines the branch points and poles intersected
during deformation of the initial path of integration into the saddle,

τzв,zр � φ> arccos schτ jв,jр

� �

:

In the general case, in accordance with the Cauchy theorem, the integrals for
functions can be represented in the following form:

F ¼ 1

4π2

ð

l

… dβ þ U Cвð Þ
ð

lв

… dβ þU Cp

� �

ð

lp

… dβ

0

B

@

1

C

A
, (25)

where U Cв, p

� �

is the only Heaviside function; Cв,Cp are values determined on
the basis of Eq. (24) as follows on the complex plane:

Cв, p ¼ Re arcsin
βв, p

k


 �

� φ� arccos sch Jm arcsin
βв, p

k


 �
 �

, (26)

The first integrals over the circuit l are calculated by the saddle method. Finally,
by the saddle method, we get

F
2ð Þ
x1 sad ¼

jk exp jkrð Þ
2πr2

zφ 2ð Þ
x

∣kx ¼ kx0

ky ¼ ky0
, (27)

F
2ð Þ
x2 sad ¼

jk exp jkrð Þ
2πr2

zφ 2ð Þ
y

∣kx ¼ kx0

ky ¼ ky0
, (28)

F
2ð Þ
y1 sad ¼

jk exp jkrð Þ
2πr2

zξ 2ð Þ
y

∣kx ¼ kx0

ky ¼ ky0
, (29)

F
2ð Þ
y2 sad ¼

jk exp jkrð Þ
2πr2

zξ 2ð Þ
y

∣kx ¼ kx0

ky ¼ ky
: (30)

In the expressions (Eqs. (27)–(30))

k0x ¼
kx
r
, k0y ¼

ky
r
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � xð Þ2 þ y0 � yð Þ2 þ z2:

q

After a series of transformations for even E modes and odd H modes, we obtain

F 2ð Þ
x1E

¼ i

2π

X

n

i¼1

U Cpi

� �Ð 2π
0 φ2

x βi, að ÞN βi, að Þdaψ1 βið Þ
ψ1

0 βið Þ ∣ βi ¼ βEi
, (31)

F 2ð Þ
x2E

¼ i

2π

X

n

i¼1

U Cpi

� �Ð 2π
0 φ2

y βi, að ÞN βi, að Þdaψ1 βið Þ
ψ1

0 βið Þ ∣ βi ¼ βEi
, (32)

F 2ð Þ
y1E

¼ i

2π

X

n

i¼1

U Cpi

� �Ð 2π
0 φ2

x βi, að ÞN βi, að Þdaψ1 βið Þ
ψ 0 βið Þ ∣ βi ¼ βEi

, (33)

F 2ð Þ
y1E

¼ i

2π

X

n

i¼1

U Cpi

� �Ð 2π
0 φ2

y βi, að ÞN βi, að Þdaψ1 βið Þ
ψ1

0 βið Þ ∣ βi ¼ βEi
: (34)
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In these expressions

N ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

k2 exp �jkzz
� �

�

� exp �jβ½ ½ x0 � xð Þ cos aþ y0 � yð Þ sin a��β;

ψ1 βð Þ ¼ j ctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d


 �

k2ε1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

� k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

,

Cpi is calculated according to (Eq. (26)). The expressions for the H modes will be
characterized by equations similar to equations (Eqs. (31)–(34)), in which ψ1 (β) is
replaced by ψ2 (β) and ψ1 (β) by ψ2 (β) and which will be calculated for the values
of β corresponding to the poles, and

ψ2 βð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k2ε1 � β2
q

ctgð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε1 � β2
q

d:

Expressions F 1ð Þ
x1E

, F 1ð Þ
x2E

, F 1ð Þ
xyE
, F 1ð Þ

y1E
are written similar to expressions with

replacement, φ 2ð Þ
xN by φ

1ð Þ
xN , φ

2ð Þ
yN by φ

1ð Þ
y , ξ 2ð Þ

xN
by ξ 1ð Þ

xN
, and ξ 2ð Þ

yN
by ξ 1ð Þ

y , respectively.

where

φ 1ð Þ
xN

¼ φ 1ð Þ
x �ð Þ

N �ð Þ �N þð Þ
� �

�N þð Þ; (35)

φ 1ð Þ
yN

¼ φ 1ð Þ
y �ð Þ

N �ð Þ �N þð Þ
� �

; (36)

