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Chapter

Sustainable Advanced
Manufacturing of Printed
Electronics: An Environmental
Consideration

Bilge Nazli Altay, Martin Bolduc and Sylvain G. Cloutier

Abstract

Printing technologies have become a novel and disruptive innovation method of
manufacturing electronic components to produce a diverse range of devices includ-
ing photovoltaic cells, solar panels, energy harvesters, batteries, light sources, and
sensors on really thin, lightweight, and flexible substrates. In traditional electronic
manufacturing, a functional layer must be deposited, typically through a chemical
vapor or physical vapor process for a copper layer for circuitry production. These
subtractive techniques involve multiple production steps and use toxic etching
chemicals to remove unwanted photoresist layers and metals. In printing, the same
functional material can be selectively deposited only where it is needed on the
substrate via plates or print heads. The process is additive and significantly reduces
not only the number of manufacturing steps, but also the need for energy, time,
consumables, as well as the waste. Thereby, printing has been in the focus for many
applications as a green, efficient, energy-saving, environmentally friendly
manufacturing method. This chapter presents a general vision on green energy
resources and then details printed electronics that consolidates green energy and
environment relative to traditional manufacturing system.

Keywords: additive manufacturing, printing, flexible electronics, functional inks,
subtractive manufacturing

1. Green energy, environment, and electronics

Sustainable and renewable green energy and materials as an alternative to fossil
fuels that take millions of years to be developed have been the most important
challenge for all industries to secure the future energy demands, environment, and
human health [1]. Burning fossil fuels for energy, production and transportation of
fossil fuel-based materials, industrial/agricultural activities, as well as growing pop-
ulation yield greenhouse gasses (GHGs) that trap heat in the atmosphere [2]. The
GHGs remain in the air for various amounts of time, from a few to thousands of
years, causing global heating and drastic changes in climate [3, 4]. Therefore,
innovations in all fields are critically important to reduce the GHGs, unsustainable
energy and material usage, cost, toxic waste, and pollution which are the potential
risks on human health and environment [5].
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Worldwide energy consumption by source recorded to be an average of 18.4
trillion watts (TW) in 2018 [6]. Figure 1 represents that the majority of the energy
was based on fossil energy sources. For the future, the total consumption is
projected to be 27.6 TW by 2050 and 43.0 TW by 2100 [7]. Researchers help
formulating solutions to increase green energy production that comes from the
natural sources such as solar, wind, ocean or tidal, hydropower, biomass, and
geothermal energy. They are also called C-neutral sources [7]. Among these, solar
energy is the largest source that enables more energy in an hour to the Earth than all
of the energy consumed by humans in an entire year (if only this energy could be
stored) [1]. Each energy sources have different potential to provide the projected
power need. The theoretical delivery potentials of green sources in Table 1 repre-
sents that using direct radiation from the sun is by far the only biggest source of
energy [7].

The sun is a massive reactor where hydrogen atoms are fused into helium. The
energy from this reaction is released into space in the form of radiation that creates
electromagnetic energy—the entire range of light that exist (Figure 2). By using
various technologies (solar panels and photovoltaics (PV)), the solar radiation can
be turned into heat and electricity [8].

Part of the light radiated from the sun does not reach to the Earth due to various
reasons [10]. Some portion for instance is reflected from the atmosphere back into
the space, called reflection of light. Other portion is absorbed by the gasses and water
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Figure 1.
Global energy consumption [6].

Green energy source Theoretical potential (TW)
Solar energy 89,000 TW,

Wind 1000 TW,,
Geothermal 44 TW,
Hydropower 12 TW,,

Ocean tidal 2.4 TW,,

Subscripts denote mechanical, photonic, and thermal.

