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Abstract

Thalassemia is an inherited disease caused by the genetic disorder of α- and β-globin 
genes, resulting in ineffective erythropoiesis and chronic anemia. Transfusion-dependent 
β-thalassemia patients require red cell transfusion to maintain their blood hemoglobin level 
in the normal range, whereas non-transfusion-dependent thalassemia patients increase duo-
denal absorption of dietary iron in an attempt to accelerate erythropoiesis. These changes 
give rise to iron overload, oxidative stress, organ dysfunction, and other complications. 
Effective iron chelators are necessary to achieve negative iron balance and to relieve such 
complications associated with iron overload. Some pharmaceuticals such as hydroxyurea, 
N-acetylcysteine, ascorbic acid, vitamin E, and glutathione are also given to thalassemia 
patients in order to overcome oxidative cell and tissue damage and to generate a better qual-
ity of life. Interestingly, functional natural products (such as mango, tea, caffeine, and cur-
cumin), vegetables, and cereal (e.g., rice) are helpful for their health-providing properties by 
supplementing the endogenous antioxidant defensive power in the body. Natural products 
exhibit many pharmacological activities, but they are safer if used in the traditional manner.

Keywords: thalassemia, personalized medicine, antioxidant, green tea, functional fruits, 
iron

1. Introduction

Thailand is one of the countries located in Southeast Asia (SEA) with an ongoing thalassemia 
endemic and has been affected by this inherited disease for a long time. In 2012, we had 
an official meeting for reviewing progression in the field to develop a good clinical practice 
guideline (CPG) for thalassemia management in Thailand.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



2. Etiology of thalassemia

Thalassemia is an inherited autosomal recessive disorder of hemoglobin molecules (ineffective 
erythropoiesis) that is characterized by an imbalanced α- and β-globin chain synthesis. The 
accumulation of unbound α-globin chains in erythroid cells is the major cause of pathology 
in β-thalassemia. Stimulation of γ-globin chain synthesis can relieve disease severity because 
it combines with the α-globin chain to form a fetal hemoglobin (Hb F). The disease occurs 
prevalently from Southeast Asia to the Mediterranean.

2.1. α-Thalassemia

α-Thalassemia is due to an impaired production of α-globin chains from 1, 2, 3, or all 4 of the 
α-globin genes, leading to a relative excess of β-globin chains. The severity of the disease is 
based on how many genes are affected. Four clinical conditions of increased severity are rec-

ognized: two carrier states, α+-thalassemia caused by the deletion or dysfunction of one of the 

four α-globin genes, and α0-thalassemia resulting from deletion or dysfunction of two α-globin 

genes in cis. The two clinically relevant forms are Hb Bart’s hydrops fetalis syndrome and Hb 
H disease. Patients with Hb Bart’s hydrops fetalis syndrome (homozygous α-thalassemia) have 
nonfunctioning α-globin genes (genotype α-thal 1/α-thal 1 or − −/− −) and mostly die before 

birth. Mothers usually suffer hypertension, edema, and toxic pregnancy. Hb H disease patients 
carry only one functioning α-globin gene (genotype α-thal 1/α-thal 2 or − −/− α, and α-thal 1/
Hb Constant Spring (CS) or −/αCSα) and mostly suffer mild-to-severe anemia, jaundice, febrile, 
and splenomegaly and hepatomegaly. α-Thalassemia is prevalent in tropical and subtropical 
regions similar to other common globin gene disorders such as β-thalassemia and sickle cell 

anemia where malaria was and still is an epidemic. As a consequence of massive population 
migrations, α-thalassemia has become a relatively common clinical problem in North America, 
Europe, and Australia [1–3].

In northeast Thailand, thalassemia patients suffered with Hb H disease mostly due to the inter-

action of α-thalassemia 1 (SEA type) with the Hb CS, the deletion of three α-globin genes with the 

SEA type α-thalassemia 1 and the 3.7- or 4.2-kb deletion of α-thalassemia 2, and the interaction of 
the SEA α-thalassemia 1 with the Hb Pakse [4]. In Cambodia, α-globin gene mutation was mostly 

caused by the α-(3.7) (rightward) deletion (frequency 0.098–0.255), α-thal-1 (– –(SEA)) (frequency 
0.008–0.011), and α-thal-2 [-alpha(4.2) (leftward deletion)] (frequency 0.003–0.008) [5].

2.2. β-Thalassemia

Human β-thalassemia is characterized by the deficient production of the β-globin chains of adult 

hemoglobin (Hb A), typically due to mutations of the β-globin gene. Over 200 mutations have 
been identified in this gene, and the type of mutation can influence the severity of the disease. 
There are three main types of β-thalassemia, listed in order of decreasing severity: homozygous 
β-thalassemia major (TM) (genotype β0/β0) caused by mutations in both alleles, β-thalassemia 

intermedia (TI) (genotype β0/β+, β+/β+, and β+/βE) caused by diverse mutations, and heterozygous 
β-thalassemia minor caused by single mutation, including hereditary persistent fetal hemoglo-

bin (HPFH). TI patients usually become mildly anemic (baseline Hb level 7–10 g/dl) and have 
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widely varying severity. Some patients require blood transfusion and chelation to promote their 
growth in childhood and prevent bone deformities in adults and sometimes get splenectomy 
due to hypersplenism and mechanical encumbrance. Enhancing Hb F synthesis is useful in 
some patients, and anti-oxidative compounds were found not to improve blood Hb levels. Stem 
cell transplantation and gene therapy are possible in well-developed countries but limited in 
developing countries and in some severe cases. Many complications such as pulmonary hyper-

tension, thrombosis, hypercoagulability, pseudoxanthoma elasticum, and osteoporosis are 
reported in TI patients and can affect their treatment [6].

β-Thalassemia hemoglobin E (Hb E) (genotype β0/βE or β +/βE) is most prevalent in SEA 
countries including Thailand where the carrier frequency is around 50%. The interaction of 
thalassemia Hb E and β-thalassemia results in a clinical spectrum ranging from a condition 
indistinguishable from TM to a mild form of TI. Three categories can be identified depending 
on symptoms as followed: asymptomatic (normal Hb level), mild (baseline Hb level <9.0 g/dl), 
moderate (baseline Hb level 7–9 g/dl), and severe (baseline Hb level <7.0 g/dl). In transgenic 
mice, homozygous beta-knockout (BKO) thalassemia shows many clinical features of red 
blood cells (RBC) indices, in particular mild anemia similar to human TI. The abnormalities 
include decreased blood Hb concentration, hematocrit (Hct), numbers and osmotic fragility 
of RBC, and the increase of reticulocyte count. Additionally, Perl’s staining and colorimetric 
assays shows deposition of iron in the spleen, liver, and kidneys but not in the heart [7].

