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Chapter

Laser Surface Treatment
Anas Ahmad Siddiqui and Avanish Kumar Dubey

Abstract

Laser surface treatment (LST) utilizes intense thermal energy of laser beam for 
modification, alloying, and cladding surface of substrate materials. In LST very 
high cooling rates of 104–106°C/s can be achieved. Such high cooling rate arrests 
the possibilities of segregation in the case of multicomponent systems. Moreover, 
very narrow heat-affected zone (HAZ) and easy automation make it suitable for 
large-scale industrial production. LST depends on many process parameters such as 
laser power, scan speed, focal length, spot size, substrate temperature, and type of 
material. Selection of proper range of process parameters for good surface quality 
is essential. Pores and cracks may arise due to improper selection of parameters. 
Multilayered, high-entropy, thermal barrier coatings using LST with good bonding 
with substrates have been developed.

Keywords: laser surface modification, laser surface alloying, laser cladding

1. Introduction

Metals and their alloys are one of the means to fulfill our imagination. With 
change in necessity, their utility is also changing. Today industries require materials 
that can meet the demands of challenging markets. In this age of miniaturization, we 
require materials that can form the framework for new technologies. Advanced bio-
materials for bones and dentures with critical surface properties have been developed 
[1, 2]. These materials have shown to perform better than the available materials. 
Artificial bones of Mg and their alloys have been researched [3]. These may restrict 
the requirement of recursive surgeries in case of implants. In the nuclear industry, 
materials which can restrict the harmful radiations while themselves remaining 
neutral have been proposed [4]. Such materials may be able to improve the work-
ing conditions of nuclear industry workers and may restrict the radiation leakages 
in prolonged use. Chromium has been used for decades as a surface hardening and 
corrosion-resisting agent. In recent years there are some articles that discuss the 
effect of chromium on health [5, 6]. It has been found that few states of chromium 
may be the probable cause of cancer. Hence, alternate materials possessing proper-
ties similar to chromium coatings have been reported [7]. In an attempt to improve 
the efficiency of power plants, turbine blades which can handle high stresses have 
been tested [8]. These materials may help boost the limits of power plants, aircrafts, 
and other propulsion systems. The thrust of ever-expanding horizons of knowledge 
development of materials and surface properties has become essential.

Most of the advanced applications require superior surface properties such as 
high hardness, strength, wear resistance, corrosion resistance, high temperature 
oxidation resistance, and improved magnetic and chemical behavior. All these 
properties can be incorporated and developed by modifying the surface of the 
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components. There are wide varieties of surface modification techniques available. 
Some of these techniques are thermochemical coatings (nitriding, carburizing, 
cyaniding, etc.), electrodeposition, electroless deposition, spray coatings (flame 
spray, thermal spray coating, plasma spray coating, etc.), physical vapor deposition 
(PVD), chemical vapor deposition (CVD), laser surface modification (LSM), etc. 
These diverse techniques mutually form a branch termed as surface engineering. 
All these surface modification techniques have certain advantages and disadvan-
tages. Table 1 lists some of the desirable attributes and corresponding behavior 
observed with different processes. For precision coatings of thermally sensitive 
and multicomponent materials, usually laser material processing is employed. 
Due to its localized heating and rapid solidification rates, thermal distortion and 
segregation possibilities are diminished. Also, high energy density leads to melting 
of almost any metal [9]. High-energy-density laser beam produces high dilution and 
good bonding strength, and very low heat-affected zone can be developed. Other 
techniques usually suffer in one or the other reasons. Also, high repeatability and 
controllability makes it a suitable technique for industrial standards.

