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Chapter

Space-Time Finite Element
Method for Seismic Analysis of
Concrete Dam
Vikas Sharma, Akira Murakami and Kazunori Fujisawa

Abstract

Finite elementmethod(FEM) is themost extendedapproach for analyzing thedesign
of the dams against earthquakemotion. In such simulations, time integration schemes
are employed to obtain the response of the dam at time tnþ1 from the known response at
time tn. To this end, it is desirable that such schemes are high-order accurate in time and
remain unconditionally stable large time-step size can be employed to decrease the
computation cost.Moreover, such schemes should attenuate the high-frequency com-
ponents from the response of structure being studied. Keeping this in view, this chapter
presents the theory of time-discontinuous space-time finite elementmethod (ST/FEM)
and its application to obtain the response of dam-reservoir system to seismic loading.

Keywords: space-time FEM, seismic response, concrete dam, time-integration,
earthquake simulation

1. Introduction

During an event of earthquake stability of dams is of paramount importance as
their failure can cause immense property and environmental damages. When dam-
reservoir-foundation system is subjected to the dynamic loading it causes a coupled
phenomenon; ground motion and deformations in the dam generate hydrodynamic
pressure in the reservoir, which, in turn, can intensify the dynamic response of the
dam. Moreover, spatial-temporal variation of stresses in the dam-body depends on
the dynamic interactions between the dam, reservoir, and foundation. Therefore, it
becomes necessary to use numerical techniques for the safety assessment of a given
dam-design against a particular ground motion.

Dynamic finite element method is the most extended approach for computing
the seismic response of the dam-reservoir system to the earthquake loading [1]. In
this approach finite elements are used for discretization of space domain, and basis
functions are locally supported on the spatial domain of these elements and remain
independent of time. Furthermore, nodal values of primary unknowns depend only
on time. Accordingly, this arrangement yields a system of ordinary differential
equations (ODEs) in time which is then solved by employing time-marching
schemes based on the finite difference method (FDM), such as Newmark-β
method, HHT-α method, Houbolt method, and Wilson-θ method.

In dynamic finite element method (FEM), it is desirable to adopt large time-
steps to decrease the computation time while solving a transient problem.
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Therefore, it is imperative that the time-marching scheme remains unconditionally
stable and higher order accurate [1]. In addition, it should filter out the high
frequency components from the response of structure. To achieve these goals,
Hughes and Hulbert presented space-time finite element method (ST/FEM) for
solving the elastodynamics problem [2]. In this method, displacements uð Þ and
velocities v are continuous in space-domain, however, discontinuous in time-
domain. Li and Wiberg incorporated the time-discontinuity jump of displacements
and velocities in the total energy norm to formulate an adaptive time-stepping ST/
FEM [3]. ST/FEM, so far, has been successfully employed for solving linear and
nonlinear structural dynamics problems [4, 5], moving-mass problems [6], and
dynamical analysis of porous media [7], among other problems.

However, for elastodynamics problem, ST/FEM, yields a larger system of linear
equations due to due to the time-discontinuous interpolation of displacement and
velocity fields. Several efforts have been made in the past to overcome this issue; both
explicit [8] and implicit [9] predictor-multi-corrector iteration schemes have been
proposed to solve linear and nonlinear dynamics problems. Recently, to reduce the
number of unknowns in ST/FEM, a different approach is taken in which only velocity
is included in primary unknowns while displacement and stresses are computed from
the velocity in a post-processing step [4, 10]. To this end, the objective of the present
chapter is to introduce this method (henceforth, ST/FEM) in a pedagogical manner.
The rest of the chapter is organized as follows. Sections 2 and 3 deal with the
fundamentals of time-discontinuous Galerkin method. Section 4 describes the dam-
reservoir-soil interaction problem, and Section 5 discusses the application of ST/FEM
for this problem. Lastly, Section 6 demonstrates the numerical performance of
proposed method and in the last section concluding remarks are included.