3. Anemia in thalassemia

The accumulation of excess unbound α-globin chains in erythroid cells of β-thalassemia 

patients can result in RBC hemolysis and anemia; nevertheless, stimulation of γ-globin gene 

to produce γ-globin chain which can combine with the α-globin to form Hb F is a therapeutic 
approach. Like cell apoptosis, eryptosis is a programmed cell death or suicidal death of eryth-

rocytes which is characterized by shrinkage, membrane bleb, activation of proteases (e.g., 
caspase and calpain) after oxidative stress, and phosphatidylserine (PS) exposure at the outer 
plasma membrane leaflet of the affected RBC. Eryptosis can be triggered by osmotic shock, 
energy depletion, hyperthermia, curcumin, ceramide, prostaglandin E2, platelet-activating 
factor, valinomycin, amyloid peptide, hemolysin, chlorpromazine, cyclosporine, paclitaxel, 
stressors-induced injury, and iron-induced oxidative stress. In contrast, it is inhibited by 
erythropoietin (EPO), catecholamines, and nitric oxide (NO). Eryptosis is probably a useful 
mechanism to get rid of defective RBC and infectious agents. Nonetheless, excessive eryptosis 
found in iron deficiency, intoxication of metals (such as Al, Cu, Pb, and Hg), xenobiotics, 
β-thalassemia, sickle cell disease (SCD), glucose-6-phosphate dehydrogenase (G6PD) defi-

ciency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, myelodysplastic 
syndrome (MDS), phosphate depletion, sepsis, hemolytic uremic syndrome, renal insuffi-

ciency, diabetes, pathogenic infection (e.g., malaria, mycoplasma, and hemolysin-producing 
bacteria), and Wilson’s disease can result in short lifespan and microvesicles of the RBC, con-

sequently leading to anemia and impaired microcirculation [8–10]. Synthetic compounds and 
natural products of interests need to be investigated to elucidate their therapeutic potential of 
inhibitors of excessive eryptosis in β-thalassemia with chronic anemia.
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4. Iron overload in thalassemia

4.1. Pathophysiology and complications

Iron overload in thalassemia is assessed with an increase of plasma iron and transferrin satura-

tion, the presence of redox iron as non-transferrin-bound iron (NTBI) and labile plasma iron 
(LPI), and a high deposition of tissue iron in the forms of hemosiderin, ferritin, and labile 
iron pools (LIP). Excessive iron accumulation in the vital organs is the cause of liver diseases 
(e.g., hepatitis, hepatic fibrosis, and hepatocellular carcinoma), cardiomyopathies (e.g., car-

diac arrhythmia and heart failure), and endocrinopathies (e.g., diabetes, growth retardation, 
defective puberty, hypopituitarism, hypogonadism, and hypoparathyroidism) [11, 12]. Iron 
overload can be caused by an increase of dietary iron absorption due to chronic anemia and by 
multiple blood transfusions to maintain normal blood Hb level. Under incomplete or partial 
synthesis of β-chains of Hb in β-thalassemia patients, the remaining excessive α-globin chains 

are unstable and eventually precipitate, causing RBC membrane damage [13]. The affected 
RBCs are prematurely hemolyzed in the bone marrow and spleen, resulting in increased RBC 
turnover, ineffective erythropoiesis, and severe anemia, so patients require regular blood 
transfusions to prevent the anemia and ischemia. Though thalassemia patients do not receive 
transfusions, abnormal iron absorption produces an increase in the body iron burden evalu-

ated at 2–5 g per year [14]. Regular blood transfusions (420 ml/unit of donor blood equivalent 
to 200 mg of iron) lead to double this iron accumulation. Consequently, iron accumulation 
introduces progressive damage in the liver, heart, and in endocrine glands. Circulating NTBI 
as well as LPI is detected whenever the capacity of transferrin to incorporate iron derived from 
either gastrointestinal tract or reticuloendothelial (RE) cells becomes a limiting factor. Both 
forms of toxic iron appear primarily in transfused patients where the total iron-binding capac-

ity (TIBC) has been surpassed [15]. Pathologically, the NTBI fraction seems to be translocated 
across cell membrane irregularly, while the LPI is redox active and susceptible to chelation [16].

4.2. Redox iron catalysis

In enzymatic reactions as shown in Figure 1, superoxide (O2
−•) which is one of the reactive 

oxygen species (ROS) is normally produced by NADH:ubiquinone oxidoreductase catalysis 
at the complex I (I) in oxidative phosphorylation and will be converted to hydrogen perox-

ide (H2O2) by superoxide dismutase (SOD) catalysis (II). Hydrogen peroxide (H2O2) which is 

another ROS is produced by xanthine oxidase (XO) catalysis of hypoxanthine to xanthine (III) 
and xanthine to uric acid (IV) in purine catabolic pathway. Finally, hydrogen peroxide will 
be degraded or detoxified by peroxidase (POD) and catalase (CAT) to water and oxygen (V).

In Haber-Weiss/Fenton nonenzymatic reactions, iron can participate in the oxidation-reduc-

tion process known to generate ROS including hydrogen peroxide reacts to form hydroxyl 
radical (OH•) and hydroxide anion (OH−) [17] (Figure 2).

ROS can induce cell death through initiating a series of chemical reactions with many signifi-

cant biomolecules, resulting in DNA oxidation, protein damage, and membrane lipids peroxi-
dation [18, 19]. Among these ROS, hydroxyl radicals might be the most harmful to lipid and 
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protein membrane components. The •OH-induced membrane damage can be related directly 
to a membrane-associated Fenton reagent [20]. Oxidative cell damage has been attributed to the 
emergence of excessive levels of LPI that promote the production of ROS exceeding the cellular 
defensive capacity [21]. Cellular LIP is a source of chelatable and redox-active iron, which is tran-
sitory and serves as a crossroad of cell iron metabolism. The nature of the LIP has been revealed 
by its capacity to promote ROS generation in its “rise-and-fall” patterns. LIP plays a role as a 
self-regulatory pool that is sensed by cytosolic iron-regulatory proteins (IRPs) and its feedback 
regulated by an IRP-dependent expression of iron import and storage. LIP is influenced by a 
range of biochemical reactions that are capable of overriding the IRP regulatory loops. Excess 
labile iron can react with unsaturated lipids [22]. Such redox reactions lead to the damage of 
cells, tissues, and organs as demonstrated as the iron overload associated with β-thalassemia.