With the development in the automation sector, lasers having high accuracy and 
precision are available. Thus, in the last decade, a large number of literature dealing 
with application of lasers in various fields are available. These lasers may also be 
used to develop layer by layer lamina to develop a desired 3D structure. Laser-based 
techniques employed in 3D printing are selective laser melting and sintering. A part 
program of the 2D structure to be manufactured is developed. These 2D structures 
of the same or varying sections are developed above one another. These adjacent 
layers join together and form a required 3D structure. Hence, laser printing is very 
similar to surface treatment processes. This chapter in particular presents the ongo-
ing trends of laser surface treatments in melt regime, i.e., it discusses techniques 
such as laser surface alloying, laser cladding (LC), selective laser melting, and laser 
glazing. Although the basis of these techniques is same, these techniques differ 
from one another in the desirability of final surface properties achieved. Numerical 
simulation and application of these techniques have been discussed.

2. Selection of laser

Many aspects are considered during selection of laser for LST processes. Some 
of the desirable characteristics are presented in the flow chart shown in Figure 1. 
The material to be processed is one of the factors for selection of laser type. Heat-
sensitive materials and refractory materials are generally processed in pulsed mode 
[10–15]. It is also observed that the solidified structure of developed materials may 
be different in the case of continuous and pulse laser modes [16]. Figure 2 shows 

Attributes LSA Electrodeposition Thermal spray CVD PVD

Dilution High Nil High Nil Nil

Bonding strength High Low Moderate Low Low

Heat-affected zone Low Nil High Low Low

Coating thickness Moderate Moderate High Low Low

Repeatability High Low Moderate High High

Controllability High Low Moderate High High

Table 1. 
Characteristics of different techniques.
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the relationship between reflectivity of a material and wavelength of radiation [17]. 
Materials such as aluminum which have very low absorptivity are usually processed 
with low wavelength pulses [18]. Besides, these desirable properties also signifi-
cantly affect the selection of laser for a particular application [19].

Figure 1. 
Constraints considered in selection of laser source type.

Figure 2. 
Reflectance of substrate vs wavelength of radiation for some materials [20].
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The type of process also affects the selection of laser. Generally surface alloying 
requires a large amount of heat to melt considerable amount of substrate surface. 
Thus high-energy lasers are required. Glazing and sintering usually employ low-
energy lasers, whereas cladding uses intermediate-energy lasers.

3. Laser surface treatment processes

Extensive laser surface treatment techniques are available. Laser surface treat-
ment usually modifies the topography, phase composition, and microstructure of 
a substrate material to improve its surface properties. When a laser is incident on a 
substrate material, laser radiations are absorbed by conduction electrons near the 
surface region (in nm range). These excited electrons collide with lattice ions and 
rapidly produce heat. The heat produced in this thin layer is conducted to the bulk 
substrate. This causes swift heating of a layer of material, having a thickness greater 
than the characteristic radiation absorption depth. As soon as the laser irradiation is 
stopped, the substrate material cools due to heat transfer. Figure 3 presents a block 
diagram of laser interaction with substrate.

These thermal cycles may possibly cause phase transformations, topography, 
and microstructural variations. The extent of these changes depends on the 
behavior and type of material irradiated, the maximum temperature attained, and 
heating and cooling rates experienced. All the above said factors depend on the laser 
power density and interaction time between laser and substrate material. Laser sur-
face treatment techniques are differentiated on the basis of temperature observed at 
the surface due to irradiation. If surface temperature attained due to laser irradiance 
is less than the melting temperature of a material, solid state transformations can be 
observed. Such a system is observed in hardening, shock peening, and engraving. 
When the surface temperature obtained is greater than the melting temperature 
but lower than the vaporization temperature of the substrate material, melting of 
substrate surface takes place. This is the most widely used regime for surface modi-
fication. Techniques such as laser cladding, laser alloying, laser glazing, and selec-
tive laser melting fall under this regime. If the surface temperature is greater than 
the vaporization temperature of the substrate, vaporization of substrate surface 
takes place. This regime is used in laser machining techniques such as laser drilling, 
cutting, and contouring. Figure 4 presents a block diagram of this classification.