Table 1.
Energy delivery estimates of green energy sources.
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Figure 2.
Electromagnetic spectrum [9].

vapor molecules (O,, O3, H,O, CO,, etc.), called absorption of light. If the light
comes on particles that are smaller than the wavelength of the radiation in the
atmosphere, Rayleigh scattering occurs (mostly seen in gasses) and causes for
instance the blue color of the sky. On the contrary, the particles larger than the
wavelength of the radiation cause Mie scattering that happens due to aerosols and
dust particles in the air. Therefore, the solar resource is broken down into three
main components: (1) diffuse solar radiation (the light that are scattered), (2) direct
beam solar radiation (the light that pass through the atmosphere), and (3) global
solar radiation (the sum of (1) and (2)). The energy available from the sun that
reaches the Earth, called solar constant, is considered to be 1367 W/m?. However,
due to the diffusion caused by the scatterings, usually 1000 W/ m? (at 25°C, AM1.5G
spectrum) is used to describe 1 day atmospheric condition for the standard test
conditions of efficiency estimations of solar power [11]. The diffuse light is also
known to limit the power generation efficiency of solar panels, alongside with the
limited angle placement options for the rigid panel orientation (Figure 3), geo-
graphical location, time of the day, season, local landscape, and weather [12].

The basic working principle of solar panel is converting light energy directly into
electricity through the photovoltaic effect. The panel is usually constructed by an
n-type and p-type semiconductor material (silicon based in general) between the
two metal conductor layers (Figure 4). The n-type semiconductor has extra
electrons that carry negative charge, while the positive p-type semiconductor has

65°

Figure 3.
Schematics of a conventional solar panel at different tilting angles.
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Figure 4.
Hlustration of sunlight conversion to electricity.

missing electrons. When the light photons are absorbed, the extra electrons of the
n-type get free (the so-called holes) and forced to travel in the electron transport
layer by the top conductor. Meanwhile, the conductor on the bottom layer forces
the missing positive electrons to travel in the transport layer. These moving elec-
tron-hole pairs induce the DC electric current formation that is converted into AC
in the inverter unit of the solar system. In the case of solar heating (Figure 5), a
panel of tubes heats up the water through the absorbed light energy and redistrib-
utes into the building for heating, air conditioning, and hot water usage.

Between the global energy need for electricity and heating, 10% is estimated to
be for illumination purpose, while 90% is for the heat used to make products and to
heat and cool buildings and homes and the energy used to drive motor vehicles [1].
One of the most critical factors is understanding not only how to produce the green
energy, but also how to remanufacture, reduce, and reuse/recycle electronic prod-
ucts that use this energy. Thereby, as much as the effort goes into producing green
energy from natural sources, the same effort is needed for electronic manufacturing
since an electronic circuit is found in a surprising number of devices that we use in
our daily life: from lighting to domestic/industrial appliances; from computers and
its accessories to communication devices and cameras; from vehicle electronics to
medical devices; or from the products that use displaying units, controlling
apparatus, and switches to alarm systems and toys. The circuitry use is almost
endless.
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Figure 5.
Hlustration of traditional solar water heating (edited) [13].
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2. Traditional electronic manufacturing vs. printed electronics
2.1 Traditional electronic manufacturing

Traditional electronic manufacturing requires multiple production steps as illus-
trated in Figure 6 [16]. First, a functional layer must be deposited on a substrate,
typically through a chemical vapor or physical vapor process, for a copper layer
production. The most common substrate used for the circuit board is a glass fiber-
reinforced epoxy resin. Then, a photoresist layer is deposited on the substrate and
experiences exposing, developing and curing processes. The next is the use of harsh
etching chemicals to remove the photoresist layer and the unwanted metal that is
not covered by the photoresist. The last step is striping the resist material and
cleaning all the residues away. The entire manufacturing processes are highly time-
and energy consuming, costly, and inherently wasteful. One main approach for
green electronic manufacturing is called the three R's—*“remanufacture, reduce,
reuse/recycle”—focused on minimizing the use of energy, hazardous materials,
toxic waste and pollution, and coolant consumption while machining, while pro-
moting product take-back policies, the use of reusable/recyclable components,
recycled feedstock in plastic parts, and lead-fee production [14].

