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Chapter

Dynamics of Rayleigh-Taylor
Instability in Plasma Fluids
Sukhmander Singh

Abstract

The chapter discusses the evolution of Rayleigh-Taylor instability (RTI) in
ordinary fluids and in a plasma fluid. RT instability exits in many situations from
overturn of the outer portion of the collapsed core of a massive star to laser implo-
sion of deuterium-tritium fusion targets. In the mixture of fluids, the instability is
triggered by the gravitational force acting on an inverted density gradient. The
motivation behind the study of the instability has been explored by discussing the
applications of RT instability. The basic magnetohydrodynamics equations are used
to derive the dispersion relation (for an ordinary fluid and plasmas) for two fluids
of unequal densities. The conditions of the growth rate of the instability and the
propagating modes are obtained by linearizing the fluid equations. The perturbed
potential is found to increase with the plasma parameters in a Hall thruster.

Keywords: instabilities, plasma, Navier-Stokes, growth rate, Hall thruster

1. Introduction

Flow instabilities are used to increase the heat and mass transfer rates as well as
to fuse the fluids of dissimilar properties (viscosity, elasticity, density, etc.). In
other technological applications, these instabilities are accountable to unstable the
multilayer and free-surface flows. Multilayer flows are used in coating processes
and lubricated pipeline transport. The presence of the instabilities in the system
leads to nonuniform film thickness and defects, where good optical finishing and
smooth edges are required by the industry, which further leads to poor product
quality. Suppression of these instabilities has been a major task from a long time by
the researchers to improve the product quality [1, 2]. Rayleigh-Taylor (RT) insta-
bility takes place when a lighter fluid supports a heavy fluid, then any perturbation
of the interface grows and leads to spikes of the heavier fluid penetrating into the
lighter one and the interface becomes unstable. The contact discontinuity between
the two fluids is unstable to perturbations that grow by converting potential energy
to kinetic energy, causing bubbles of the low-density fluid to rise, and spikes of the
high-density fluid to sink. If the light fluid is above the heavy fluid, the interface is
stable. In a magnetized plasma, the Rayleigh-Taylor instability can occur because
the magnetic field acts as a light fluid supporting a heavy fluid (the plasma).

In curved magnetic fields, the centrifugal force on the plasma due to the charged
particle motion along the curved field lines acts as an equivalent gravity force.
When forces associated with the density gradient and gravity oppose each other,
the RT instability sets in [3, 4]. The box of fluid shown in Figure 1 is now filled with
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two incompressible fluids of differing densities, separated by an interface with a
perturbation imposed as shown in Figure 1. Here, RTI is seen to play a wider role in
many branches of science from astrophysical systems to industries.

2. Review of status of research

This instability occurs in many interesting physical situations, such as implosion
of inertial confinement fusion capsules, core collapse of supernovae, or electromag-
netic implosions of metal liners. The Rayleigh-Taylor problem was first studied by
Lord Rayleigh in 1883 and Sir G.I. Taylor in 1950 [3]. Taylor used the theory of
linearization for the small oscillations at the interface and obtained an exponential
growth rate. Chandrasekhar, in 1961, studied the magnetic field case analytically for
the fluids that are incompressible, inviscid, and have zero resistivity. Qin et al. [5]
reported the synthesis of chains of metal nanoparticles with well-controlled particle
sizes and spacing induced by the Rayleigh instability. Bychkov et al. [6] derived the
dispersion relation for the internal waves and the RT instability in a nonuniform
unmagnetized quantum plasma with a constant gravitational field. They have
shown that the quantum effects always play a stabilizing role for the RT wave
instability. Cao et al. [7] studied the RT instability incorporating the quantum
magnetohydrodynamic equations and solved the second-order differential equation
under different boundary conditions with quantum effects. Khomenko et al. [8]
modeled the growth rate of the instability and the evolution of velocity and mag-
netic field vector in the prominence plasma (closer to Sun’s surface) under the
presence of neutral atoms. Diaz et al. [9] derived the criterion for the growth rate of
the RT instability in partially ionized plasma using single fluid theory. Ibrahim and
Marshall theoretically investigated the impact of velocity profile on RTI within the
jet to examine the effects of its relaxation on intact length [10]. Carlyle and Hillier
experimentally verified that stronger magnetic fields can suppress the growth of the
rising bubbles of the RTI [11]. Litvak and Fisch derived the necessary instability
conditions of azimuthally propagating perturbations in a Hall thruster plasma [12].
Recently, investigators derived the dispersion for the Rayleigh-Taylor instabilities
in a Hall thruster using the two - fluid theory [13, 14]. Shorbagy and Shukla
investigated the RT instability in a nonuniform multi-ion plasma in a Hall thruster
to obtain the growth rate of the instability [15]. Ali et al. [16] derived the modified
dispersion relation for the Rayleigh-Taylor instability under the quantum correc-
tions incorporating the terms of Fermi pressure and the Bohm potential force.