ξ 1ð Þ
xN

¼ ξ 1ð Þ
x �ð Þ

N �ð Þ �N þð Þ
� �

; (37)

ξ 1ð Þ
yN

¼ ξ 1ð Þ
x �ð Þ

N �ð Þ �N þð Þ
� �

�N þð Þ: (38)

In expressions (Eqs. (35)–(38)), the expression N (�) corresponds to the
expression N with the replacement of exp (�jkzz) by exp (�jk1z);

expression N (+) corresponds to expression N replacing exp (�jkzz) with exp
(�jk1z),

φ 1ð Þ
x �ð Þ

¼ exp jcð Þ
Δ

e2 aþ bð Þ jb sin cþ a cos cð Þ � bhþ alð Þ jb sin cþ ag cos cð Þ
� �

;

φ
1ð Þ
�ð Þ ¼ ξ

1ð Þ
x �ð Þ

aebk2 ε1 � 1ð Þ
Δ

;

ξ
1ð Þ
y �ð Þ ¼

exp jcð Þ
Δ

bf þ agð Þ jb sin cþ al cos cð Þ � l2 aþ bð Þ jb sin cþ a cos cð Þ
� �

:

The relation for functions includes expressions of spectral components.
Considering the main type of oscillations in the waveguide H11, we get

Êx1 ¼ πωμ0H0a
6kxky 0, 1þ 6, 5þ 103a2 3, 4þ k2x þ k2y

� �

þ 1, 45 � 103a4 k2x þ k2y

� �h i

;

Êy1 ¼ 0, 85πωμ0H0a
2½1� 1, 25a2 b2 þ k2x þ 0, 5k2y þ 3, 125 � 10�2

� �

�

� a4 0, 33 k2xk
2
y þ 0, 33b2k2x þ 0, 5b2k2y

� �

� 0, 5 � 10�4a6b2k2xk
2
y �;
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The second integral (Eq. (25)) is calculated along the contour lв, which covers
the cut and is carried out so that the integrand is unique. From the form of the
integrands, it is obvious where the first-order branch points are located. From the
form of the integrands of the integrals (Eq. (25)) it is obvious that the first-order
branch points are located at βв1 ¼ �k and βв2 ¼ �k

ffiffiffiffi

ε1
p

. From these branch points, it
is necessary to take βв1 ¼ k and βв2 ¼ k

ffiffiffiffi

ε1
p

, in order to satisfy the radiation condi-
tions. A calculation according to (Eq. (26)) shows that Cв > 0 for named branch
points and, with the exception of the case when ε1 is complex and the losses are
sufficiently large (tanδ > o.5). Thus, we find that the side wave can contribute to
the radiation field, and this should be taken into account. An analysis of the inte-
grands (Eqs. (20) and (22)) showed that the developed and well-known methods
for the asymptotic estimation of integrals along the banks of a section covering
branch points that are valid for a saddle point turn out to be inapplicable in this
case. For this reason, the contribution of the side wave to the radiation diagram can
be determined only by numerical integration (Eq. (25)) along the contour lв. More-
over, from the analysis of integrands, it follows that it is advisable to choose the
section so that it is a straight line parallel to the imaginary axis of the complex plane
β. Then the integral along the banks of the section

Ð

lв

… dβ will take the form

ð

k

Re kþj∞

v1 βð Þdβ þ
ð

Re kþj∞

k

v2 βð Þdβ,

where v1 βð Þ and v2 βð Þ are sub-integral expressions with signs in front of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � β2
q

.

The conditions for the existence of surface and leaky waves are determined from
the location of the poles of the integrands (Eqs. (20) and (22)), and the poles
correspond to the equality of the denominators of the marked expressions to zero.

By the Cauchy theorem, integral (Eq. (25)) along the contour lр is defined as
follows:

ð

lр

… dβ ¼
X

n

i¼1

Re s βið Þ,

where βi are the roots of the denominators (Eq. (25)).
In order to separate the singular points into poles corresponding to surface and

outgoing waves, it is advisable to again go from the complex plane β to the plane of
the complex angle τ. Moreover, from the analysis of the exponent of expression
(23), it follows that the surface wave will take place at

τr ¼ π=2, τ j >0

and the outgoing wave corresponds to the following region of complex angles:

0< τ< π, except for τr ¼ π=:2ð Þ, τji>0:

Moreover, the region 0 < τr<ϕ determines the backward wave that does not
satisfy the conditions at infinity.