2.2 Printed electronics manufacturing

Printing has received immense attention due to the additive nature of the
manufacturing [15]. During printing, functional materials (or the so-called conduc-
tive/smart inks) can be patterned by selective deposition on where they are needed
by the print heads in the case of digital printing, such as inkjet, 3D printing, and
aerosol (Figure 7) or by the printing plates. Different functional materials are
printed in a layer-on-layer manner, then followed by a curing process that forms
necking between the pigment particles [16]. The additive approach and high pro-
duction capability of the printing presses significantly reduce production cost,
number of manufacturing steps, and the need for energy, time, and consumables, as
well as offer great reduction in waste compared to traditional photolithography
manufacturing. Printing allows sheet-to-sheet or roll-to-roll mass production;
thereby electronics can be manufactured not only on rigid, but also on thin,

Step 1: Deposition of functional layer Step 2: Deposition of photoresist layer

Ultraviolet light

ERRERR.

e e ww Mask

Functional patterns

N\
-

Step 3 and 4: Mask making and exposure Step 5 and 6: Development and etching Step 7: Photoresist removal

Figure 6.
Subtractive manufacturing steps [16].
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Figure 7.
Additive manufacturing steps [16].

lightweight, flexible, and large area substrates [17-22]. Printing technologies and
the pluriformity of substrates open up launching brand new products that could
have never existed before and realize bendable, rollable, wearable, or elastically
stretchable devices. These printed electronics (PE) are environmentally friendly
when compared to the traditional electronic methods. PEs are lightweight and not
made with extremely harsh etching chemicals, and they do not occupy a massive
amount of space in landfills. If the aim is to be green and sustainable, then printing
technologies are certainly the future.

Printing techniques include conventional printing systems that require an inter-
mediate printing plate to transfer a pattern (flexography, gravure, screen, and offset
lithography) and nonimpact printing systems that print the pattern directly onto the
substrates (digital and 3D) (Figure 8) [23]. However, nonprinting systems (liquid
dispensing, aerosol) and coating systems (rod, blade, air knife metering) can also be
used to dispense functional materials. The difference between the printing technolo-
gies originates from the ink characteristics (i.e., viscosity, rheology, surface tension),
substrate types (i.e., papers, films, textiles), and printability properties (i.e., ink film
thickness, resolution, speed, line quality) [24, 25]. Table 2 shows some of the printed
feature size capabilities of printing processes for PE applications.

In recent years, the advancements in digital inkjet printing technologies have
shown great promises for printed electronics. Akin to more conventional additive
manufacturing strategies such as using screen printing, digital inkjet printing has
been rapidly and successfully applied for rapid prototyping, low-volume
production, and hybrid integration of critical components for a wide range of
optoelectronic applications including energy harvesting, wearables, and biomedical
sensors [26, 27].

1venti

h a master/ plz

Screen Gravure Electrophotography lonography
Flexography Lithography Magnetography Photography
PSR-

Offset Waterless offset Thermography Inkjet
Sublimation Transfer Continuous Drop-on-demand
Figure 8.

Classification of printing technologies based on printing plate requirement [23].
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Property Screen Flexo Gravure Inkjet

Viscosity (cP) 500-5000 50-500 100-1000 10-20

Minimum trace width (p) 30-50 5-50 5-25 3-20

Minimum trace spacing (p) 50-100 20-30 10-25 10-20

Ink film thickness (p) 0.5-200 0.25-4 0.25-6 0.05-20
Table 2.

Common printed feature size of printing processes for PE applications.

(D NthDegree () NthDegree

Figure 9.

Printed electronics samples: civcuit printed with nano-silver ink [35], printed sensor that shows food spoilage
[36], smart box packaging that enables end-of-life display by color change [37], and various lighting
applications [38].

2.2.1 Functional inks

There are PE components that have been researched and fabricated using these
printing techniques such as solar cells, displays, and transistors [28-31]. Similar to
subtractive electronic manufacturing, PE components (Figure 9) require specific
inks to provide functionalities like conductivity, resistivity, semi-conductivity, or
color change by heat, light, moisture, pressure, or spoilage.

The materials listed in Table 3 present common functional pigments used in ink
formulations. A typical ink formulation includes binders, vehicles, and additives
besides the pigments [32]. Binders are the chemicals binding formulation

Functionality Pigment type

Conductors Copper, silver, gold, carbon, aluminum, nickel, indium tin oxide, tin, graphene,
graphene oxide, PEDOT:PSS, polyaniline, iron, graphite [39-58]

Semiconductors Zinc oxide, silicon, zinc selenide, indium-gallium-zinc oxide, cadmium selenide,
gallium arsenide, MALH [59-64]

Resistors Aluminum oxide, hafnium dioxide, poly(4-vinylphenol), spin-on glass, parylene,
solid electrolytes [65-72]

Table 3.
Functional pigment examples for PE applications [16].
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ingredients to each other and to the substrate. Vehicle is the liquid portion of the
formulation that carries the ink onto the substrates. Generally, ink formulations are
classified based on the vehicle type, such as water-based, solvent-based, ultraviolet
light/electron beam (UV/EB) based, or soy-based. Additives are used for supple-
mentary properties, such as promoting stability, or preventing oxidation, floccula-
tion, etc. [33]. In PE applications, binders and some of the additives act as an
insulator and reduce the conductivity. There are studies that suggest binder-free
formulations that reverse this impact and enhance conductivity [34].