Figure 1.
Two fluids inside of a large box.
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3. Basic fluid equations and Bernoulli’s theorem

First, we consider the two simple fluids separated by a smooth interface to
derive the dispersion relation. Let us assume that in each separate region, the
density is constant. The coordinate x is in the horizontal, z in the vertical, and y is
going into the page. We consider a flow in the x-direction, which in the lower half-
space z<0ð Þ has density ρ1, whereas in the upper half-space z>0ð Þ has density ρ2.
In addition there can be a homogeneous gravitational field g pointing into the
negative z-direction. We write the basic fluid equations for the ion and electron
fluids as Navier-Stokes equations for an incompressible fluid are

∂ρ

∂t
þ ∇

!
� ρυ

!
� �

¼ 0 (1)

dυ
!

dt
¼

∂υ
!

∂t
þ υ

!
� ∇
!� �

υ
!
¼ �

∇
!
P

ρ
þ g þ η∇2 υ

!
(2)

Here, we have used total time derivative. Partial time derivative keeps an eye on
a point and represents the rate of velocity change at that point. Total time derivative
keeps an eye on fluid element and measures its velocities at t and tþ Δt.

Let us consider the fluid is inviscid, so that we take viscosity η ¼ 0. We also

assume that the fluid is irrotational, that is ∇
!
� υ

!
¼ 0. Then the term υ

!
� ∇
!� �

υ
!

reduces to 1
2∇
!
υ2. The Stokes’ theorem permits us to express the velocity in terms of

gradient of scalar function, that is υ
!
¼ �∇

!
ϕ. The variable ϕ is called the scalar

velocity potential of fluid. We rewrite gravity acceleration into a gradient of gravity

potential g ¼ �∇
!

gzð Þ. Eq. (2) can be rewritten in terms of scalar function ϕ under
the above assumptions:

∇
! ∂ϕ

∂t
þ

1

2
∇
!
υ2 ¼ �

∇
!
P

ρ
� ∇

!
gzð Þ (3)

If the density remains constant in one region, we can write Eq. (3) as

∇
! ∂ϕ

∂t
þ

1

2
∇
!
ϕ

� �2
þ gz

� �

¼ �
∇
!
P

ρ
(4)

Now integrating the above equation in horizontal and vertical directions, we get
unsteady equation for the Bernoulli theorem.

∂ϕ

∂t
þ

1

2
∇
!
ϕ

� �2
þ gzþ

P

ρ
¼ Const (5)

That is, the total mechanical energy of the moving fluid comprising the gravita-
tional potential energy of elevation, the energy associated with the fluid pressure,
and the kinetic energy of the fluid motion remains constant.

Let υ
!
1 and υ

!
2 be the velocities of the fluid in the lower half-space (z<0) and

upper half-space (z>0) respectively. Now, it is convenient to write velocities of
fluid in terms of scalar velocity potential ϕ in both regions such that

υ
!
1 ¼ �∇

!
ϕ1 (6)
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υ
!
2 ¼ �∇

!
ϕ2 (7)

For the incompressible fluid, Eq. (1) yields that ∇
!
� υ
!
¼ 0. This also states that

both fluids will satisfy the Laplace equation in both regions

∇
!2

ϕ ¼ 0 (8)

The Bernoulli theorem state that quintiles ρ ∂ϕ

∂t þ
1
2 ρ ∇

!
ϕ

� �2
þ ρgzþ P should be

constant across the fluid, so that we have

ρ1
∂ϕ1

∂t
þ

1

2
ρ1 ∇

!
ϕ1

� �2
þ ρ1gz0 þ P1

�

�

�

�

z¼z0

¼ ρ2
∂ϕ2

∂t
þ

1

2
ρ2 ∇

!
ϕ2

� �2
þ ρ2gz0 þ P2

�

�

�

�

z¼z0

(9)

To understand the interface, we must impose boundary conditions. First of all
the vertical velocities of the fluids must match with the interface, so we impose the
kinematic boundary condition. Now we need to introduce the location of the inter-

face by assigning variable z ¼ z0 tð Þ. Then dz0
dt will represent the velocity of the

interface in the z-direction. In addition, at the interface, the velocity of both fluids
must be continuous.