4.3. Tissue iron deposition

The spleen contains macrophages that digests hemoglobin and stores the resulting iron in 
ferritin. The number of blood transfusions in β-TM patients correlates with their splenic 

Figure 1. Enzymatic production of ROS.

Figure 2. Iron-catalyzed redox reactions of biological importance.
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hemosiderosis and weight [23]. Hemosiderin deposition was found to be greater in the iron-
overloaded livers than in the iron-overloaded spleens. Ferritin and hemosiderin increased 
in hepatocytes and splenic RE cells [24]. Splenectomy is one of the clinical complications of 
hypertransfused TM patients to reduce hyperactivity of RE macrophage; nevertheless, it may 
increase the iron overload.

The liver is one of the main storage organs for iron. Iron overload is considered when the fer-

ritin level consistently exceeds 1,000 ng/ml (normal range 20–200 ng/ml). Excess free radicals 
can cause progressive tissue injury and eventually cirrhosis or hepatocellular carcinoma in 
iron overload patients whose iron is sequestrated predominantly in ferritin or hemosiderin 
[25]. When plasma transferrin becomes highly saturated, NTBI is detectable and rapidly 
transported across the hepatocyte membrane via a specific pathway. Likely, ferroportin 1 is 
the only protein that mediates the transport of iron out of hepatocytes and is then oxidized 
by ceruloplasmin and bound to transferrin [26]. Iron deposition affects hepatic parenchymal 
cells (hepatocytes and bile duct cells) and mesenchymal cells (endothelial cells, macrophage, 
and Kupffer cells) and often distributes differently from one area to another [27].

The heart is one of the most mitochondrial-rich tissues in the body, making the iron of par-

ticular importance to cardiac function. Iron as iron-sulfur cluster and cytochromes plays a 
key role for oxidative phosphorylation and superoxide production in the mitochondria. Iron 
deposition in the heart cells can lead to cellular oxidative stress and damage and an altera-

tion of myocardial function. Heart failure is the leading cause of death among hemosiderosis 
β-thalassemia patients, of whom around 60% die from cardiac failure. Harmful effects of iron 
overload on the heart of TM patients can be monitored efficiently by using noninvasive tech-

niques as described below, whereas invasive techniques such as Perl’s stained in biopsied 
heart tissue are rather impossible. Treatment with effective iron chelators can protect these 
patients from iron-loaded cardiomyopathy [28, 29].

Bone marrow iron deposition (186 μg/g wet weight) increases in proportion to the total body iron 
store in dietary iron overload of African Bantu people and Caucasian idiopathic hemochroma-

tosis patients [30]. MDS patients who are a heterogeneous group of clonal hematopoietic stem 
cell malignancies show bone marrow hemosiderosis and may develop systemic iron overload.

Though hematological care is improved in homozygous transfusion-dependent β-thalassemia 

(TDT) patients, multi-endocrine dysfunction is still a common complication. Thyroid dysfunction 
is defined as overt hypothyroidism, subclinical hypothyroidism, and an exaggerated thyroid-
stimulating hormone response was reported in β-thalassemia patients [31]. Possibly, growth retar-

dation, secondary hypogonadotropic hypogonadism and hypothyroidism are originated from 
pituitary damage primarily caused by iron overload and oxidative stress [32, 33]. Approximately 
half of patients’ pituitary gland dysfunction associated with iron overload is irreversible [34].

The redox irons in TDT patients with TM and TE are catalytically harmful to adrenal glands 
and can cause adrenal insufficiency [35]. Though all TM patients were nondiabetic, some of 
them decreased in the oral glucose tolerance test. They showed normal response of corti-
sol to insulin and adrenocorticotropic hormone stimulation. Moreover, the β-cell pancreatic 
function and adrenal cortical function were depressed in the severely iron-loaded. Recently, 
Koonyosying and colleagues have demonstrated green tea extract could reduce cellular the 
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levels of iron and ROS and increase insulin secretion in concentration-dependent manner 
in iron-loaded pancreatic cell line (RINm5F), indicating the amelioration of oxidative stress 
and endocrinal improvement of pancreatic β-cells [36]. They also found that eltrombopag, 
which is a thrombopoietin receptor agonist and potent metal ion-chelating agent, efficiently 
decreased cellular levels of iron and ROS from cultured HuH7, H9C2, and RINm5F cells and 
restored insulin secretion from iron-loaded RINm5F cells [37].

4.4. Assessment of tissue iron content

Serum ferritin level has been used as a surrogate biochemical marker to correlate closely 
with liver iron concentration for a long time and would be a valuable alternative to assess 
visceral iron overload in heavily iron-loaded TM patients [38]. Sophisticated noninvasive 
magnetic resonance imaging, magnetic iron detector susceptometry, superconducting 
quantum interference device, and nuclear resonance scattering techniques can also be used 
to assess iron status in tissues. Alternatively, invasive tissue biopsied needle aspiration 
associated with ferrozine colorimetry or graphite-furnace atomic absorption spectrometry 
is routinely quantitated for nonheme iron in tissues (e.g., myocardium, liver, pancreas, 
adrenal glands, anterior pituitary gland, and skin) [39–41]. These methods are all valuable 
when evaluating iron load in the tissues and monitoring the response of different organs to 
chelation therapy.

