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Chapter

Significant Role of Perovskite 
Materials for Degradation of 
Organic Pollutants
Someshwar Pola and Ramesh Gade

Abstract

The advancement and the use of visible energy in ecological reparation and 
photodegradation of organic pollutants are being extensively investigated world-
wide. Through the last two decades, great exertions have been dedicated to emerg-
ing innocuous, economical, well-organized and photostable photocatalysts for 
ecofriendly reparation. So far, many photocatalysts mostly based on ternary metal 
oxides and doped with nonmetals and metals with various systems and structures 
have been described. Among them, perovskite materials and their analogs (layer-
type perovskites) include an emerged as semiconductor-based photocatalysts due 
to their flexibility and simple synthesis processes. This book chapter precisely 
concentrates on the overall of related perovskite materials and their associated 
systems; precisely on the current progress of perovskites that acts as photocatalysts 
and ecofriendly reparation; explores the synthesis methods and morphologies of 
perovskite materials; and reveals the significant tasks and outlooks on the investiga-
tion of perovskite photocatalytic applications.

Keywords: layered-type perovskite materials, photocatalysis, photodegradation, 
organic pollutants

1. Introduction

Solar energy is one of the primary sources in the field of green and pure energy 
that points to the power predicament and climate change task. Solar energy 
consumption is an ecological reconciliation, and then, the chemical change in 
solar is presence exhaustive, considered throughout global [1, 2]. In general, solar 
energy is renewed into a wide range of developments, such as degradation of 
organic pollutants as photocatalysis, splitting of water molecules for producing 
clean energy, and reduction of CO2 gas [3, 4]. Consuming a similar perception, 
metal-oxide photocatalysis has also been widely examined for possible exertions in 
ecological restitution as well as the photodegradation and elimination of organic 
toxins in the aquatic system [5, 6], decrease of bacterial inactivation [7–9], and 
heavy metal ions [10–12]. Throughout the earlier few years, excellent applications 
have been dedicated to evolving well-organized, less expensive, and substantial 
photocatalysts, particularly those that can become active under visible light such 
as NaLaTiO6, Ag3PO4/BaTiO3, Pt/SrTiO3, SrTiO3-TiN, noble-metal-SrTiO3 com-
posites, GdCoO3, orthorhombic perovskites LnVO3 and Ln1−xTixVO3 (Ln = Ce, 
Pr, and Nd), Ca0.6Ho0.4MnO3, Ce-doped BaTiO3, fluorinated Bi2WO6, graphitic 
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carbon nitride-Bi2WO6, BaZrO3−δ, CaCu3Ti4O12, [13–24], graphene-doped 
perovskite materials, and nonmetal-doped perovskites [25]. Furthermore, directed 
to years extended exhaustive investigation exertions on the pursuit of innovative 
photocatalytic systems, particularly that can produce the overall spectrum of 
visible-light. Out of a vast assemblage of photocatalysts, perovskite or layered-type 
perovskite systems and its analogs include a better candidate for capable semi-
conductor-based photocatalysts due to their framework easiness and versatility, 
excellent photostability, and systematic photocatalytic nature. In general, the ideal 
perovskite structure is cubic, and the formula is ABO3. Where A is different metal 
cations having charge +1 or +2 or +3 nature and B site occupies with tri or tetra and 
pentavalent nature, which covers the whole family of perovskite oxide materials 
by sensibly various metal ions at A and B locations [26], aside from a perfect cubic 
perovskite system, basic alteration perhaps persuaded by several cations exchange. 
Such framework alteration could undoubtedly vary the photophysical, optical, and 
photocatalytic activities of primary oxides.