dz0
dt

¼
∂

∂t
þ υ

!
� ∇
!� �

� �

z0 ¼
∂ϕ1

∂z

�

�

�

�

z¼z0

¼
∂ϕ2

∂z

�

�

�

�

z¼z0

(10)

Let us say that the pressure is continuous along the interface, that is P1 ¼ P2.
Then Eq. (9) leads to

ρ1
∂ϕ1

∂t
þ

1

2
ρ1 ∇

!
ϕ1

� �2
þ ρ1gz0 ¼ ρ2

∂ϕ2

∂t
þ

1

2
ρ2 ∇

!
ϕ2

� �2
þ ρ2gz0 (11)

4. Asymptotic boundary conditions at far field

We are looking for changes only on the interface at z ¼ z0, therefore the velocity
potentials and their derivatives must vanish at the boundaries, that is ϕ1 ! 0 as
z ! �∞ and ϕ2 ! 0 as z ! ∞.

5. Linear analysis

Eq. (9) contains a nonlinear term ρ1 ∇
!
ϕ1

� �2
of the second order. If the amplitude

is chosen to be much smaller than the wavelength of the instability, the equations of
motion can be linearized. We assume that all the perturbed quantities and various

derivatives such as ϕ and ∇
!
ϕ are very small. In other words ∂ϕ1

∂z

�

�

z¼z0
� ∂ϕ1

∂z

�

�

z¼0
. Hence,

the difference in second order derivatives will be much smaller. Now we impose all
boundary conditions at z ¼ 0, which yields the following set of equations,

∇
!2

ϕ1 ¼ 0 (12)
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∇
!2

ϕ2 ¼ 0 (13)

dz0
dt

¼
∂ϕ1

∂z

�

�

�

�

z¼0

¼
∂ϕ2

∂z

�

�

�

�

z¼0

(14)

ρ1
∂ϕ1

∂t
þ ρ1gz0

�

�

�

�

z¼0

¼ ρ2
∂ϕ2

∂t
þ ρ2gz0

�

�

�

�

z¼0

(15)

6. Eigenvalue solution

Let us consider all the perturbed variables ϕ and z0 to have oscillating behavior
such that ϕ ¼ ϕ0 exp i kx� ωtð Þ½ � and should satisfy the Laplace Eq. (12). This
implies

∂
2ϕ1

∂z2
¼ k2ϕ1 (16)

The general solution of Eq. (16) is written as

ϕ1 zð Þ ¼ A exp kzð Þ þ B exp �kzð Þ, (17)

The above two solutions must satisfy the boundary conditions such that ϕ1 ! 0
as z ! �∞ and ϕ2 ! 0 as z ! ∞. So, we need to discard the unsatisfactory part of
the solutions of Eq. (16) taking into account the boundary conditions. Therefore, z
dependence goes as ϕ1 zð Þ∝A exp kzð Þ and ϕ2 zð Þ∝B exp �kzð Þ. We note that the
eigenfunction decreases exponentially on either side of the interface and the per-
turbation of wave number k penetrates to a depth of order 1

k ¼
λ
2π.

This solution further leads to the following form in Fourier mode,

ϕ1 x, z, tð Þ ¼ ϕ01 exp kzð Þ exp i kx� ωtð Þ½ � (18)

ϕ2 x, z, tð Þ ¼ ϕ20 exp �kzð Þ exp i kx� ωtð Þ½ � (19)

z0 x, tð Þ ¼ z00 exp i kx� ωtð Þ½ � (20)

Here ϕ01, ϕ02, and z00 are the amplitude of the modes. By substituting these
solutions into Eq. (14), we obtain the boundary conditions at the interface.

kϕ01 ¼ �kϕ02 ¼ �iωz00 at z ¼ 0 (21)

Then Eq. (20) changes into the form

z0 x, tð Þ ¼
ikϕ01

ω
exp i kx� ωtð Þ½ � (22)

Eq. (15) gives

�iωρ1ϕ10 þ ρ1g
ikϕ01

ω
¼ �iωρ2ϕ20 þ ρ2g

ikϕ01

ω
(23)

Using Eq. (21) in Eq. (23) results in

�iωρ1ϕ10 þ ρ1g
ikϕ01

ω
¼ iωρ2ϕ10 þ ρ2g

ikϕ01

ω
(24)
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Since the perturbed quantity ϕ01 6¼ 0, the possible nontrivial solution of Eq. (25)
gives the dispersion relation for small perturbations of the wave as below,

