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1. Introduction: what makes memristors attractive for neural networks?

The ability of the memristors to change its conductance i.e. behaves like a resistor, 
and yet be able to remain in that conductive state, be able to change the state based 
on a control voltage makes it resemble like a neuron. The spiking neurons in the 
brain respond to the stimuli in different ways. The continuous application of stimuli 
and the changing response of the neuron to this is related to learning. In the same 
way, by application of voltage pulses of certain amplitude and frequency can cause 
a change in conductance state, reflecting as changing the amplitude of the current 
outputs through a memristor [1–3]. The voltage pulse trains below a threshold 
voltage for a given conductance state produces a current signal output that follows 
the input voltages reflecting learning ability. As such this idea can be translated to 
emulate spiking neurons with memristors [4, 5].

Another major design use case for memristor is the crossbar arrangement of 
the memristors. The memristors are arranged in a crossbar architecture, with each 
memristor being able to be accessed with rows and columns. The memristors are 
programmed using the transistor switch control, or selector switch control often 
referred to as ITIM or 1S1M configuration [6, 7]. Multiple transistors are usually 
required in the practical control circuits and depending on the complexity of the 
task such as the need to access multiple conductance states, the design aspects 
become complicated [8]. Nonetheless, a single crossbar can emulate a single dot 
product matrix computation that is required for weighted summation of inputs in a 
neural network layer. From a design perspective, at a higher level the simplification 
of multiply and accumulate operation is simplified, and it can reduce the design 
complexity.

The neuro-memristive system requires architectural level combinations of 
crossbars and memristor neurons, and be able to fabricate along with CMOS 
devices. Usually, sensors, control circuits and memories, would be required for the 
neural network to be scaled to a large network. The larger the network or deeper the 
number of layers in the neural network, the complexity of implementing increases. 
Large crossbar arrays suffer from the sneak path currents and non-idealities of the 
devices, which introduces errors in the dot-product computations, that propagate 
from one layer to another. While to some extent these errors can be compensated 
with learning algorithms, they do not fully compensate for the changes in real-time 
conditions. Online learning is possibly a way to compensate for real-time errors, 
however, online learning systems are not easy to realise for analog circuits and often 
consume a large amount of area on-chip and power. For digital implementations, 
in general, online learning circuits consume larger area and higher delays, than the 
crossbar based analog counterparts.
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2. Main challenges

2.1 Modelling issues

Modelling realistic memristors devices is a challenging task [3]. There have been 
arguments for and against the existence of “ideal” memristor devices, based on 
electrical, physical, chemical and philosophical arguments [9, 10]. From a neural 
circuit design perspective, the arguments on the existence of such idealistic devices 
are practically not relevant. The more important question for the circuit designer 
is the accurate modelling of the practical device that can be either used as a spiking 
neuron or can be used in a crossbar.

When the models can incorporate into a simulator, it is important that the mod-
els represent accurately the true behaviour of the device and also are fast in terms 
of computation [3]. The ability for the models to be easily integrated into SPICE 
like simulators, that can enable simulations of millions of neurons are important for 
building neural networks [11]. Currently, the simulations with memristor models 
are extremely slow for deep neural networks, and often require the use of scripting 
languages such as Python to get around this issue.

2.2 Lack of design tools

There is limited availability of physical design kits (PDK) for use in standard 
design tools such as provided by Cadence [12], Mentor Graphics [13], Silvaco [14] 
etc. The support for memristor PDK suitable for integration with CMOS is largely 
an open problem. The accuracy of the design files is not comparable with CMOS 
processes, and the variability data is not very well disclosed. The design tools that 
can accurately translate the realistic memristor devices are not very common and is 
an active topic of study.

2.3 Reliability issues of memristors

The memristor devices suffer from a range of reliability issues. Some of the main 
issues include:

Ageing – the devices when switched ON and OFF for a long period of time 
suffer from the loss of conductance state. This creates a major problem in analog 
dot product computations with crossbar architecture. Ageing has better tolerance to 
binary neural networks [15, 16].

Noise – the electrical and thermal noise can play with the changes in output 
response of the memristors, which can interact with the design of the neurons. The 
exact interplay of the device noise within different configurations of the network is 
largely an open question [17].

Variability – the variability of the conductance due to process and fabrication 
challenges can create design challenges for the crossbars. The neural network design 
has shown to be tolerant to large variations in conductance [18–20]. The signal 
integrity and electromagnetics issues related to packaging also need to be taken into 
account in this challenge.

2.4 Complexity issues for programming memristors

Programming the memristors requires applying a series of voltage pulses for 
a sustained period of time until the conductance of the memristor changes to the 
desired value. The state changes are based on the magnitude of the voltages applied. 
The issue with the realistic design is the voltage control across several memristors is 
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not an easy task. The memristors in crossbar are prone to non-idealities and often 
faced with variable threshold voltages. This makes the design of the programing 
logic complex [21, 22]. The ability to program memristor devices in parallel with 
low cost on the power, and area on-chip, is a challenging program, especially if the 
design is for analog neural networks [23].

2.5 Architectural challenges

There are several types of neural networks. Many designs have multiple layers 
and they involve convolution layers that involve dendrite logic [24]. This makes the 
architecture design complex for generalisation. While crossbar-based designs can 
be used for a large number of neural network architectures, optimising the design 
for hardware is a totally different problem [6, 25]. The architectural changes need to 
be aligned with the circuit design challenges, especially, when the design constraints 
are with chasing accuracy and system-level performance metrics. The architectural 
designs also need to take care of a wide range of generalisation issues including 
those related to hardware-software co-design, and system of chip solutions [25].