Moreover, a sequence of layered-type perovskite materials contains many 2D 
blocks of the ABO3 framework, which are parted by fixed blocks. The scope of 
formulating multicomponent perovskite systems by whichever fractional change 
of cations in A and B or both positions or injecting perovskite oxides into a layered-
type framework agrees scientists investigate and control the framework of crystals 
and the correlated electronic and photocatalytic activities of the perovskites. So far, 
hundreds of various types of perovskite or perovskite-based catalysts have been 
published, and more outstandingly, some ABO3-related materials became renowned 
with “referred” accomplishment for catalytic activities. Thus, these systems 
(perovskite materials) have exposed highly capable of upcoming applications on 
the source of applying more attempts to them. While several outstanding reviews 
mean that explained that perovskites performed as photocatalyst for degradation 
of organic pollutants [27–30], only an insufficient of them content consideration to 
inorganic perovskite (mostly ABO3-related) photocatalysts [31–33]. A wide range of 
tagging and complete attention of perovskite materials, for example, layered-type 
perovskite acting as photocatalysts, is relatively deficient. The purpose of this book 
chapter is to precise the current progress of perovskite-based photocatalysts for 
ecological reparation, deliberate current results, and development on perovskite 
oxides as catalysts, and allow a view on the upcoming investigation of perovskite 
materials. After a short outline on the wide-ranging structure of perovskite oxides, 
it was stated that perovskites act as a photocatalyst that are incorporated, arranged 
and explored based on preparation methods [29, 34], photophysical properties 
based on bandgap energies, morphology-based framework and the photocatalytic 
activities depends on either UV or visible light energy of the semiconducting 
materials. Finally, this chapter is based on the current advancement and expansion 
of perovskite photocatalytic applications under solar energy consumption. The 
potential utilization, new tasks, and the research pathway will be accounted for the 
final part of the chapter [35].

2. Results and discussion

2.1 Details of perovskite oxide materials

2.1.1 Perovskite frameworks

The standard system of perovskite-based materials could be designated 
as ABO3, where the A and B are cations with 12-fold coordinated and 6-fold 
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coordinated to concerning oxygen anions. Figure 1a describes the typically coor-
dinated basic of the ABO3 system, which consists of a 3D system, BO6 octahedra 
as located at corner, and at the center, A cation are occupied. Within the ABO3 
system, the A cation usually is group I and II or a lanthanide metal, whereas the 
B is commonly a transition metal ion. The tolerance factor (t) = 1 calculated by 
using an equation t = (rA + rO)/ √ 2 (rB + rO), where rO, rA, and rB are the radii 
of respective ions A and B and oxygen elements for a cubic crystal structure ABO3 
perovskite system [36].

For constituting a stable perovskite, it is typically the range of t value present 
in between 0.75 and 1.0. The lower value of t builds a somewhat slanted perovskite 
framework with rhombohedral or orthorhombic symmetry. In the case of t, it 
is approximately 1; then, perovskite structure is an ideal cubic system at high 
temperatures. Even though the value of t, obtained by the size of metal ion, is a 
significant guide for the permanency of perovskite systems, the factor of octa-
hedral (u) u = rB/rO and the role of the metal ions composition of A and B atoms 
and the coordination number of respective metals are considered [37]. Given 
the account of those manipulating factors and the electro-neutrality, the ABO3 
perovskite can hold a broad variety of sets of A and B by equal or dissimilar oxida-
tion states and ionic radii. Moreover, the replacement of A or B as well as both 
the cations could be partly by the doping of various elements, to range the ABO3 
perovskite into a wide-ranging family of Am

1 A1−m

1
  B

1

nB1−n

1  O3±δ [38]. The replacement 
of several cations into the either A or B positions could modify the structure of 
the original system and therefore improve the photocatalytic activities [23]. After 
various metal ions in perovskite oxide are doped, the optical and electronic band 
positions, which influence the high impact on the photocatalytic process, are 
modified [24].

Figure 1. 
Both crystal and layered type perovskite oxides (blue small balls: A-site element; dark blue squares: BO6 
octahedra with green and red balls are oxygen).
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2.1.2 Layered perovskite-related systems

Moreover, to the overall ABO3 system, further characteristic polymorphs of 
the perovskite system are Brownmillerite (BM) (A2B2O5) framework [39]. BM is 
a type of oxygen-deficient perovskite, in which the unit cell is a system of well-
organized BO4 and BO6 units. The coordination number of cations occupied by 
A-site was decreased to eight because of the oxygen deficiency. Perovskite (ABO3) 
oxides have three dissimilar ionic groups, construction for varied and possibly 
useful imperfection chemistry. Moreover, the partial replacement of A and B 
ions is permitted even though conserving the perovskite system and shortages 
of cations at the A-site or of oxygen anions are common [40]. The Ion-exchange 
method is used for the replacement of existing metal ions with similar sized or 
dissimilar oxidation states; then, imperfections can be announced into the sys-
tem. The imperfection concentrations of perovskites could be led by doping of 
different cations [24]. Oxygen ion interstitials or vacancies could be formed by 
the replacement of B-position cations with higher or lower valence, respectively, 
fabricating new compounds of AB(1−m)Bm