ω2 ¼
g ρ1 � ρ2ð Þk

ρ1 þ ρ2
¼ Atgk (25)

Eq. (25) contains complete information about the linear stability of the two

superposed fluid layers of different densities. The Atwood number At ¼
ρ1�ρ2ð Þ
ρ1þρ2

is a

dimensionless number in fluid dynamics used to study the hydrodynamic
instabilities in unequal density flows. Since the dispersion relation Eq. (25) is
quadratic in ω, it has two real or complex conjugate roots depending on the values
of the densities of the fluids. Here, we will discussion different cases.

6.1 First case: capillary-gravity waves (ρ2 ¼ 0)

Hence ω ¼
ffiffiffiffiffi

gk
p

and Vph ¼

ffiffiffi

g

k

r

(26)

It is classical dispersion relation for gravity-capillary waves in deep water
[17, 18]. These are also called short gravity waves. In this category the longer waves
travel faster. Any initial disturbance may be regarded as the superposition of waves
of a broad spectrum of lengths. The above relation then says that waves of different
lengths will eventually separate, that is, disperse. This phenomenon is called dis-
persion, hence above relations are also known as the dispersion relation.

6.2 Second case: propagating modes (ρ1> ρ2)

If the lighter fluid is supported by heavier fluid, that is, ρ1 > ρ2, then solutions of
the equation leads to two waves with constant amplitude propagating in opposite

directions with phase velocity ω�

k with ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ρ1�ρ2ð Þk
ρ1þρ2

q

. Then the interface is stable

and will only oscillate when perturbed. The phase velocity is given by

Vph ¼
ω�

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ρ1
ρ2
� 1

� �

k ρ1
ρ2
þ 1

� �

v

u

u

u

t (27)

Figure 2 shows the variations of phase velocity of RT instability with (a) density
ratio and (b) wave number respectively.

6.3 Third case: Rayleigh-Taylor instability (ρ2> ρ1)

The frequency of oscillations will be negative imaginary and unstable if ρ2 > ρ1,
that is, when heavier fluid is supported by lighter fluid. Writing ω ¼ iγ where γ is
real and positive gives

γ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ρ2 � ρ1ð Þk

ρ1 þ ρ2

s

(28)
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γ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ρ2
ρ1
� 1

� �

k

1þ ρ2
ρ1

v

u

u

t

(29)

Substituting the value of ω ¼ iγ into Eq. (18), the amplitude grows exponentially
with the perturbation and is given by

ϕ1 x, z, tð Þ ¼ ϕ01 exp kzð Þ exp ikxð Þ exp �γtð Þ (30)

The term exp γtð Þ increases the amplitude of the oscillation exponentially as
time progress. Figure 3(a) and (b) shows the variations of growth rate of RT
instability with (a) density ratio and (b) wave number. The inverse of the growth
rate γ�1 ¼ tchar is called the linear characteristic timescale of the RTI. In other words,
characteristic timescale has to be the order of the lifetime of the plasma oscillations
to observe the RT instability. On the other hand, if the linear characteristic time-
scale is much larger than the oscillation lifetime, the plasma instability would not be
observed.

Figure 2.
Variation of phase velocity of RT instability with (a) density ratio and (b) wave number respectively.

Figure 3.
Variation of growth rate of RT instability with (a) density ratio and (b) wave number respectively.
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7. Rayleigh-Taylor instability in plasma thruster

In the previous section, the general idea of RT instability has been explored.
Here we have derived the RT equation for a plasma fluid using two fluid theory. In a
Hall thruster, the propellant (plasma) is ionized and then accelerated by electro-
static forces. It has high thrust resolution, so it is best suited for the adjustment of
the location of the satellite onboard [19–27]. Let us consider a plasma with
nonuniform density confined under the crossed electric and magnetic fields.

Figure 4 shows the typical diagram of a Hall plasma thruster [26]. RT instability
is common in Hall thrusters. Studies show that Rayleigh instability is driven by the
presence of gradients in axial density, magnetic field, and velocity of the plasma
species. Here we deduce a Rayleigh equation under the presence of ion temperature
and check the variations of perturbed potential with plasma parameters.