5. Thrombotic events in thalassemia

Heart failure and arrhythmia are the main causes of death in TM patients with cardiac sid-

erosis, pulmonary hypertension, and thrombosis and also the major cardiovascular complica-

tions in TI patients possibly due to pro-atherogenic biochemical factors (e.g., iron status and 
lipid profile) [42, 43]. Hypercoagulable pulmonary microthromboembolism in Thai pediatric 
TE patient was previously investigated [44]. After splenectomy TI patients mostly had throm-

bosis, thrombocytosis, and lower levels of anticoagulation inhibitors (e.g., protein S, protein C, 
and antithrombin III) [45]. Splenectomy promotes portal vein thrombosis in TM patients [46]. 
Ineffective erythropoiesis, chronic anemia, iron overload, and polycythemia by erythrocytosis 
and thrombosis are coincidently occurring in β-thalassemia patients. Signs of cerebrovascular 
accident (brain ischemia, hemorrhage, and infarct) and heart disease (congestive heart failure 
and atrial fibrillation) were described in chronically hypercoagulable thromboembolic thalas-

semia patients, so anticoagulant and/or antiplatelet therapy is recommended. Hypoxia and 
iron overload are the two major mechanisms of ROS overproduction [47]. The levels of plasma 
hemostatic and thrombotic markers were significantly higher in splenectomized TE patients 
than non-splenectomized ones, implying splenectomy increases platelet hyperactivity, blood 
hypercoagulability, and risk of thrombosis. ROS-induced activation of vascular endothelial 
cells can cause vasculitis and thrombosis, showing increased levels of many soluble adhesion 
molecules and von Willebrand factor (vWF) in thalassemia blood [48]. Procoagulant activity of 
circulating RBC microvesicles or microparticles (MPs) may contribute to thrombotic events in 
thalassemia hypercoagulability [49]. Carotid artery thrombus is usually associated with severe 
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cardiovascular diseases (CVD), iron deficiency anemia, and thrombocytosis. Thromboembolic 
complications are documented in thalassemia patients, possibly due to aggregation of abnor-

mal RBC and high amounts of RBC membrane-derived MPs [50]. Antioxidant treatment of 
β-thalassemia HbE patients can improve oxidative stress and hypercoagulable state [51]. Iron 
overload, in particular NTBI level, would be one of the risk factors in pulmonary thrombosis 
and hypertension in splenectomized non-transfusion-dependent thalassemia (NTDT) patients 
[52]. Iron chelators are useful and effective in the amelioration of iron overload and oxidative 
stress in thalassemia mice, possibly in the prevention of pulmonary thrombosis [53]. Nitric 
oxide (NO•) synthesized from L-arginine by catalysis of nitric oxide synthase (NOS) species 
is a free-radical, physiologic vasodilator, and potent inhibitor of platelet function. Excessive 
iron-liberated heme degradation contributes to hypercoagulability [54]. Low arginine bio-

availability in β-thalassemia patients can cause pulmonary hypertension and cardiopulmo-

nary dysfunctions [55]. Splenectomy, thrombocytosis, RBC, and platelet MPs may be residual 
hypercoagulable/thrombotic risks in TDT patients [56, 57]. Liver inflammation and cirrhosis 
can involve in hypercoagulability, thrombosis, and reduced fibrinolysis [58, 59].

6. Treatment and implements

Strategy and approach have been suggested for the treatment and support of thalassemia 
patients to have better quality of life and well-being [60]. These approaches include occasional/
regular blood transfusions, iron chelation therapy, antioxidant supplement, Hb F switching 
agents, anti-allergic drugs, antibiotics (such as antibacterial, antiviral, antifungal, and antima-

larial drugs), splenectomy (in the past), dental care, and hemopoietic stem cell transplantation.

6.1. Iron chelation therapy

Iron chelation therapy aims to prevent the accumulation of toxic iron and eliminate the excess 
iron in TDT patients. Effective chelation and good management of the patients have been 
correlated with a decline in early deaths and complications [61]. Reduction of plasma and 
cellular chelatable iron such as NTBI, LPI, and LIP is a slow process and requires aggressive 
chelation therapy. The chelation will maintain the iron balance at safe levels to prevent high 
iron accumulation and oxidative tissue injury. Such non-iron and iron-overloaded models as 
RBC, cell cultures (e.g., hepatocytes, HepG2 cells, and cardiomyocytes), animals (e.g., mice, 
gerbils, rats, and transgenic BKO mice), and even human thalassemia patients are experimen-

tally investigated and clinically tested to assess the safety and efficacy of iron chelators. At 
present, three standard iron chelators including desferrioxamine (DFO), deferiprone (DFP), 
and deferasirox (DFX) are widely used for the treatment of β-thalassemia patients with iron 
overload to prevent oxidative stress-induced organ dysfunctions and such complications 
(Figure 3). Combined DFO/DFP and DFP/DFX treatments can reverse endocrine complica-

tions by improving glucose intolerance and gonadal dysfunction in TDT patients [62].

Under continuous chelation therapy, many TDT patients with moderate-to-severe pituitary 
iron overload had normal volume and function of the pituitary gland, representing a poten-

tial therapeutic window, while some hypogonadal patients preserved their pituitary volumes 
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and functions. Thai clinicians have reported that DFO chelation therapy for 1.5 years largely 
decreased serum ferritin level and improved secretion of prolactin (PRL) and growth hormone 
(GH) but not other pituitary hormones [63].

6.2. Supplementation of antioxidants

Compounds such as vitamins A, C, E, β-carotene, reduced glutathione (GSH), and N-acetylcysteine 

(NAC) and enzymes such as SOD, CAT, glutathione peroxidase (GPx), and glutathione reduc-

tase (GR) can remove free radicals by enzymatic and nonenzymatic antioxidant systems in the 
body (Figure 4). Since β-thalassemia patients have a higher oxidative stress level than normal 
people, effective antioxidants would be a complementary treatment of choice in these patients. 
Ideas for using drug antioxidants to eliminate oxidative tissue damage and empower antioxidant 
systems in thalassemia patients have been applicable for a long time [64]. Commercially avail-
able compounds included vitamin C, vitamin E, NAC, coenzyme Q10, and hydroxyurea (HU) 
which were used for the treatment, with vitamin E being the most popular [65–79]. Importantly, 
treatment with vitamin E significantly lowered the levels of plasma lipid peroxidation products 
and adenosine diphosphate (ADP)-challenged platelet activity in non-splenectomized and sple-

nectomized HbE/β-thalassemia patients [80]. Regarding other anti-oxidative natural products, 
silymarin restored glutathione level in thalassemia patients [81]. Fermented papaya preparation 
(FPP) increased glutathione levels in blood cells and platelets and decreased membrane lipid 
peroxidation products in β-thalassemia patients [82]. Treatment with a cocktail of DFP, NAC, 
vitamin E, and curcumin for 1 year improved antioxidant capacity in HbE/β-thalassemia patients 
[80, 83]. The levels of serum vitamins A and E, Zn, Se, and Cu were lower in young thalassemia 
patients than in controls, whereas serum ferritin and iron levels were inversely correlated with 

Figure 3. Chemical structures of DFO, DFP, and DFX.