IO3−δ [41]. A typical oxygen-deficient 
perovskite system is Brownmillerite (A2B2O5), in which one part of six oxygen 
atoms is eliminated. Moreover, the replacement of exciting a site cation to new 
cation with higher oxidation state metal ions then the formed new materials with 
new framework with different stoichiometry is A1−mAm

IBO3 [41]. In the case of the 
replacement of A-site ions with smaller oxidation state cations, consequences in 
oxygen-deficient materials with new framework such as A1−mAm

IBO3−x are devel-
oped. Thermodynamically, the replacement of B-position vacancies in perovskite 
systems is not preferable due to the compact size and the high charge of B cations 
[42]. A-position vacancies are more detected due to the BO3 range in perovskite 
system forms a stable network [43]; the 12 coordinated sites can be partly absent 
due to bigger-size A cations. Lately, presenting suitable imperfections on top of 
the surface of perovskite oxides has been thoroughly examined as a means of 
varying the bands’ position and optical properties of the starting materials. For 
this reason, perovskite materials afford a tremendous objective for imperfec-
tion originating to vary the photocatalytic activity of perovskite material-based 
photocatalysts [44].

The typical formula for the furthermost recognized layered perovskite materials 
is designated as An+1BnO3n+1 or A2

IAn−1BnO3n+1 (Ruddlesden-Popper (RP) phase), 
AI[An−1BnO3n+1] (Dion-Jacobson (DJ) phase) for {100} series, (AnBnO3n+2) for {110} 
series and (An+1BnO3n+3) for {111}, and (Bi2O2)(An−1BnO3n+1) (Aurivillius phase) 
series. In these systems, n represents the number of BO6 octahedra that duration a 
layer, which describes the width of the layer. Typical samples of these layered sys-
tems are revealed in Figure 1c–g. For RP phases, their frameworks consist of AIO as 
the spacing layer for the intergrowth ABO3 system. These materials hold fascinating 
properties such as ferroelectricity, superconductivity, magnetoresistance, and pho-
tocatalytic activity. Sr2SnO4 and Li2CaTa2O7 systems are materials of simple RP kind 
photocatalysts. A common formula for DJ phase is AI[An−1BnO3n+1] (n > 1), where 
AI splits the perovskite-type slabs and is characteristically a monovalent alkali 
cation. The typical DJ kind photocatalysts are RbLnTa2O7 (n = 2) and KCa2Nb3O10 
(n = 3). Associates of the AnBnO3n+2 and An+1BnO3n+3 structural sequences with 
dissimilar layered alignments have also been recognized in some photocatalysts like 
Sr2Ta2O7 and Sr5Ta4O15 (n = 4). For Aurivillius phases, their frameworks are con-
structed by one after another fluctuating layers of [Bi2O2]

2+ and virtual perovskite 
blocks. Bi2WO6 and BiMoO6 (n = 1), found as the primary ferroelectric nature 
for Aurivillius materials, lately have been extensively investigated as visible light 
photocatalysts.
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2.2 Perovskite systems for photocatalysis

A broad array of perovskite photocatalysts have been advanced for organic 
pollutant degradation in the presence of ultraviolet or visible-light-driven through 
the last two decades [45]. These typical examples and brief investigational 
consequences on perovskites are concise giving to their systems, then perovskite 
materials categorized into six groups. Precisely, ABO3-type perovskites, AAIBO3, 
AIABO3, ABBIO3 and AB(ON)3-type perovskites, and AAIBBIIO3-type perovskites 
are listed in Table 1.