7.1 Theoretical model for RTI in plasma

We consider plasma comprising of ions and electrons immersed in a magnetic

field B
!
¼ Bẑ. The magnetic field is strong enough so that only electrons get magne-

tized, but the ions remain unaffected due to their Larmor radius being much larger
than the dimension of the thruster. These trapped electrons (due to crossed fields)
drift in azimuthal direction along the annular channel [24]. The applied electric

field E
!
is along the x-axis (axis of the thruster) and the magnetic field B

!
is taken

along the z-axis (along the radius of the thruster). Hence, the azimuthal dimension

is along the y-axis. We use Ωz ¼
eB
m as the electron gyro frequency and u0 ¼ � E0

B ŷ as

the initial drift of the electrons [14–17] and write the continuity equation and
equation of motion for plasma species as

∂ni
∂t

þ ∇
!
� υ

!
ini

� �

¼ 0 (31)

∂

∂t
þ υ

!
i � ∇

!
� �

υ
!
i ¼

eE
!

M
�

∇
!
pi

Mni
(32)

Figure 4.
Typical diagram of a Hall plasma thruster.
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∂ne
∂t

þ ∇
!
� υ

!
ene

� �

¼ 0 (33)

∂

∂t
þ υ

!
e � ∇

!
� �

υ
!
e ¼

∇
!
ϕ

m
� υ

!
e � Ω

!

z

� �

(34)

We use the linearized form of the above equations for small perturbations of the
ion and electron densities, their velocities, and electric field. We write perturbed

densities of ions (electrons) by ni1 (ne1) velocities by υ
!
i1 (υ

!
e1). The unperturbed

electrons’ drift is u0 in the y-direction. The unperturbed density (electric field) is

taken as n0 E0ð Þ and the perturbed value of the electric field is taken as E
!

(corresponding potential ϕ). Hence, the linearized form of Eqs. (31)–(34) reads

∂ni1
∂t

þ υix1
∂n0
∂x

þ n0 ∇
!
� υ
!
i1

� �

¼ 0 (35)

∂υ
!
i1

∂t
¼

e

M
E
!
�

∇
!
pi1

n0M
(36)

∂ne1
∂t

þ u0
∂ne1
∂y

þ n0 ∇
!
� υ
!
e1

� �

þ υex1
∂n0
∂x

¼ 0 (37)

∂υ
!

e1

∂t
þ u0

∂υ
!
e1

∂y
¼ ∇

!
ϕ� υ

!
e1 � Ω

!

z

� �

(38)

The unperturbed ions’ velocity υ0 is taken zero here for the case of simplifica-
tion. We are looking for oscillating solution of the above equations that should vary

as f ¼ f0 exp iωt� ikyy

 �

. The ion thermal velocity can be written as V2
thi ¼

Y iTi

M .
With the help of Eqs. (35) and (36) we obtain the following expression for the
perturbed ion density in terms of the perturbed electric potential ϕ:

ni1 ¼
en0

M ω2 � V2
thiky

2
 � ky
2
ϕ�

∂
2ϕ

∂x2
�
Y iTi

en0

∂
2n0
∂x2

� �

(39)

Eq. (38) provides the velocity components of electron

i ω� kyu0

 �

υex1 ¼
e

m

∂ϕ

∂x
� Ωzυey1 (40)

i ω� kyu0

 �

υey1 þ υex1
∂u0
∂x

¼ �iky
e

m
ϕþΩzυex1 (41)

In the above equations, the coordinate x lies in the interval 0< x< d, where d is
the channel length. Let us define ω� kyu0 by ω̂ in the above set of expressions.
Further we readily obtain from the above equations

υex1 ¼
e
m iω̂ ∂ϕ

∂x þ
e
m ikyΩzϕ

Ωz
2 � ω̂2 �Ωz

∂u0
∂x

(42)

υey1 ¼
e

mΩz

∂ϕ

∂x
þ

e
m ω̂2 ∂ϕ

∂x þ
e
m ω̂kyΩzϕ

Ωz Ωz
2 � ω̂2 �Ωz

∂u0
∂x


 � (43)

The electron cyclotron frequency is almost Ωz � 108/s (corresponding to 200
Gauss magnetic field). Generally, Ωz is much larger than the frequency of the
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oscillations. Therefore, under the condition Ωz > >ω, kyu0,
∂u0
∂x , the velocity

components of electrons are reduced into the form

υx1 ¼
ie

mΩz
2 ω̂

∂ϕ

∂x
þ Ωzkyϕþ

∂u0
∂x

kyϕ

� �

(44)

υy1 ¼
e

mΩz

∂ϕ

∂x
þ
kyω̂ϕ

Ωz
þ
kyω̂ϕ

Ωz
2

∂u0
∂x

� �

(45)