Figure 4. Structures of antioxidants.
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serum retinol and selenium levels (p < 0.05). Interestingly, vitamin E and polyphenols can abol-
ish increased oxidative stress in thalassemia patients; if given along with iron chelators, then 
they may provide a substantial improvement in chronic anemia and complications [84].

6.3. Vitamin C

Ascorbic acid or vitamin C is a simple water-soluble vitamin which cannot be enzymatically 
synthesized in the human body. The substance normally functions as a cofactor of proline and 
lysine hydroxylase in collagen synthesis. The levels of leukocyte and urinary AA are decreased 
in idiopathic hemochromatosis patients, TDT patients, and Bantu people [85]. Platelet vitamin 
C level is lower in thalassemia patients with iron overload than normal people [86]. When TM 
patients are treated with vitamin C, their levels of serum iron, transferrin saturation, and fer-

ritin are increased [87]; possibly vitamin C would be involved in the mobilization of storage 
iron from tissues and increase oxidative damage in the patients. However, vitamin C plus 
vitamin E supplementation for β-thalassemia patients has benefits more than vitamin E alone 
in promoting their antioxidant activity [66].

6.4. Vitamin E

Vitamin E (α-tocopherol) is considered to be the most important lipid-soluble exogenous 
antioxidant in humans. Low serum level of vitamin E is found in homozygous TM and TE 
patients. Oral administration of high doses of vitamin E effectively decreased plasma lipid 
peroxidation in β-thalassemia patients and prolonged RBC survival in some patients [71, 88]. 
A therapeutic trial with vitamin E was carried out in TM and TI patients with 750–1000 IU/
day for an average period of 16 months. The treated patients showed fourfold increase in 
both serum and RBC vitamin E levels and a reduced level of malonyldialdehyde (MDA) when 
compared with the untreated group [89]. Daily vitamin E supplementation for 3 months sig-

nificantly increased plasma α-tocopherol levels and reduced plasma oxidant levels in splenec-

tomized TE patients [80].

6.5. Glutathione

Glutathione (γ-glutamylcysteinylglycine) is a tripeptide synthesized by the catalysis of 
γ-glutamyl cysteine synthetase and glutathione synthetase in cells and indicated as a very 
important endogenous free-radical scavenger due to the presence of cysteine sulfhydryl 
group in the molecule. In addition, GR, GPx, and glutathione-S-transferase (GST) work 
as antioxidants to get rid of harmful free radicals mostly in the cells. Physiologically, GR 
together with reduced nicotinamide adenine dinucleotide phosphate functions to recycle 
oxidized glutathione (GSSG) back to GSH to scavenge ROS, and GPx converts hydrogen 
peroxide to water and oxygen. GSH is approximately 80% present in the liver. GR activity 
was slightly decreased in TDT patients, whereas GPx activity was not different when com-

pared with healthy persons [90]. Blood GSH levels of α-, β-, and HbE/β-thalassemia patients 
with iron overload were significantly lower than those of the healthy controls [91–95]. 
Importantly, treatment with flavonoid silymarin restored a decreased GSH content in T cells 
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of β-thalassemia major patients [81]. Though endogenous GSH content is unable to be filled 
up with direct consumption due to digestive peptidase activity, oral administration of some 
antioxidants such as vitamin E (10 mg/kg/day), commercially available FFP, silymarin tablet 
(140 mg three times a day), HU (10–20 mg/kg/day), NAC (2,400 mg/day), and curcumin (500 
mg/day)/vitamin E cocktail can increase/restore intracellular GSH content in thalassemia 
patients instead.

6.6. Hydroxyurea

HU (alternatively hydroxycarbamide) is a drug of choice used for enhancing γ-globin gene 

expression and modifying γ-globin chain production, as a consequence of Hb F production in 
SCD and β-thalassemia patients. In controversy, the compound is toxic and suspected to the 
pathogenesis of colonic ulcerative [96]. Indeed, HU effectively increases Hb F production in 
patients with SCD, SCD with α-thalassemia, and TI and results in a decrease in the number 
of blood transfusions required [97–99]. A current clinical study in TI patients has shown HU 
decreased serum ferritin (50 vs. 33%), LIP (20 vs. 13%), apoptotic event (62 vs. 15%), and 
ROS (60 vs. 50%) levels and increased GSH level (66 vs. 25%) in the responders compared 
to the nonresponders [100]. In addition to the increase in Hb F synthesis, treatment with HU 
(30 mg/day) in β-thalassemia patients with Hb E for 3 months decreased SOD activity and 
MDA concentration of the RBC, probably due to inhibition of cytosolic superoxide radical 
and membrane lipid peroxidation [101, 102].

6.7. N-acetylcysteine (NAC)

NAC, an anti-oxidative thiol-containing compound, is able to trap ROS and reactive nitro-

gen species (RNS) and therefore protect cells from such free-radical-mediated damage. 
After crossing the cell membrane, the compound will be hydrolyzed to cysteine used for 
the synthesis of GSH. Importantly, NAC can protect the RBC of SCD patients and of normal 
subjects from oxidative stress condition [65, 103]. In vitro treatment of blood cells includ-

ing RBC, platelets (PLT), and polymorphonuclear leukocytes of β-thalassemia patients with 
N-acetylcysteine amide increased GSH content and reduced ROS level in these cells, possibly 
resulting in a significant reduction in the sensitivity of thalassemia RBC to hemolysis and 
phagocytosis by macrophages [65]. They also showed that the intraperitoneal injection of 
AD4 to β-thalassemia mice (150 mg/kg) significantly reduced all parameters of oxidative 
stress. One β-thalassemia with hemoglobin sickle (Hb S) who received NAC (2400 mg/day) 
for 6 weeks showed an increase in whole-blood GSH levels and a decrease in the RBC mem-

brane PS exposure [104]. Consistently, TDT patients who received NAC (10 mg/kg/day) for 
3 months showed a decrease in total oxidative stress and total oxidative stress index and 
an increase in total antioxidant capacity and blood Hb level [105]. Our group has reported 
that treatment of β-thalassemia HbE with a cocktail of DFP, NAC, and either vitamin E 
or cucumin for 12 months significantly decreased levels of iron overload (e.g., NTBI, LPI, 
erythrocyte membrane nonheme iron) and oxidative stress (e.g., MDA and erythrocyte ROS) 
parameters and increased levels of blood Hb and antioxidant indicators (e.g., CAT, SOD, and 
GSH), suggesting an effective antioxidant property [51].
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Figure 5. Structures of ingredients in curcuminoids.