2.6 Scaling and 3D integration

Scaling the CMOS circuits, and improving the packing density of the memris-
tors are not a well-studied problem. There have been several suggestions on using 
3D technologies and using vertical devices for very-large-scale integration [26, 27]. 
The main challenge in this regard has been the variability of the devices that prevent 
the large-scale 3D integration of crossbar-based designs. There are yet not full-
proof solutions to scaling up in density and scaling up in size. The best architecture 
level scale-up is the use of modular designs that make use of several small crossbars 
to create larger ones [28, 29]. However, these designs are yet to be fully tested in a 
realistic commercial application.

2.7 Neuron model

There are several types of neurons in the human brain [30–40]. The cognition is 
a result of interactions between varied types of neurons in the cortex. Most neural 
networks inspire from the cortical neural networks and often are oversimplifica-
tions of the biological networks. The exact form of how intelligence over a life-time 
of human are not very well understood to completely build an equivalent machine 
intelligence. At best what we have achieved today in neuro-chips is weak intel-
ligence, being able to implement some specific functionality of the human brain, 
that too not in its entirety. The journey of hardware AI research is its very early 
stages, with a scalable design similar to the human brain practically limited by the 
chemistry of how neurons work. The organic nature of the brain offers several 
advantages over the silicon neuron. The electrical models are many, but they all 
tend to be bulky and complex when implemented in silicon. Having a functionally 
complex neuron with simplistic implementation complexity is a major challenge in 
the system design of memristive neural networks.

3. Discussions and future outlook

While these challenges exist, the practical use of neural networks build with 
crossbar and that using memristive spiking neurons are many. Several problems 
having a few sets of sensors such as in biomedical sensing applications only need 
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smaller neural networks to make the sensor intelligent. Likewise, many time-series 
based prediction problems use one-dimensional data that again only need simple 
recurrent neural networks.

The practical implementation of large scale networks is required to match the 
neural network scale and size of the human brain [41–46]. Packing billions of 
neurons into a single chip is a major challenge, that requires to match the energy 
benchmarks and complexity. Current circuit implementations fail to match up with 
the energy benchmarks of the human brain, mainly as the scaling of power supply 
on chips are practically limited by electrical design and device constraints. In addi-
tion to this, packaging and electromagnetic effects also play a major role in building 
systems with neural chips. The precision engineering of these chips for reliable 
use is important for long term acceptability in higher intelligence tasks. Further, 
the data processing with the neurochips can be prone to adversarial attacks, which 
means the system needs to be made secure using dedicated cryptographic copro-
cessors. Going further, it will be also important to see the applications of these 
neurochips in human-machine interfaces, and for building connected and collective 
intelligence solutions.

Ageing is a time-dependent process, where the conductance of the memristors 
changes over a period of time and use [15, 16, 47–49]. The more the memristors 
are used, i.e., writing and reading, the ability to keep the expected conductance 
levels diminishes. This is wearing out the phenomenon that the memristor devices 
face due to continuous electrical stress on the devices impacting the chemistry and 
physics of the device. Over a period of time, the multiple conductance states get 
combined, or disappeared, making the reliability of programming memristors chal-
lenging. This makes fine-tuning as an essential part of memristor programming and 
test stages. Any changes in the conductance values introduce undesirable errors in 
the output of the crossbar arrays, which is far from expected ideal behaviour. This is 
a serious issue when the multiple conductance states are extensively used for build-
ing analog neural networks with crossbar arrays. The conductance of the memris-
tors is equated to weights in the analog neural network, and hence if a conductance 
state goes missing it makes the training more complicated. Additional, rules need 
to be framed to the pre-trained network models to further adjust the weight values 
to achieve convergence. Learning and self-tuning in this sense is an online process 
for analog neural networks with memristor crossbar arrays. Nonetheless, the 
advantages of the analog neural networks with crossbar outweigh the digital-only 
counterpart, for smart sensor integration and edge AI computing [50–59].

When the noise gets added to the signals at input, in-network layers or outputs 
of the analog neural network, it introduces errors in the layers of the neural net-
works. The noise can originate in different ways, such as due to thermal effects, 
electromagnetic effects, or through external sources. Noise is typically seen as a 
problem in circuits, however, with neural networks this may have some advantages 
to offer, such as with avoiding overfitting during training. The role of noise in the 
human brain is immense and it plays some major role in the way intelligence and 
perception is shaped [60, 61].

4. Conclusions

There are several open challenges in neuro-memristive circuit design. The design 
challenges go from classical circuit analysis to computer-aided design issues. The 
major bottleneck with creating a billion-neuron chip is the limitations imposed at 
the device and at architecture levels. There are yet no practical tools that can help 
address all the design challenges in a systematic way. Unlike software tools, where 
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debugging is a well-detailed topic of study, the neuro-memristive hardware design 
is not easy to debug due to a variety of non-idealities of crossbar and memristor 
devices. There have been several proofs of concepts of circuit designs and a grow-
ing body of literature on architectures that aim to address these very challenges. 
However, there is a long way to go before many of these designs can be put for 
commercial use on a large scale. The digital designs of neural networks are much 
more feasible than analog neural networks at this point in time. In the future, it is 
expected that analog neural networks will have a much more important role to play 
in making sensors smarter and make intelligent computing energy-efficient.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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