In terms of solar energy harvesting, lighting and displays, and sensing applica-
tions, the research has pioneered new and better low-cost and printable optoelec-
tronic materials and devices. Methylammonium lead halide (MALH) perovskites
for instance (e.g., CH3NH3PbXj, X either I, Cl or Br) have shown great potential
due to their unique optoelectronic properties and the ability to replace P-N junc-
tions for various applications including light-emitting diodes, solar cells, and pho-
todetectors [64]. The power-conversion efficiency of photovoltaic devices has been
reported to increase from 3.8% in 2009 [73] to 22.1% in 2016 [74, 75]. Such progress
is largely attributed to improved processing and longer charge-carrier lifetimes
directly related to increased material quality. Yet, fundamental challenges including
low carrier mobilities still prevent the fabrication of large-area devices with perfor-
mances competing with state-of-the-art technologies [76].

2.2.2 Substrates

The thermal and mechanical stability of substrates are critically important for
the precise registration of functional ink layers upon each other to create PE com-
ponents (i.e., electroluminescence lamp, capacitors, organic light-emitting diodes).
Polymer films [77], papers [19, 78], flexible glass [79], textiles [80], and metal [81]
have been given significant consideration as a substrate material. In PE applications,
substrates either act as a base material to mechanically support electrical compo-
nents such as circuit board [82], or as a top material for touch panels and display
and lighting applications [83], or as an interlayer in batteries as separator mem-
branes [84].

The quality and type of the substrate affect electrical, optical, mechanical, and
magnetic properties of the functional ink layer [85] as well as economics [48];
therefore, its properties need to be engineered depending on the application. For
instance, defects on the surface of the substrates may lead to pinholes and block
electron flow in circuitry [77]. General requirements of substrates for PE include
flexibility, transparency, surface smoothness, low thermal expansion, stiffness, heat
resistance, low cost, thinness, and lightweight [86]. Table 4 presents different
properties of substrates having the same 100 pm thickness for flexible backplane
applications (glass, plastic films [PEN and PI], and stainless steel) [22].

2.2.3 Post-printing process

In printing industry, drying is performed with an oven or via UV lamps; how-
ever, the inks used for PE applications require higher temperatures for densification
or crystallization to function properly. Once the functional ink layer is printed, the
post-printing process is needed to enable connectivity in pigment particles, so the
printed ink layer can conduct electricity (Figure 7). The connectivity is accom-
plished by means of one or multiple processes: drying, curing, sintering, reactive
chemistry transformation, and annealing. These post processes change ink structure
by volatilizing vehicle of the ink and form interparticle necking between the pig-
ment particles that grow particle grain to form continuous functional layer, while
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Property Unit Glass Plastics Stainless steel
Weight g/m? 250 120 800
Safe bending radius cm 40 4 4
R2R processable — Unlikely Yes Yes
Transparency — Yes Yes/some No
Maximum process temperature °C 600 180-300 1000
Coefficient thermal expansion ppm/°C 4 16 10
Elastic modulus GPa 70 5 200
Permeable to oxygen, water vapor — No Yes No
Coefficient of hydrolytic expansion ppm/RH% None 11 None
Electrical conductivity — None None High
Thermal conductivity W/m°C 1 0.1-0.2 16
Table 4.

Comparison of substrate properties for flexible backplane application.
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Figure 10.
Illustration of interparticle necking.

decomposing the binder (Figure 10) [87, 88]. The main types of post-printing
methods are listed as microwave heating and electrical, spark plasma, laser, and
photonic sintering [89].