2.3 Photocatalytic properties perovskite oxides

NaTaO3 has been a standard perovskite material for a well-organized UV-light 
photocatalyst for degradation of organic pollutants and production of H2 and O2 
through water splitting [46–57]. It can be prepared by various methods such as 
solid-state [46–48, 53, 56], hydrothermal [49, 52, 54, 55], molten salt [57] and 
sol-gel [50, 51] and with wide bandgap of 4.0 eV. In order to enhance the surface 
area of NaTaO3 bulk material, many investigators tried to use further synthetic ways 
to make nanosized particles as an additional study on the NaTaO3 photocatalyst for 
degradation of organic pollutants. Kondo et al. prepared a colloidal range of NaTaO3 
nanoparticles consuming three-dimensional mesoporous carbon as a pattern, which 
was pretend by the colloidal arrangement of silica nanospheres. After calcining the 
mesoporous carbon matrix, a colloidal arrangement of NaTaO3 nanoparticles with a 
range of 20 nm and a surface area of 34 m2 g−1 was attained. C-doped NaTaO3 mate-
rial was tested for degradation of NOx under UV light [36]. Several titanates such 
as BaTiO3 [58–60], Rh or Fe-doped BaTiO3 [61, 62], CaTiO3 [63, 64] and Cu [65], 
Rh [66], Ag and La-doped CaTiO3 [67], and PbTiO3 [68, 69] were also described 
as UV or visible light photocatalysts. Magnetic BiFeO3, recognized as the one of the 
multi-ferric perovskite materials in magnetoelectric properties, was also examined 
as a visible light photocatalyst for photodegradation of organic pollutants because 
of small bandgap energy (2.2 eV) [70–79]. In a previous account, BiFeO3 with a 
bandgap of around 2.18 eV produced by a citric acid-supported sol-gel technique 
has revealed its visible-light-driven photocatalytic study by the disintegration of 
methyl orange dye [70]. The subsequent investigations on BiFeO3 are primarily 
concentrated on the synthesis of new framework BiFeO3 with various morpholo-
gies. For instance, Lin and Nan et al. prepared BiFeO3 unvarying microspheres and 
microcubes by a using hydrothermal technique as revealed in Figure 2 [73].