7. Supplementation of functional food

7.1. Curcuminoids

Curcumin (diferuloylmethane) is one of the major phytochemicals (70–80%, w/w) from the 
golden spice turmeric Curcuma longa Linn (family Zingiberaceae). The three main constituents 
of curcuminoids are curcumin, demethoxycurcumin, and bis-demethoxycurcumin, of which 
the important molecular structure for biological activity is diketone moiety (Figure 5).

Apparently, curcumin and its metabolites including di-, tetra-, and hexa-hydrocurcumin 
exhibit strong antioxidant, free-radical scavenging, anti-lipid peroxidative, antithrombotic, 
and anti-inflammatory activities. Many clinical investigations have addressed pharma-

cokinetics, safety (maximum dose 12 g/day over 3 months), and efficacy of this attractive 
nutraceutical against several human diseases including β-thalassemia. Many formulations of 
curcumin including nanoparticles, liposomal encapsulation, emulsions, capsules, tablets, and 
powder are available for a single and adjunctive treatment [106]. Curcumin is claimed to be 
a potential hexadentate iron chelator and found to remove NTBI in thalassemia serum and 
also suppress the ROS generation and lipid peroxidation in thalassemia RBC [83, 107–111]. 
Curcuminoids (particularly bis-demethoxycurcumin) and its metabolite (hexahydrobisdeme-

thoxycurcumin) potentially enhanced the upregulation of γ-globin gene and synthesis of Hb 
F in human erythroid leukemia (K562) and primary erythroid precursor cells [112]. Curcumin 
is reported one of the triggers of eryptosis to allow defective RBC to escape hemolysis [8]. The 
oxidative stress condition in circulating RBC of TE patients is reduced after treatment with a 
curcumin cocktail, leading to improvement in their quality of life [83]. Curcumin markedly 
decreased iron deposition and lipid peroxidation product as MDA in the liver and spleen and 
the liver of iron-loaded rats [113].
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7.2. Green tea

Tea (Camellia sinensis L., Theaceae family) is one of the most popular beverages in the 
world in which the products, depending on duration of fermentation, can be classified into 
green tea (GT), oolong tea, white tea, yellow tea, black tea, pu-erh tea, and Miang tea. GT  
(C. sinensis L. var japonica) is produced without any fermentation (oxidation), so the major 
persisting catechins are not destroyed by naturally occurring polyphenol oxidase (PPO) in 
fresh tea leaves. Oolong tea (C. sinensis var sinensis) is processed from tea leaves under 
semi-fermentation, in which β-glycosidic aroma precursors including 8-hydroxygeranyl β-d-

primeveroside, trans- and cis-linalool 3,6-oxide 6-O-β-d-xylopyranosyl-β-d-glucopyranosides, 
and (2R,3S,4S,4aS,11bS)-3,4,11-trihydroxy-2-(hydroxymethyl)-8-(4-hydroxyphenyl)-3,4,4α, 

11β-tetrahydro-2H,10H-pyrano[2′,3′:4,5]furo[3,2-g]chromen-10-one are the main volatile 
constituents besides the catechin derivatives. Black tea (long fermentation) and Miang tea 
(C. sinensis L. kuntze var assamica) require very long fermentation times depending on the 
manufacturing process. Miang (a northern Thai word) is a chewing tea and commonly used 
for gum chewing in elderly people, relief of skin burn and inflammation, and as an antidiar-

rheal remedy.

In industry, GT is produced from steaming or roasting fresh tea leaves at high temperatures, 
consequentially drying and inactivating the PPO enzymes and leaving polyphenols known as 
flavonols or catechins at 30–40% by weight of dry tea leaves. It contains at least four major cate-

chin derivatives including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), 
(−)-epicatechin-3-gallate (ECG), and (−)-epicatechin (EC), of which the lipophilic permeable 
EGCG exhibits anti-oxidative and iron-chelating activities (Figure 6) [114]. Additionally, 
other phenolic acids including chlorogenic acid (CGA), caffeic acid (CA), and gallic acid (GA) 
and flavonols including kaempferol, myricetin, and quercetin are present in green tea [115]. 
Green tea extract (GTE) and EGCG, which show iron-chelating and antioxidant properties 
[116, 117] decrease labile iron (e.g., NTBI and LPI) level and consequently deplete lipid per-

oxidation as well as oxidative stress in both iron-loaded rats and thalassemia mice [118, 119]. 
The compounds were effective in the inhibition of RBC hemolysis, resulting in a prolonged 
RBC lifespan and decreased iron deposition and oxidative damage in the liver [119].

TI showed higher intestinal nonheme iron absorption than TM, while tea produced 41–90% 
inhibition of iron absorption in these patients, suggesting that tea consumption would be 

Figure 6. Structures of catechins in green tea.
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recommended to thalassemia patients, particularly TI patients [120]. Logically, anti-oxidative 
GTE interferes duodenal absorption of dietary iron and iron-chelating properties in vitro and 
in vivo [116–119]. The preparation also showed inhibitory effect on catecholamine secretion 
from isolated rabbit adrenal glands, possibly by blocking L-type calcium channels in the 
adrenal medullary glands [121]. Therefore, GTE might be helpful to decrease iron deposi-
tion, reduce ROS levels, and ameliorate functions of targeted endocrine glands (e.g., pancreas 
and adrenal cortex) in β-thalassemia models. In controversy, a study reports development of 
thrombotic thrombocytopenic purpura in a person after consuming a weight-loss product 
containing green tea [122]. Most importantly, green tea showed antithrombosis ex vivo and 
inhibition of cyclooxygenase 1 activity [123, 124].