The heat applied during curing volatilizes vehicle component of an ink formula-
tion that allows functional pigments to contact each other. Sintering, on the other
hand, is the process of pigment grain growth in the crystalline structure in the
printed ink layer. However, the terms are used interchangeably. Sintering process
requires optimization for each substrate as well as ink formulations since the chem-
ical composition of the ink, particle size, shape and distribution, or degree of
agglomeration varies. Different sintering parameters such as temperature, energy,
time, or the atmosphere (ambient vs. inert) also cause variation in the performance
of the same material. Figure 11 shows an example of the effect of photonic energy
variation on the sheet resistance of printed nickel ink [16]. As the energy applied
increases, the sheet resistance decreases.

Photonic sintering has attracted great attention within the main types of
sintering methods due to the instant heating applied during exposure, followed by
an instant cooling, which is advantageous especially for the substrates with low
glass transition temperatures. A pulse light from a xenon gas-filled flash lamp heats
the functional ink layer in milliseconds beyond the maximum working temperature
of the substrate. Then, the heat is removed rapidly in the interface of the substrate
via conduction thanks to the thermal mass of the substrate and prevents structural
degradation [90]. Three transient sintering conditions that are essential for an
optimum photonic processing have been reported:



Green Energy and Envivonment

ink film thickness < substrate thickness
pulse of photonic light duration < thermal equilibration time of substrate
thermal equilibration time of ink film < pulse of photonic light duration

The thermal equilibration time of materials (t;) (s) is provided in Eq. (1), where
K; is the thermal conductivity (W/m K), p; is the density (kg/m3), Cpi is the specific
heat (W s/kg K), and x; is the thickness ink layer (m):

T = cpipiX; /4K (1)

The thermal properties in Table 5, three transient conditions in Table 6, and the
thermal profile presented in Figure 12 exemplify photonic sintering of a 36-pm-
thick nickel ink film printed on a 250-pm-thick solid bleached sulfate (SBS) paper-
board that is processed at ~5 J/m” photonic energy that provides 12 Q/ of sheet
resistance [16]. A millisecond of two overlapped light pulse heats the surface of
printed nickel ink to a temperature between 350 and 500°C. Thanks to the rapid
cooling, the temperature in the interface, 20 pm depth of the paperboard, reaches
only 200-320°C. Although the ignition temperature of paper is 233°C, the heat

35 7
30 3 ——Nji ink film
O ]
@ 25 3
5
£ 20 1
0] ]
@ 1
‘w15
- ]
w10 1
E ]
v 51
0 . T T T T T
Not 4.8 5.5 6.2 6.8
sintered
Energy (J/cm?)
Figure 11.
Sheet vesistance of printed Ni ink.
Factors Cpi Pi x; K;s T;
Nickel ink 440 8908 0.000036 90.9 1.4 x 107
SBS 1400 900 0.000250 0.05 3.9 x 1072
Table 5.
Thermal properties of the ink and substrate.
Factors
Ink film thickness < substrate thickness 36 pm < 250 pm
Pulse light time < substrate thermal equilibration time 0.001s < 0.039s
Ink thermal equilibration time < pulse light time 0.000014 s < 0.001s
Table 6.

Three transient conditions.
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Figure 12.
Thermal profile simulation of nickel ink on a SBS paperboard.

equilibrates below 200°C in less than two milliseconds, which is too short for
substrate to observe any deformation. Photonic sintering enables significant reduc-
tion both in processing time and energy in comparison to conventional oven that
uses high temperature and processing time ranging from several minutes to hours.

3. Emerging advanced electronics manufacturing

In today’s world, technological innovations accelerate at a much faster rate than
before due to the more networked environment, advanced computers, data analyt-
ics, artificial intelligence (AI) tools, Internet of Things (I0T), and the speed of
connectivity considering the ubiquitous information and communication technolo-
gies through Internet access, cloud computing, and smartphones [5, 91]. The inno-
vations in the printed electronics area derive mostly from flexible and conformable
disruptive device designs and structures (single or multilayer circuit constructions,
sensors), formulation of materials (inks, substrates), and manufacturing process
design (printing, post-printing, assembly). The performance of printed devices is
mainly dependent on the complex ink formulation, adhesion, and the interactions
between the inks and substrates to produce materials that can withstand post-
printing, assembly, and environmental processes [48, 92, 93]. Therefore, most
material providers follow closed innovation model and keep proprietary rights for
their complex material formulation, processes, and methods to stabilize their posi-
tion in the market [5].