The electron continuity equation gives the perturbed electron density ne with the
help of Eqs. (44) and (45)

ne1 ¼
en0

mΩz
2 ky

2
ϕ�

∂
2ϕ

∂x2

� �

þ
ky

ω� kyu0
Ωz

∂

∂x
ln

B

n0
�

∂
2u0
∂x2

� �

ϕ

� �

(46)

The plasma frequency of oscillations for ion (electron) is defined as

ωi ωeð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0e2

M mð Þε0

s

(47)

The Poisson’s equation ε0∇
2ϕ ¼ e ne1 � ni1ð Þ (48)

Using Eqs. (39) and (46) in Eq. (48) gives the perturbed potential in the
following form:

∂
2ϕ

∂x2
� ky

2
ϕ�

kyϕ Ωz
∂

∂x ln
B
n0
� ∂

2u0
∂x2

� �

ω� kyu0

 �

1þ Ωz
2=ωe

2 � Ωz
2ωi

2

ωe
2 ω2�ky

2V2
thið Þ

� � ¼ 0 (49)

In the case of high frequency of oscillations and in the absence of ion thermal
pressure, Eq. (49) turns into Rayleigh’s equation of fluid dynamics as below

∂
2ϕ

∂x2
� ky

2
ϕ

� �

þ
ϕky

ω� kyVy


 �

∂
2Vy

∂x2
¼ 0 (50)

Here Vy is the flow velocity in the y-direction and ϕ is called the flow function

related to Vy ¼ ∇
!
ϕ. The analytical eigenvalue solution of Eq. (49) is given in Ref. [12].

Resonance condition for the RT instability
From Eq. (49), it is clear that propagating mode may lead to instability if

parameter Ωz
∂

∂x ln
B
n0
� ∂

2u0
∂x2 ¼ 0 at some point inside the Hall thruster.

7.2 Variations of perturbed potential

The RT Eq. (49) is solved numerically for the perturbed potential ϕ along with
the boundary conditions such that ϕ 0ð Þ ¼ ϕ dð Þ ¼ 0. We plot perturbed potential of
the instability with magnetic field B, initial drift of the electrons u0, channel length
d, and ion temperature Ti. These parameters can have values as B ¼ 100� 250ð Þ G,

n0 ¼ 5� 1017
–1018=m3, Ti ¼ 0�1� 5 eV, and u0 � 106 m/s [13, 15].

Figure 5 shows the variation of the perturbed potential with the magnetic field
and it has been observed that the potential increases with the increasing magnetic
field. These results are consistent with Keidar and Boyd model [28] and that other
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investigators [13, 14] for the potential of plasma plume. This situation is correspond
to the plasma jet enters a transverse magnetic field with a high velocity under the
condition that the magnetic field is relatively weak so that only the electrons are
magnetized whereas the ions move out of the effect of magnetic field. However,
ambipolar (both electrons and ions moving in opposite directions) plasma flow
across the magnetic field may require an electric field to appear under the
above conditions. Therefore, we can expect the potential to increase across the
magnetic field.

The perturbed potential gets increased with the higher value of electron’s initial
drift velocity (shown in Figure 6). Similar behavior of the potential was reported
experimentally by King et al. [29] for the potential of plasma plume. Similar results
are also reported in Refs. [13, 14]. The enhanced perturbed potential ϕ with the ion
temperature is shown in Figure 7 which is consistent with an experiment [30].

Figure 5.
Effect of magnetic field on the perturbed potential ϕ.

Figure 6.
Dependence of perturbed potential ϕ on the drift velocity of the electrons.
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8. Discussions and summary

In conclusion, we can say that short-wavelength perturbations blow up expo-
nentially much more quickly in RTI. The primary source by which this instability is
triggered is the gravitational force acting on an inverted density gradient (e.g., a
heavy fluid supported by a light fluid). Stable and steady flows may become unsta-
ble depending on the ranges of the flow parameters. The instability takes free
energy from the mean flow or externally supplied heat and the amplitude of waves
grows exponentially. The instabilities exist in all natural and artificial phenomena
(in smoke from chimneys, in rivers, in flickering flames) and their effects result in
turbulence or random waves. The presence of plasma density and magnetic field
gradients is one of the main sources for plasma instabilities in Hall thrusters. It is
found that perturbed potential increases with the higher value of electrons’ drift
velocity, magnetic field, and ion temperature.
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Figure 7.
Variation of perturbed potential ϕ with the ion temperature.
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