The bandgap energies of BiFeO3 compounds were found to be about 1.82 eV 
for BiFeO3 microspheres and 2.12–2.27 eV for microcubes. This indicated that the 
absorption edge was moved toward the longer wavelength that is influenced by 
the crystal-field strength, particle size, and morphology. The microcube mate-
rial showed the maximum photocatalytic degradation performance of congo red 
dye under visible-light irradiation due to the quite low bandgap energy. Further, a 
simplistic aerosol-spraying method was established for the synthesis of mesoporous 
BiFeO3 hollow spheres with improved activity for the photodegradation of RhB dye 
and 4-chlorophenol, because of improved light absorbance ensuing from various 
light reflections in a hollow chamber and a very high surface area [71]. Moreover, 
a unusually improved water oxidation property on Au nanoparticle-filled BiFeO3 
nanowires under visible-light-driven was described [77]. The Au-BiFeO3 hybrid 
system was encouraged by the electrostatic contact of negatively charged Au 
nanoparticles and positively charged BiFeO3 nanowires at pH 6.0 giving to their 
various isoelectric points. An improved absorbance between 500 and 600 nm was 
found for Au/BiFeO3 systems because of the characteristic Au surface plasmon band 
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existing visible light region then which greater influenced in the photodegradation 
of organic pollutants. Also, the study of photoluminescence supported improvement 
of the photocatalytic property due to the effective charge transfer from BiFeO3 to 
Au. Even though Ba, Ca, Mn, and Gd-doped BiFeO3 nanomaterials have exhibited 
noticeable photocatalytic property for the degradation of dyes [80–84], several 
nano-based LaFeO3 with various morphologies such as nanoparticles, nanorods, 
nanotubes, nanosheets, and nanospheres have also been synthesized for visible light 
photocatalysts for degradation of organic dyes [85–93]. Sodium bismuth titanate 
(Bi0.5Na0.5TiO3) has been extensively used for ferroelectric and piezoelectric devices. 
It was also investigated as a UV-light photocatalyst with a bandgap energy of 3.0 eV 
[94–97]. Hierarchical micro/nanostructured Bi0.5Na0.5TiO3 was produced by in situ 
self-assembly of Bi0.5Na0.5TiO3 nanocrystals under precise hydrothermal conditions, 
through the evolution mechanism was examined in aspect means that during which 
the growth mechanism was studied [95]. It was anticipated that the hierarchical 
nanostructure was assembled through a method of nucleation and growth and 
accumulation of nanoparticles and following in situ dissolution-recrystallization 
of the microsphere type nanoparticles with extended heating period and enhanced 
temperature or basic settings. The 3D hierarchical Bi0.5Na0.5TiO3 showed very high 
photocatalytic activity for the decomposition of methyl orange dye because of the 
adsorption of dye molecules and bigger surface area. The properties of Bi0.5Na0.5TiO3 
were also assessed by photocatalytic degradation of nitric oxide in the gas phase 
[95]. La0.7Sr0.3MnO3, acting as a photocatalyst, was examined for solar light-based 
photocatalytic decomposition of methyl orange [96–98]. In addition, La0.5Ca0.5NiO3 
[99], La0.5Ca0.5CoO3−δ [100], and Sr1−xBaxSnO3 (x = 0–1) [101] nanoparticles were 
synthesized for revealing improved photocatalytic degradation of dyes. A-site 
strontium-based perovskites such as SrTi1−xFexO3−δ, SrTi0.1Fe0.9O3−δ, SrNb0.5Fe0.5O3, 
and SrCo0.5Fe0.5O3−δ compounds were prepared through solid-state reaction and sol-
gel approaches, and were examined for the degradation of organic pollutants under 
visible light irradiation [102–105]. Also, some other researchers modified A-site with 
lanthanum-based perovskites such as LaNi1−xCuxO3 and LaFe0.5Ti0.5O3 were con-
firmed as effective visible light photocatalysts for the photodegradation of p-chloro-
phenol [91, 106, 107]. The other ABBIO3 kind photocatalysts with Ca(TiZr)O3 [108], 
Ba(ZrSn)O3 [109], Na(BiTa)O3 [110], Na(TiCu)O3 [111], Bi(MgFeTi)O3 [112], and 
Ag(TaNb)O3 [113] have also been studied. Related to AAIBO3-type perovskites, the 
ABBIO3 kind system means that BI-site substitution by a different cation is another 
option for tuning the physicochemical or photocatalytic properties of perovskites 
materials as photocatalyst, due to typically the B-position cations in ABO3 mostly 
regulate the position of the conduction band, moreover to construct the structure 
of perovskite system with oxygen atoms. The band positions of photocatalyst can be 
magnificently modified by sensibly coalescing dual or ternary metal cations at the 
B-position, or changing the ratio of several cations, which has been fine verified by 
the various materials as mentioned above. More studies on ABBIO3 kind of photo-
catalysts are projected to show their new exhilarating photocatalytic efficiency.

The mesoporous nature of LaTiO2N of photocatalyst attended due to thermal 
ammonolysis process of La2Ti2O7 precursor from polymer complex obtained from 
the solid-state reaction. The oxynitride analysis revealed that the pore size and shape, 
lattice defects and local defects, and oxidation states’ local analysis related between 
morphology and photocatalytic activity were reported by Pokrant et al. [114]. Due to 
the high capability of accommodating an extensive array of cations and valences at 
both A- and B-sites, ABO3-kind perovskite materials are capable materials for fabri-
cating solid-solution photocatalysts. On the other hand, equally the A and B cations 
can be changed by corresponding cations subsequent in a perovskite with the formula 
of (ABO3)x(AIBIO3)1−x. Additional solid solution examples with CaZrO3–CaTaO2N 
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[115], SrTiO3–LaTiO2N [116], La0.8Ba0.2Fe0.9Mn0.1O3−x [117], Na1−xLaxFe1−xTaxO3 
[118], Na0.5La0.5TiO3–LaCrO3 [119], Cu-(Sr1−yNay)-(Ti1−xMox)O3 [120], Na1−xLaxTa1−x 
CrxO3 [121], BiFeO3–(Na0.5Bi0.5)TiO3 [122], and Sr1−xBixTi1−xCrxO3 [123] have been 
used as photocatalysts for splitting of water molecules under visible light.