3.1 Laser cladding

Laser cladding technique is employed to produce coatings with enhanced surface 
properties or to repair surface defects of different components. LC employs high 
energy density of laser beams to melt and alloy the surface of substrate materials. 
Due to high energy density, most of the metals can be melted and alloyed. Usually 
when the dilution percent is less than 10%, LC is meaningful because low concen-
tration of substrate is desired in LC. Thick to moderate layers of almost any material 
can be developed. Figure 8(a) shows a cross-sectional image of clad bead.

The material to be deposited on a substrate may be supplied using two tech-
niques: preplaced powder deposition [21–25] or codeposition method [26–30]. 

Figure 3. 
Laser material interactions.
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These methods differ in the supply of clad material. In the first method as shown in 
Figure 5(a), the powder to be clad is first mixed with certain adhesives (polyvinyl 
alcohol) to form slurry. This slurry is placed above the substrate as a uniform coat 
and allowed to dry and harden. This is done so that it can withstand the pressure of 
the shielding gas and particle nature of laser.

In the second method as shown in Figure 5(b), the powder to be clad is fed through 
the powder feeder nozzle onto the laser beam and subsequently on the molten pool. This 
powder feeding can be done at various angles through the laser beam. When the angle of 
feeding is zero degrees, it forms a coaxial feeding system. Some authors have also stud-
ied LMP using different types of nozzles [31, 32]. Generally, off axis, four stream and 
coaxial nozzles have been employed. Figure 6 shows the gas and particle flow patterns 
for various nozzles. Thus, cladding of substrate is possible using both the techniques.

Figure 4. 
Classification of laser material processing techniques.

Figure 5. 
(a) Preplaced technique and (b) codeposition technique [33].
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Through extensive review of articles, it was observed that beads produced using 
powder preplaced method are prone to more defects. This may be attributed to the 
presence of a bonding agent which vaporizes during laser beam interaction. Also, 
the height of clad can be manipulated in a codeposition method which is difficult in 
preplaced technique [34].

The type of microstructure formed depends on the temperature  gradient (G) 
and solidification rate of crystal (R) [35–37]. High G/R ratio leads to  planar 
structure, with decrease in G and increase in R columnar structure being 
achieved, and low G/R ratio leads to equiaxed dendritic structure. In LST 
high cooling rates (103–108 K/s) can be achieved [38]. Hence in LST generally 
dendritic structure is visible. Change in structure can also be realized with 
change in mode of laser. It is observed that in continuous laser mode, columnar 
dendritic structure was formed which was oriented towards the center of clad 
bead, whereas in pulsed laser mode, stacks of dendrite were randomly oriented. 
This was due to cyclic melting and resolidification phases, leading to progres-
sive change in the molten pool. Figure 7 shows the LC using continuous (a) and 
pulsed (b) mode.

3.2 Laser surface alloying

Laser surface alloying (LSA) is a similar process to LC but using high energy 
density. LSA sample is shown in Figure 8(b) [40]. It is observed that dilution 
percent is greater than 10%. Hence, no clear distinction up to a certain depth can be 
observed, and alloy bead has some proportions of substrate material. Usually, LC is 
employed in applications requiring entirely different properties at the surface and 
core, whereas LSA is employed in applications requiring change in properties for 
greater depth.

Figure 7. 
LC using (a) continuous mode and (b) pulsed mode [39].

Figure 6. 
Gas and particle flow for (a) off focus, (b) four stream, and (c) coaxial nozzles [32].
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3.3 Selective laser melting

Selective laser melting (SLM) utilizes laser energy to create 3D parts using a 3D 
CAD sketch of the part geometry to be produced. The 3D model is then broken to 
a 2D stack of layers which form the required geometry. These 2D layers are created 
by laser scanning over the cross-sectional area. This scanning of laser melts and 
bonds particles together to form a thin layer. Repeating this process, a subsequent 
layer may be produced and altogether bonded to previously produced layers. These 
formed stacks of 2D layers represent the final 3D required geometry. Selective laser 
sintering (SLS) is a similar process to SLM, but in SLS complete melting of powder 
does not take place. SLS uses low-power lasers for fabrication of 3D parts compared 
to SLM. Thus, the final products formed using SLS usually have high porosity and 
require impregnation of different materials. Figure 9 presents the steps in SLM.