In our recent study, we have produced a functional GT-CUR concentrate (Figure 7) for inves-

tigating its effects in Thai adult TDT patents. We found that the drink did not affect white 
blood cell and platelet numbers, Hb, and Hct but increased RBC numbers following daily 
consumption for 2 months. The levels of blood urea, serum alanine aminotransferase, aspar-

tate aminotransferase, and alkaline phosphatase activity tended to decrease but neither sig-

nificantly nor dose dependently. In month 1 and 2 of the treatments, there were a decrease of 
serum MDA (−0.07 ± 2.95 and −0.87 ± 1.68 μM, respectively), NTBI (−1.20 ± 8.03 and −3.93 ± 
3.83 μM, respectively), and LPI (1.91 ± 4.99 and −1.10 ± 2.94 μM, respectively) and increase of 
serum antioxidant activity (5.08 ± 8.86 and 0.28 ± 13.39 mg trolox equivalent/ml, respectively). 
These findings suggest GT-CUR drink would increase erythropoiesis, improve liver and kid-

ney function, and diminish oxidative stress and iron overload in thalassemia patients [125]. 
Surprisingly, we demonstrate that treatment of GTE (1–10 μM EGCG equivalent) decreased 
cellular iron approximately 45% and ROS level in a concentration-dependent manner in iron-
loaded pancreatic cell line (RINm5F) when compared with control cells. Secretory insulin 
level was nearly 2.5-fold times the highest safe concentration of the GTE [36]. The results 
imply that catechin-rich GT would indeed be an effective drink to remove iron, decrease ROS, 
and improve pancreatic cell function thereby increasing insulin production, leading to the 
amelioration of diabetic complications in thalassemia patients with iron overload.

Evidently, green tea is abundant with phytonutrient and enriched with active phytochemicals 
that exhibit many biological and pharmacological activities and it can be utilized for a functional 

Figure 7. GT-CUR concentration: from field to nutraceutical product.
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drink and health benefits. Up to now, many green tea products are being marketed worldwide 
for many purposes in different population ages. We are eager to use our multifunctional cock-

tail containing green tea extract, DFP, and vitamin E to examine if the product could diminish 
hypercoagulability and excessive platelet activity in thalassemia patients and thrombosis-related 
diseases, besides iron chelation.

7.3. Coffee

Coffee is also one of the most widely consumed beverages in the world because they contain 
many active ingredients that are a benefit for human health. Coffee (Coffea arabica L., Coffea 
canephora L. family Rubiaceae) is an original crop that will be further processed to roast coffee, 
coffee powder, coffee brew, coffee biscuit, and coffee candy for commercial purposes. Coffee 
is widely naturalized in many parts of the world including Africa, Latin America, the Pacific 
and Caribbean Ocean, Southeast Asia, and China. In Thailand, coffee is usually cultivated on 
the highlands at Doi Chang and Huay Nam Khun of Chiang Rai, Doi Saket District of Chiang 
Mai, and Kraburi District of Ranong (Figure 8).

Caffeine (1,3,7-trimethylxanthine) is a predominant ingredient persisting in tea and coffee, 
which is the most widely used pharmacologic substance showing prooxidant and antioxidant 
and hydroxyl radical scavenger [126–128]. Coffee contains many kinds of monosaccharide 
including sucrose, polysaccharides, d-arabinose, d-mannose, d-glucose, d-galactose, d-rham-

nose, and d-xylose in nearly equal amounts. The amounts of caffeine and CGA are slightly 
higher in raw arabica coffee (0.9–1.2% and 1.6–2.4% w/w, respectively) than in raw robusta 
coffee (5.5–8.0% and 7.0–10.0% w/w, respectively) [129]. Interestingly, only arginine and cys-

teine are much more abundant in the green coffee (3.61% and 2.89% for arabica 2.28% and 
3.87% for robusta) when compared with the roast coffee (0% and 0.76% for arabica 0% and 
0.14% for robusta). Phenolic compounds including mono- and di-caffeoylquinic acids, CA, 
ferulic acid, p-coumaric acid, sinapic acid, 4-hydroxybenzoic acid, and CGA were detected 
in spent coffee by-product [130, 131] (Figure 9). Phenolic compounds, in particular CGA in 
coffee was able to chelate metal ion such as Zn [132]. In controversy for CVD incidence, one 

Figure 8. Coffee crop in Thailand.

Diet-Related Thalassemia Associated with Iron Overload
http://dx.doi.org/10.5772/intechopen.91998

73



report supports the administration of caffeine augments endothelium-dependent vasodilation 
in young healthy volunteers through an increase in NO production [133]. Approximately one 
third of CGA and almost all of the CA are absorbed in the small intestine of humans, so the 
two antioxidants might have preventive effect of CVD [134]. The 10-kDa or less fractions but 
no other common components (e.g., CGA, CA, caffeine, quinic acid, trigonelline hydrochlo-

ride, and 5-(hydroxymethyl)-2-furfural) in hot-water extract of coffee had antithrombin and 
antiplatelet activity [135]. CGA protected oxidative damage and dose dependently increased 
the production of NO of human aortic endothelial cells [136].

Caffeine increases intracellular calcium-stimulating endothelial NOS to accelerate the produc-

tion of NO which will be diffused to vascular smooth muscle cell to produce vasodilation [137]. 
Tocopherols are found in coffee bean oil [138]. Caffeine (300 mg, equivalent to two to three cups) 
is metabolized in the human body to theophylline (170 ng/ml plasma) 7 hours post-adminis-

tration [139]. Tea and coffee dose dependently inhibited absorption of nonheme iron of either 
animal or plant food [140]. Dihydrocaffeic acid, a metabolite of CA detected in human plasma 
following coffee ingestion, was able to decrease ROS and increase NOS activity in human-derived 
EA.hy926 endothelial cells [141]. Ingestion of green coffee extract for 4 months led to the decrease 
in plasma level of homocysteine and improvement of human vessel reactivity [142]. Coffee 
ground residual has higher phenolic contents than roast coffee bean and shows inhibitory effects 
on the production of NO and pro-inflammatory cytokines in the macrophage [143]. Surprisingly, 
healthy volunteers who consumed coffee for 2 months (420 and 780 mg CGA equivalent/day) 
showed increase of plasma total antioxidant capacity [144]. A recent study has demonstrated 
coffee would counteract cerebral arterial constriction via endothelial NOS induction and smooth 
muscle dilation [145]. Two catechols, particularly CGA and CA which is abundant in coffee, could 
potentially scavenge free radicals and subsequently inhibit the production of pro-inflammatory 
cytokines as interleukin-8 in intestinal epithelial cells [146]. Consistent with our previous study, 
healthy adults consuming CGA-enriched coffee showed a significant increase of plasma anti-
oxidant capacity when compared with the control group [144, 147]. Additionally, CGA-enriched 
green and roast coffee can protect oxidative damage of biomolecules in human consumers [148].

Nowadays, there are varieties of coffee products including green coffee powder, green coffee 
capsules, green coffee extracts, green coffee cleans detox, roast coffee, roast coffee, coffee brew, 
and herbal coffee that are commercially available for all-level consumers. In socioeconomics, 
the coffee beverage business is very popular and a growing industry in Thailand. We are 

Figure 9. Some major constituents in coffee.