2.4 Photocatalytic activity of layered perovskite materials

In the general formula of the RP phase, An−1A2
IBnO3n+1, A and AI are alkali, 

alkaline earth, or rare earth metals, respectively, while B states to transition met-
als. A and AI cations are placed in the perovskite layer and boundary with 12-fold 
cuboctahedral and 9-fold coordination to the anions, respectively, whereas B 
cations are sited inside the perovskite system with anionic squares, octahedra, and 
pyramids. The tantalum-based RP phase materials have been examined as photo-
catalysts for degradation of organic pollutants under UV light irradiation condi-
tions; such materials are K2Sr1.5Ta3O10 [124], Li2CaTa2O7 [125], H1.81Sr0.81Bi0.19Ta2O7 
[126], and N-alkyl chain inserted H2CaTa2O7 [127]. A series of various metals and 
N-doped perovskite materials were synthesized, such as Sn, Cr, Zn, V, Fe, Ni, W, 
and N-doped K2La2Ti3O10, for photocatalysis studies under UV and visible light irra-
diation [128–133]. Still, only Sn-doping efficiently decreased the bandgap energy 
of K2La2Ti3O10 from 3.6 eV to 2.7 eV. The bandgap energy of N-doped K2La2Ti3O10 
was measured to be around 3.4 eV. Additional RP phase kind titanates like Sr2SnO4 
[134], Sr3Ti2O7 [135], Cr-doped Sr2TiO4 [136], Sr4Ti3O10 [137], Na2Ca2Nb4O13 [138], 
and Rh- and Ln-doped Ca3Ti2O7 [139] have also been examined. Bi2WO6 (2.8 eV) 
shows very high oxygen evolution efficacy than Bi2MoO6 (3.0 eV) from aqueous 
AgNO3 solution under visible-light-driven. Because of the appropriate bandgap 
energy, comparatively elevated photocatalytic performance, and good constancy, 
Bi2MO6 materials have been thoroughly examined as the Aurivillius phase kind that 
acts as photocatalysts under visible light. In this connection, hundreds of publica-
tions associated to the Bi2MoO6 and Bi2WO6 act as photocatalysts so far reported. 
Most of the investigations in the reports are concentrated on the synthesis of vari-
ous nanostructured Bi2MoO6 and Bi2WO6 as well as nanofibers, nanosheets, ordered 
arrays, hollow spheres, hierarchical architectures, inverse opals, and nanoplates, 
etc., by various synthesis techniques like solvothermal, hydrothermal, electros-
pinning, molten salt, thermal evaporation deposition, and microwave. All these 
methods of hydrothermal process have been frequently working for the controlled 
sizes, shapes, and morphologies of the particles. The photocatalytic properties of 
these perovskite materials are mostly examined by the photodegradation of organic 
pollutants. Moreover, the investigations on the simple Bi2MoO6 and Bi2WO6, doped 
with various metals and nonmetals such as Zn, Er, Mo, Zr, Gd, W, F, and N, into 
Bi2MoO6 and Bi2WO6 was studied for increasing the photocatalytic performance 
under visible light. Therefore, these Bi2MO6-based photocatalysts is not specified 
here, due to further full deliberations that can be shown in many reviews [140–142].