In the presence of losses in the dielectric plate k1 = kr-jkj, analysis of the
exponent (Eq. (23)) shows that the poles corresponding to the relations for the
complex angle τ
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τr ¼ arccos � εtgδ

shτ j


 �

, ε�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ε2tg2δ

sh2τ j

s

chτ j <0

determine the surface wave field.
If

cos τrshτ j 6¼ �εtgδ,

then the poles that satisfy the last relation determine the field of the leaky wave.
The conductivity of the aperture is determined by the following expression:

Ya ¼
ð ð

∞

�∞

E 1ð Þ ∗
x H 1ð Þ

y dx dy:

Applying the Parseval theorem, after a series of transformations, we obtain the
expression for the conductivity referred to as the conductivity of the open end of
the waveguide in the form

Yап ¼
ωε0

2π2a

ð

∞

0

ð

π

0

βÊ
2

x0
exp jcð Þ
Δ

ððeÊx0 þ eÊy0
eabk2 1� ε1ð Þ�

� cos c� j sin cð Þ � eÊx0
� eÊy0

� �

e2 aþ bð Þ jb sin cþ a cos cð Þþ

þ Δ

2 exp jcð Þ þ eÊx0 hbþ lað Þ jfb sin cþ ag cos cð Þ�

� eÊy0 bf þ agð ÞÞdβ da ¼ ωÊ0

2π2b

ð

∞

0

ð

2π

0

G βað Þ
Δ

dβ da:

(39)

The contribution of surface and leaky waves to the conductivity of a circular
waveguide with thermal protection is determined using the Cauchy theorem. As a
result, we get

Y sur ¼
jωε0
2π2a

X

n

i¼1

ð

2π

0

G βi, αð Þ
Δ

dα: (40)

We will conduct a quantitative assessment of various loss mechanisms by means
of transmission coefficients χ, attenuation υ, and reflection ρ, which are defined as
follows:

η ¼ η1 þ η2 þ η3 þ η4 ¼ Рrad

Р f
þ Рrad:sur

Р f
þ Рrad:res

Р f
þ Рrad:sid

Р f
,

ν ¼ ν1 þ ν2 þ ν3 þ ν4 ¼ Рrad � Рrad:sur

Р f
þ Рrad � Рrad:res

Р f
þ Рrad � Рrad:sid

Р f
,

∣R∣ ¼ 1� Yn

1þ Yn

















:

(41)

These expressions take into account the orthogonality of surface, leaky, and side
waves and Pf is the power incident (supplied to the emitter), Prad-radiated power,
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Prad.sur, Prad.res, Prad.sid. waves, respectively, Рsur, Рres, and Рsid are the power of
surface, leaky, and side waves, respectively; υ1 is the attenuation coefficient of
radiated power, determined by losses in dielectric thermal protection.

ν1 ¼ 1� η� ν2 � ν3 � ν4 � Rj j2:

In expression (Eq. (41))

Yn ¼ Yan � Y sur:

3. Conclusion

Expressions (Eqs. (17), (18), (27)–(30), (39), and (40)) characterize the radia-
tion field of a circular waveguide with uniform thermal protection and its input
conductivity. The theoretical relations obtained, along with an estimate of the
apparent loss of radiated power due to absorption in and reflection from thermal
protection, allow us to estimate more subtle effects, such as losses on surface, leaky,
and side waves. It is also possible to assess the influence of these waves on the
radiation pattern.

Further development of the obtained theoretical relations should consist of
taking into account the probable inhomogeneity of the heat-shielding layer in the
direction of the z axis. For this, the method of approximate solution of the wave
equation can be applied—the WKB method (Wentzel, Kramer, Bruellen) [9]. If
we consider a round1 waveguide in the form of an onboard antenna of the
returned spacecraft, then due to aerodynamic heating, a melt layer appears on the
outer surface of the heat shield, which has electrical characteristics different from
the characteristics of the material in the solid phase. Then the radiation from the
waveguide should be considered through a two-layer dielectric thermal
protection [10].

Unfortunately, all the obtained relations turned out to be very cumbersome and
their use becomes only with numerical integration. For some of the obtained ratios,
numerical calculations were performed. The results showed that the power of the
side waves is zero. It also follows from the above calculations that the radiation field
of surface and leaky waves is absent, that is, their contribution to the radiation
pattern is not. Further research in this area should be directed to the development of
computer calculation programs for the basic radiation characteristics.
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