2. Time-discontinuous Galerkin method (tDGM) for second order ODE

Consider a mass-spring-dashpot system as depicted in Figure 1. The governing
equation of motion is described by the following second order initial value problem
in time.

d2u

dt2
þ 2ζωn

du

dt
þ ω2

nu ¼ f tð Þ ∀t∈ 0;T½ �

u 0ð Þ ¼ u0

du 0ð Þ
dt

¼ v0

(1)

Figure 1.
Schematic diagram of the mass-spring-dashpot system.
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where u≔ u tð Þ is the unknown displacement, f tð Þ is the external force acting on
the system. Further, u0 and v0 are the prescribed initial values of the displacement
and velocity, respectively. Damping ratio ζ and the natural frequency of vibration
ωn of the system are related to the mass m, stiffness of the spring k, and damping
coefficient c by:

ωn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

, ζ ¼ c

2mωn
¼ c

2
ffiffiffiffiffiffiffi

mk
p (2)

In what follows, this second order ODE will be utilized to discuss the funda-
mental concepts behind time-discontinuous Galerkin methods (henceforth,
tDGM).

2.1 Two-field tDGM

In two-field tDGM (henceforth, uv-tDGM), both displacement (u) and velocity
(v) are treated as independent primary variables and interpolated by using the
piecewise polynomials. Both u and v are discontinuous at end-points (i.e., tn and tnþ1)
of time-slab In ¼ tn, tnþ1ð Þ. However, u and v remain continuous inside In, and
approximated by piecewise polynomials (refer, Figure 2). Therefore, discontinuity
occurs at discrete times belonging to a set t0, t1,⋯, tNf g. The jump discontinuity in
time for u is denotes by

u½½ ��n ¼ uþn � u�n (3)

where

uþn ¼ lim
ε!0

u tþ εð Þ, u�n ¼ lim
ε!0

u t� εð Þ (4)

are the discontinuous values of u at time t ¼ tn. By recasting Eq. (1) into a system
of two first-order ODEs one can obtain,

dv

dt
þ 2ζωnvþ ω2

nu ¼ f tð Þ ∀t∈ 0,T½ � (5)

du

dt
� v ¼ 0 ∀t∈ 0,T½ � (6)

Figure 2.
Schematic diagram of time discontinuous approximation: (a) piecewise linear interpolation, and (b) piecewise
quadratic interpolation.
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u 0ð Þ ¼ u0, v 0ð Þ ¼ v0 (7)

The weak-form of the uv-tDGM can be stated as: find uh ∈ℑ
h
l and vh ∈ℑ

h
l , such

that for all δuh ∈ℑ
h
l and δvh ∈ℑ

h
l , and for all n ¼ 0,⋯,N � 1 Eq. (8) holds.

ð

In

δvh
dvh

dt
þ 2ζωnv

h þ ω2
nu

h � f tð Þ
 !

dtþ δvh tnð Þ vh
� �� �

n

þ
ð

In

δuh
duh

dt
� vh

 !

dtþ δuh tnð Þ uh
� �� �

n
¼ 0

(8)

where ℑh
l denotes the collection of polynomial with order less than or equal to l.

It is worth noting that the presence uh
� �� �

n
and vh

� �� �

n
correspond to the weakly

enforced initial condition for the u and v, respectively. Further, since the selection

of δuh and δvh is arbitrary one can depict Eq. (8) as,

ð

In

δvh
dvh

dt
þ 2ζωnv

h þ ω2
nu

h � f tð Þ
 !

dtþ δvh tnð Þ vh
� �� �

n
¼ 0 (9)

ð

In

δuh
duh

dt
� vh

 !

dtþ δuh tnð Þ uh
� �� �

n
¼ 0 (10)

Eq. (10) denotes that, in uv-tDGM, displacement-velocity compatibility rela-
tionship is satisfied in weak form.

2.2 Single field tDGM

To decrease the number of unknowns in comparison to those involved in uv-
tDGM, displacement-velocity compatibility condition (cf. Eq. 6) can be explicitly
satisfied and velocity can be selected as primary unknown. Henceforth, this strategy
will be termed as v-tDGM. In v-tDGM, v is continuous in In, but discontinuity
occurs at the end-points tn, tnþ1. Further, u is computed in a post-processing step by
integration of v, therefore, u remains continuous in time 0,T½ �.

The weak form of the v-tDGM reads: Find vh ∈ℑ
h
l such that for all δvh ∈ℑ

h
l , and

for all n ¼ 0,⋯,N � 1 Eq. (11) holds.