ABi2Nb2O9 where A is Ca, Sr, Ba and Pb is other type of the AL-like layered 
perovskite material [143–150]. The bandgap energy of PbBi2Nb2O9 is 2.88 eV and 
originally described as an undoped with single-phase layered-type perovskite mate-
rial used as photocatalyst employed under visible light irradiation [144]. Bi5FeTi3O15 
is also Aurivillius (AL) type multi-layered nanostructured perovskite material 
with a low bandgap energy (2.1 eV) and also shows photocatalytic activity under 
visible light [151, 152]. Mostly, these materials were synthesized using the hydro-
thermal method that has been frequently working for the controlled shapes such as 
flower-like hierarchical morphology, nanoplate-based, and the complete advance 
process from nanonet-based to nanoplate-based micro-flowers was shown. The 
photocatalytic activity of Bi5FeTi3O15 was studied by the degradation of rhodamine 
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B and acetaldehyde under visible light [151]. The La substituted Bi5−xLaxTi3FeO15 
(x = 1, 2) Al-type layered materials were synthesized through hydrothermal method 
and these materials were used for photodegradation of rhodamine B under solar-
light irradiation [153]. Among all AL-type perovskite materials, only PbBi2Nb2O9, 
Bi2MO6 (M = W or Mo), and Bi5Ti3FeO15 are very high photocatalytic active under 
visible-light-driven due to low bandgap energy and photostability. Another type 
of layered perovskite material is Dion-Jacobson phase (DJ), a simple example is 
CsBa2M3O10 (M = Ta, Nb) and oxynitride crystals used for degradation of caffeine 
from wastewater under UVA- and visible-light-driven [154]. Similarly, another DJ 
phase material such means Dion–Jacobsen (DJ) as CsM2Nb3O10 (M = Ba and Sr) and 
also doped with nitrogen used for photocatalysts for degradation of methylene blue 
[155]. Zhu et al. prepared tantalum-based {111}-layered type of perovskite material 
such as Ba5Ta4O15 from hydrothermal method, which has been frequently employed 
for the controlled shape like hexagonal structure with nanosheets and used as pho-
tocatalyst for photodegradation of rhodamine B and gaseous formaldehyde [156]. 
Pola et al. synthesized a layered-type perovskite material constructed on AIAIITi2O6 
(AI = Na or Ag or Cu and AII = La) structure for the photodegradation of several 
organic pollutants and industrial wastewater under visible-light-driven [157–162].

Perovskite system Synthesis 

process

Light 

source

Pollutants References

NaTaO3 HT UV CH3CHO [163]

La-doped NaTaO3 SG UV MB [164]

La-doped NaTaO3 HT UV MB [165]

Cr-doped NaTaO3 HT UV MB [166]

Eu-doped NaTaO3 SS UV MB [167]

Bi-doped NaTaO3 SS UV MB [168]

N-doped NaTaO3 SS UV MB [169]

C-doped NaTaO3 HT Visible NOx [36]

N/F co-doped NaTaO3 HT UV RhB [170]

SrTiO3 HT UV RhB [42, 43, 171]

Fe-doped SrTiO3 SG Visible RhB [172]

N-doped SrTiO3 HT Visible MB, RhB, MO [173]

F-doped SrTiO3 BM Visible NO [174]

Ni/La-doped SrTiO3 SG Visible MG [175]

S/C co-doped SrTiO3 SS Visible 2-Propanol [176]

N/La-doped SrTiO3 SG Visible 2-Propanol [177]

Fe-doped SrTiO3 ST Visible 

light

TC [178]

SrTiO3/Fe2O3 HT Visible TC [179]

BaTiO3 SG UV Pesticide [36]

BaTiO3 SG UV Aromatics [58]

BaTiO3 HT UV MO [58]

KNbO3 HT Visible RhB [180]

KNbO3 HT UV RhB [181]

KNbO3 HT Visible MB [182]

NaNbO3 SS UV RhB [183]

NaNbO3 Imp. UV 2-Propanol [184]

NaNbO3 SS UV MB [185]
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Perovskite system Synthesis 

process

Light 

source

Pollutants References

N-doped NaNbO3 SS UV 2-Propanol [186–188]

Ru-doped NaNbO3 HT Visible Phenol [189]

AgNbO3 SS UV MB [190]

La-doped AgNbO3 SS Visible 2-Propanol [191]

BiFeO3 SG UV-Vis MO, RhB, 

4-CP

[69– 77]

Ba-doped BiFeO3 ES Visible CR [79]

Ca-doped BiFeO3 ES Visible CR [80]

Ba or Mn-doped BiFeO3 ES Visible CR [82]

Ca or Mn-doped BiFeO3 HT UV- 

Visible

RhB [82]

Gd-doped BiFeO3 SG Visible RhB [83]

LaFeO3 Comb. UV Methyl phenol [84]

LaFeO3 SG Visible RhB [85]

LaFeO3 HT Visible RhB, MB, 

chlorophenol

[86, 90, 91, 192]

Ca-doped LaFeO3 SS Visible MB [92]

LnFeO3 (Pr,Y) SG Visible RhB [193]