The most common issues with the traditional screen-printed circuit
manufacturing market are the limitation of printing finely spaced traces (Figure 13
(a)), the printing process that requires new platemaking phase at each design and
client change (Figure 13(b-c)), and the usage of high ink amount during printing
which generates large amount of waste materials that has fairly complex disposal
handling process (Figure 13(d)). In contrast, digitally printed electronic circuit
manufacturing (Figure 13(e)) allows instantaneous design modification by simply
changing the Gerber design file as well as dramatically reduces the material con-
sumption [94]. The digital inkjet system is a rapidly emerging technology that could
be in-lined to a hybrid automated component assembly pick-and-place robot sys-
tems (Figure 13(f)) where large-scale advanced manufacturing strategies can be
explored as a potential way to reach seamless manufacturing of high volumes and
open entirely new markets. However, the inkjet printing of functional inks requires

11



Green Energy and Envivonment

Figure 13.

(a) Commercial flexible hybrid electronic product that cannot be manufactuved using screen printing
(courtesies of Molex), (b) typical industrial grade screen-printing machine currently used for flexible civcuit
board manufacturing, (c) conventional screen stencil currently used for electronic board manufacturing, (d)
typical screen printing application that uses tremendous amount of expensive functional inks, (e) industrial
grade high-throughput digital inkjet printer vs. vesearch grade in sectors like the graphic and consumer
packaging industries (courtesy of Fujifilm), and (f) industrial grade fully automated pick-and-place robot for
the assembly of electronic components of the civcuit board (courtesies of C2MI and Varitron).

Z (pm)

Te25C T=40°C

Thickness Uniformity

=
) —

a3

Temperature (°C
s s

Interpenetration (%)

/S
o
&
\

2 Layers

Temperature (°C)
¥ s 48§

Interpenetration (%) Interpenetration (%) Parameter 1 Parameter3  Parameter 5

Figure 14.

Digital inkjet printing process mapping and optimization. (a) Research grade Ceradrop digital inkjet printing
system at ETS; (b) precise control of a wide range of critical jetting parameters; (c) examples of inkjet-printed
features using Ag ink on Kapton® for different printing lattices (drop placement configurations), drop
interpenetration, and substrate temperatuves; (d) example of one-layer and two-layer process mappings
looking at the Ag featuves’ thickness and uniformity for different substrate temperatures and drop
interpenetrations in the hexagonal shifted lattice configuration; (e) typical high-vesolution laser-scanning
microscope image of the features obtained using a hexagonal shifted lattice with 50% interpenetration at 25°C
substrate temperatuve; (f) example of a typical multivariate design-of-experiment analysis for process
optimization (adapted from [94]).

a highly complex process optimization. Figure 14 exemplifies a concrete process
optimization done in ETS laboratory for only one silver ink formulation.

The massive push for intelligent cyber-physical systems associated with the
Industry 4.0 and the IoT revolutions aims at taking better-informed decisions in
real time, based on more complete and readily acquired sets of data. For the very
reason, conformable printed sensors are deployed to collect data from places that
are critical and difficult to access for energy, biomedical, transportations,
manufacturing, smart building, or wearable electronics applications where better
and cheaper flexible hybrid electronics circuits used as ubiquitous sensing elements
would play a comprehensive role in ways that rigid devices cannot [95].

4. Conclusion
In this chapter, a general vision on energy sources and how an emerging field of

printed electronics could consolidate green energy and environment is presented.
An electronic circuit is found in a surprising number of devices that we use in our
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daily life. Manufacturing digitally printed electronic circuits is a sustainable method
that dramatically reduces high energy consumption and toxic etching chemical
usage relative to traditional electronic manufacturing. Advanced printed electronics
is truly a transdisciplinary research and production landscape that benefit greatly
from strongly intertwined interrelationships between multiple diverse complemen-
tary fields, including material formulation engineering, printable electronic devices
architecturing, computational robotics and process automation, and Al and process
optimization. It is important to adopt an agile mindset for a complete ecosystem to
conduct transformative R&D for disruptive and advanced printed electronics
manufacturing solutions.
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