Literatures suggests that SLM is successfully applied to aluminum and its alloys, 
high-speed steels, nickel, and copper alloys. The main problems with SLM are 
porosity, cracking, oxide inclusion, and loss of alloying elements. Porosity may be 
reduced by proper selection of laser energy density for specific material. Cracking 
can be reduced by decreasing the cooling and solidification rate.

3.4 Laser glazing

Laser glazing (LG) is a surface melting method using a continuous high-energy 
laser beam which traverses the surface of a substrate, generating a thin layer of 
melted material. After the solidification of this thin melted layer, the material’s 
surface appears glassy; therefore this method is termed as laser glazing. Researchers 
have done LG to improve surface properties [42–44]. It employs low peak power; 

Figure 9. 
Steps in SLM technique [41].

Figure 8. 
Cross-sectional images of (a) laser clad [30] and (b) laser surface alloyed bead [40].
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hence vaporization of surface materials is restricted. LG is used to level the surface 
and develop a dense re-melted layer. Due to such a system microhardness, erosion 
resistance and thermal shock behavior of the substrate may be improved.

4. Numerical modeling of laser surface treatment processes

Since LST processes are highly nonlinear processes, hence for clear under-
standing of the process, numerical modeling is essential [45]. Besides laser beam 
interaction with the substrate, LC and LSA impose additional constraints of clad 
and alloying materials that may be supplied in the form of preplaced powder or 
through powder feeder. In case powder is supplied through powder feeder, then the 
study of powder flow dynamics becomes important. Hence, LC and LSA processes 
can be broken in three stages: powder stream dynamics, melt pool region, and 
quality variables. Experimental study of laser surface treatments is not sufficient to 
understand complex phenomena such as powder stream pattern, laser and substrate 
interaction, heat transfer mode, and melt pool behavior. Hence, analytical models 
and numerical simulations have been developed. Some of the brief advancements 
and understandings in these areas are presented.

4.1 Powder stream dynamics

Powder stream dynamics is a significant area in the blown powder technique 
because we can predict powder stream characteristics such as motion, flow profile, 
powder with laser system interaction, etc. These parameters may be further used 
in optimization of parameters and calculate powder efficiency. The behavior of 
powder flow is governed by the type of nozzle employed. The turbulent flow of 
carrier gas can be assumed to be a continuum; hence Navier-Stokes equations can 
be used. A dispersed powder in carrier gas is generally solved using the Lagrangian 
equation [46]. During powder–laser interaction, attenuation of laser energy takes 
place due to absorption, reflection, radiation, beam scattering, and ricocheting 
of powder particles. Models based on particle attenuation [47], ray tracing [48], 
resolution [49], and light propulsion force model [50] have been reported to predict 
the behavior of attenuated laser energy fairly. Finally, powder substrate interaction 
depends on the standoff distance. For high convergence the substrate should lie at 
the focus of the nozzle [51].

4.2 Melt pool

The substrate melts due to absorption of remaining incident laser energy. The 
focuses of interest in this region are heat transfer, geometry of melt pool, fluid flow 
velocity, cooling rate, and solidification rate. These variables have been calculated 
using kinetic approach [52], volume method [53], and finite element method 
[54, 55]. Usually commercial multi-physics platforms such as ANSYS, COMSOL, 
FLUENT, and ABAQUS are employed for the problem.