SrFeO3−x US Visible Phenol [194]

SrFeO3 SS Visible MB [195]

BaZrO3 SG UV MB [196]

BaZrO3 HT UV MO [197]

ATiO3 (A = Fe, Pb) and AFeO3 

(A = Bi, La, Y)

SG Visible MB [198]

Zn0.9Mg0.1TiO3 SG Visible MB [199]

SrTiO3 nanocube-coated CdS 

microspheres

HT Visible Antibiotic 

pollutants

[200]

Ag/AgCl/CaTiO3 HT Visible RhB [201]

TiO2-coupled NiTiO3 SS Visible MB [202]

ZnTiO3 HT UV MO and PCP [203]

Mg-doped BaZrO3 SS UV MB [204]

SrSnO3 MW UV MO [205]

LaCoO3 MW Visible MO [206]

LaCoO3 Ads. UV MB, MO [207]

LaCoO3 ES UV RhB [208]

LaNiO3 SG Visible MO [209]

Bi0.5Na0.5TiO3 HT UV MO [93]

La0.7Sr0.3MnO3 SG Solar 

light

MO [97]

La0.5Ca0.5NiO3 SG UV RB5 [98]

La0.5Ca0.5CoO3 SG UV CR [99]

Sr1−xBaxSnO3 SS UV Azo-dye [100]

BaCo1/2Nb1/2O3 SG Visible MB [210]

Ba(In1/3Pb1/3M1/3)O3 (M = Nb and Ta) SS Visible MB, 4-CP [211]

A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; 

B = Sn, Pb)

SS Visible MB, 4-CP [212]

SrTi1−xFexO3−δ SS Visible MB [102]
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Perovskite system Synthesis 

process

Light 

source

Pollutants References

SrTi0.1Fe0.9O3−δ SG Solar 

light

MO [103]

SrFe0.5Co0.5O3−δ SG Solar 

light

CR [213]

LaFe0.5Ti0.5O3 SG UV Phenol [90]

Bi(Mg3/8Fe2/8Ti3/8)O3 MS Visible MO [110]

LaTi(ON)3 SG Visible Acetone [214]

(Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 SS Visible CH3CHO [215]

La0.8Ba0.2Fe0.9Mn0.1O3−x SG Solar 

light

MO [115]

Cu-(Sr1−yNay)(Ti1−xMox)O3 HT Visible Propanol [118]

BiFeO3–(Na0.5Bi0.5)TiO3 SG Visible RhB [120]

SrBi2Nb2O9 SG

SS

UV Aniline, RhB [145, 146]

ABi2Nb2O9 (A = Sr, Ba) SG UV MO [147]

Bi5Ti3FeO15 HT

SS

Visible RhB, CH3CHO

IPA

[149, 150]

Bi5−xLaxTi3FeO15 SS Solar 

light

RhB [151]

Bi3SrTi2TaO12

Bi2LaSrTi2TaO12

SS UV RhB [216]

Ba5Ta4O15 HT UV RhB [154]

N-doped Ln2Ti2O7 (Ln = La, Pr, Nd) HT Visible MO [217]

CdS/Ag/Bi2MoO6 SG Visible RhB [218]

SS: solid state; HT: hydrothermal; SG: sol-gel; BM: ball-milling; ES: electronspun; MW: microwave; Comb.: 
combustion; US: ultrasonic; MS: molten salt; Imp.: impregnation; Ads.: adsorption; ST: solvothermal; RhB: 
rhodamine B; MO: methyl orange; MB: methylene blue; 4-cp: 4-chlorophenol; MG: malachite green; CR: congo red; 
NO: nitrogen monoxide; PA: isopropyl alcohol; TC: tetracycline; and PCP: pentachlorophenol.

Table 1. 
Perovskite materials used as photocatalysts (ABO3, AAIBO3, AAIBO3, ABBIO3, AB(ON)3, and AAIBBIIO3) for 
degradation of pollutants.

Figure 2. 
SEM patterns of BiFeO3: (a) microspheres and (b) microcubes. The intensified pictures are revealed in the 
upper part inserts. Recopied with consent from Ref. [147]. Copyright © 2010, American Chemical Society.
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