Personalized Medicine, in Relation to Redox State, Diet and Lifestyle74



applying the wonderful properties of coffee for health benefits in thalassemia patients regard-

ing anti-oxidation, metal chelation, and antithrombosis.

8. Fruits and vegetables

Epicarp extracts of bergamot (Citrus bergamia Risso) containing “citropten” and “bergapten” 
powerfully induced the expression and differentiation of γ-globin gene in human erythroid 

cells (K562) and consequently the production of Hb F, suggesting a potential therapy appli-
cation in β-thalassemia and sickle cell anemia [149]. Fermented papaya preparation (FPP) 
increased the glutathione levels in blood cells and platelets and also decreased erythrocyte ROS 
level and membrane lipid peroxidation product levels such as MDA and phosphatidylserine 
in β-thalassemia patients [82, 150]. Mango (Mangifera indica L., family Anacardiaceae) is a tropi-
cal edible fruit cultivated globally and is annually produced from March to May. The seasonal 
fruit gives a high yield in Thailand and can be consumed in the forms of green and yellow 
fruits. It was found that aqueous extracts of the stem barks and peel from Vimang mango dis-

played potent antioxidant, free-radical scavenging and divalent metal ion-chelating properties 
due to the presence of a major polyphenol “mangiferin” [151]. Consistently, our group demon-

strated that aqueous and ethanolic extracts of Thai mango (M. indica var Mahachanok and M. 

indica var Kaew) lowered plasma levels of glucose and triglyceride in streptozotocin-induced 
rats. Obviously, the extract showed analgesic, anti-gastric ulcerative, and chemical-induced 
hepatoprotective effects in rats. In addition, the extracts increased plasma antioxidant capacity 
in rats and humans [152]. The results suggest fresh and fermented mangoes would be a poten-

tial functional and therapeutic food against the deleterious action of ROS generated during 
iron overload (e.g., β-thalassemia, Friedreich’s ataxia, hemochromatosis, and inflammation).

Rice (Oryza sativa L.) is the chief economic crop cultivated in every region of Thailand. One 
study demonstrated that consumption of wheatgrass juice and tablets decreased the require-

ment of RBC transfusions in Indian β-thalassemia patients by 25% or more [153, 154]. It was 
possible that pheophytin compound in the wheatgrass would increase hemoglobin synthesis. 
In controversy, another study showed that the juice therapy did not affect the production of 
hemoglobin [155]. Pancytopenia such as leukocytopenia and thrombocytopenia is observed 
in the chelation treatment of thalassemia; however, herbs like wheatgrass, papaya leaves, 
and garlic would be effective in treating single lineage cytopenias [156]. We found that etha-

nol extract of neem (Azadirachta indica var siamensis Valeton) leaves displayed free-radical 
scavenging and iron-binding activities in vitro, and the study of the extract will be extended 
to β-thalassemia mice with iron overload [157].

9. Conclusions

Regular iron chelation therapy with high dietary intake of antioxidants effectively lowers the 
harmfulness of iron overload-mediated oxidative tissue damage and organ dysfunctions in 
thalassemia patients. The supplementation with single nutrients, like antioxidants, is gener-

ally not effective in ameliorating such iron overload conditions or in slowing the progression 
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of the disease. It is recommended that these nutrients should be consumed as part of a 
healthy diet/functional fruits in daily meals. Nutritional and herbal strategies for modify-

ing the pathological and clinical courses of thalassemia disease should consider the major 
active ingredients, nutraceuticals, biological activities, and hematological efficacy. Moreover, 
pre-implant/prenatal detections of thalassemia in the fetus using sensitive and specific molec-

ular-biological and ultrasonic techniques could block new cases and problematic carriers of 
hemoglobinopathies. Understanding the genetics underlying the heritable subphenotypes of 
thalassemia would be prognostically useful and inform us further about personalized thera-

peutics as well as help the discovery and development of new pharmacogenomics. An effec-

tive medical regime, adjunctive supplementation of synthetic and natural antioxidants, and 
caregiver education could also be important factors to prevent or treat symptoms/complica-

tions in thalassemia. Selected protocols using single or combined chelators could be designed 
for personalized iron chelation therapy in TDT and NTDT patients, which would effectively 
and safely remove all the excess toxic iron (e.g., NTBI, LPI, and LIP) and prevent cardiac, liver, 
and other organ damage. Finally, a reliable approach based on genomics and proteomics may 
be effective to build a rational personalized medicine framework that can be applied in the 
preclinical, clinical, and therapeutic settings of hypercoagulability in thalassemia.
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Symbols and abbreviations

α alpha

β beta

γ gamma

ADP adenosine diphosphate

BKO beta-knockout

CA caffeic acid

CAT catalase

CGA chlorogenic acid

CS Constant Spring

CVD cardiovascular diseases
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DFO desferrioxamine

DFP deferiprone

DFX deferasirox

EC (−)-epicatechin

ECG (−)-epicatechin-3-gallate

EGC (−)-epigallocatechin

EGCG (−)-epigallocatechin-3-gallate

EPO erythropoietin

FPP fermented papaya preparation

G6PD glucose-6-phosphate dehydrogenase

GA gallic acid

GPx glutathione peroxidase

GR glutathione reductase

GSH reduced glutathione

GST glutathione-S-transferase

GT green tea

GTE green tea extract

Hb hemoglobin

Hb A adult hemoglobin

Hb E hemoglobin E

Hb F fetal hemoglobin

Hb S hemoglobin sickle

Hct hematocrit

HPFH hereditary persistent fetal hemoglobin

HU hydroxyurea

IRPs iron-regulatory proteins

LIP labile iron pools

LPI labile plasma iron

MDA malonyldialdehyde

MDS myelodysplastic syndrome
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MPs microparticles

NAC N-acetylcysteine

NO nitric oxide

NOS nitric oxide synthase

NTBI non-transferrin-bound iron

NTDT non-transfusion-dependent thalassemia

POD peroxidase

PPO polyphenol oxidase

PS phosphatidylserine

RBC red blood cells

RE reticuloendothelial

ROS reactive oxygen species

SAE Southeast Asia

SCD sickle cell disease

SOD superoxide dismutase

TDT transfusion-dependent β-thalassemia

thal thalassemia

TI β-thalassemia intermedia

TIBC total iron-binding capacity

TM β-thalassemia major

vWF von Willebrand factor

XO xanthine oxidase
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