4.3 Quality variables

The simulation of desirable properties is usually done in combination with 
developed thermal model. Phase transformation models along with thermal models 
provide base for the measurement of quality variables. Diffusion and diffusion-less 
phase transformations may occur in different material systems. Diffusion phase 
transformations have been modeled using the Johnson-Mehl-Avrami equation, 
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while diffusion-less phase transformations are modeled using the Koinstinen 
Marburguer equation [56, 57]. Hardness measurement of a treated surface has been 
predicted by coupling thermo-kinetic relation and thermal model [58, 59]. Residual 
stresses develop in laser-treated parts; these lead to crack and distortion. The finite 
element method has been used to solve coupled elastic, plastic, and thermal strain 
equations with phase transformation equations [60, 61].

5. LST applications

LST has a wide application in aerospace, automobile, medical, nuclear, oil 
recovery, and refinery industries [62–66]. Aluminum and its alloys are widely used 
in aerospace industry; they have been efficiently clad with other novel metals to 
improve their surface properties [67]. Stainless steel is used in automobile and house-
hold applications [68, 69]. Titanium and its alloys are used in the medical sector [70]. 
LC on Ti6Al4V has been studied frequently to improve its surface properties [71].

Materials Application Improvement Author, year

CMSX-4 (Ni-based 

super alloy)

Repair of turbine blades This method helped to 

develop monocrystalline 

CMSX-4

Rottwinkel, 2016 [73]

Stellite-6/WC on 

B27 boron steel

Repair of tools for soil 

cultivation

Formation of intermetallic 

compounds improved the 

wear resistance

Bartkowski, 2016 [74]

NI40 and NI60 on 

C60 steel

Improvement of barrel-

screw system in plastic 

injection molding

Ni-Cr alloy clad improved 

the microhardness

Zarini, 2014 [75]

CPM9V steel on 

H13 tool steel

Repair of molds and 

dies used in hot and 

cold working

Presence of compressive 

stress due to formation of 

martensite phase

Paul, 2017 [76]

Grade C wheel 

U75V rail with 

316L, 420, 410

Repair of damaged 

railway wheels

The wear rates decrease 

with increased hardness of 

the clad materials

Zhu, 2019 [77]

Titanium 

hydroxylapatite on 

Nitinol

Coating on Nitinol 

implants to restrict 

nickel release

Modulus of elasticity of 

coated samples falls in the 

range of 6–30 GPa which is 

similar to the natural bone

Chakraborty, 2019 [78]

Mg-Zn-Dy alloy 

casted and laser 

melted

Restrict in vitro 

degradation and 

improve tissue 

integration

Improvement in in vitro 

degradation due to 

formation of insoluble 

protective layer

Rakesh, 2019 [79]

Powdered 

Co29Cr9W3Cu 

alloy

SLM is used to develop 

Co29Cr9W3Cu alloy 

joint prostheses

Initiation of crack is 

arrested due to plastic 

deformation caused by 

strain-induced martensitic 

transformation

Lu, 2019 [80]

Ti powder on 

Ti6Al4V substrate

Improve in vitro 

biocompatibility 

capacity of the titanium 

deposits to be used as 

medical implants

In vitro test of samples in 

Hank’s solution shows that 

the leaching was within 

the desired values

Nyoni, 2016 [81]

Table 2. 
Some applications of LST.
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LST applications can be classified in two categories. First is remanufacturing 
or refurbishing products to restore their properties and dimensions [72]. Second 
is development of new materials with improved properties. Table 2 presents some 
critical applications of LST.

6. Conclusion

Laser surface treatment may be employed to provide advanced surface proper-
ties to a substrate material. The melt pool regime in laser irradiance is utilized to 
completely modify the surface properties. The interaction of laser with alloy/clad 
powder, laser and substrate material, powder particles, and substrate materials is 
important for clear understanding of the problem. Numerical-based techniques 
have provided a way to optimize, standardize the processes, and reduce wastage 
during actual processing. These techniques have a vast application horizon, i.e., 
from medical implants to turbine blades, all can be modified using these techniques.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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