ð

In

δvh
dvh

dt
þ 2ζωnv

h þ ω2
nu

h � f tð Þ
 !

dtþ δvh tnð Þ vh
� �� �

n
¼ 0 (11)

Note that Eqs. (9) and (11) are identical, however, in former, uh is an indepen-
dent variable and, in later, it is a dependent variable which will be computed by
using following expression.

uh tð Þ ¼ u tnð Þ þ
ðt

tn

vh τð Þdτ (12)

Let us now focus on the discretization of weak-form (cf. Eq. (11)) by using the
locally defined piecewise linear test and trial functions,

vh ¼ T1v
þ
n þ T2v

�
nþ1 δvh ¼ T1δv

þ
n þ T2δv

�
nþ1 (13)
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uh tð Þ ¼ un þ vþn
Δtn
2

1� T2
1

� �

þ v�nþ1

Δtn
2

T2
2 (14)

where

T1 θð Þ ¼ 1� θ

2
T2 θð Þ ¼ 1þ θ

2
, θ∈ �1, 1½ �: (15)

Accordingly, Eq. 11 transforms into following matrix-vector form.

1

2

1 1

�1 1

" #

v�n

vþnþ1

( )

þ 2ζωnΔtn
6

2 1

1 2

" #

v�n

vþnþ1

( )

þω2
nΔ

2
n

24

3 1

5 3

" #

v�n

vþnþ1

( )

¼
J1ext

J2ext

( )

� ω2
nΔtnun
2

1

1

( )

þ
v�n

0

( ) (16)

where J1ext and J2ext are given by

J1ext ¼
ð

In

T1f tð Þdt J2ext ¼
ð

In

T2f tð Þdt

3. Numerical analysis of tDGM

In this section, numerical analysis of the tDGM schemes, (viz. uv-tDGM and v-
tDGM) for the second order ODE will be performed. To assess the stability charac-
teristics and temporal accuracy of these schemes, classical finite difference tech-
niques will be used ([11], Chapter 9). In this context, it is sufficient to consider the
following homogeneous and undamped form of Eq. (1):

d2u

dt2
þ ω2

nu ¼ 0, u 0ð Þ ¼ u 0ð Þ, du 0ð Þ
dt

¼ v0, t∈ 0,T½ � (17)

3.1 Energy decay in v-tDGM

In this section it will be shown that v-tDGM is a true energy-decaying scheme.
Consider Eq. (17) which represents the governing equation of a spring-mass system.
The total energy (sum of kinetic and potential energy) of the system remains
constant because damping and external forces are absent in the system.

TE u, vð Þ≔ 1

2
v2 þ 1

2
ω2
nu

2 ¼ constant (18)

Consider the time domain 0,T½ � and corresponding N time-slabs; In ≔ tn, tnþ1ð Þ
for n ¼ 0, 1⋯,N � 1. Let the u and v at time t0 ¼ 0 be given by uþ0 ¼ u�0 ¼ u0, and
vþ0 ¼ v�0 ¼ v0, respectively. Furthermore, the u and v at time tN ¼ T are denoted by
u�N and u�N, respectively.

Accordingly, it can be shown that

TE uN, v
�
N

� �

¼ TE u0, v0ð Þ � 1

2

X

N�1

n¼0

vh
� �� �2

n
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or

TE uN, v
�
N

� �

≤TE u0, v0ð Þ

This shows that v-tDGM is an energy decaying time integration algorithm, in

which the total energy during any time step, TE u�N, v
�
N

� �

, is always bounded from
above by the total energy at the first time-step (i.e., TE u0, v0ð Þ).

To assess the energy dissipation characteristics of v-tDGM, Eq. (17) is solved
with ωn ¼ 2π, u0 ¼ 0, and v0 ¼ 1:0m=s. The undamped time period T0 of the
sinusoidal motion is 1:0 second, and the total time duration of simulation is T ¼ 50
seconds. Figure 3a depicts the time history graphs of the normalized total energy
(i.e., TE u, vð Þ=TE u0, v0ð Þ) computed by using v-tDGM with different time step
sizes. Further, to visualize the effect of energy-dissipation displacement-velocity
phase diagram is plotted in Figure 3b. For present problem, phase-diagram should
be an ellipse. The presence of energy dissipation in the numerical algorithm, how-
ever, decreases the total energy which results in shortening of the radius of ellipse.
From these plots it is evident that the dissipation of energy decreases as the time-
step size decreases which also indicates that the jump discontinuity in time
decreases with time-step size.

3.2 Stability characteristics of v-tDGM

In this section, to study the stability characteristics of v-tDGM, Eq. (17) is
considered. The matrix-vector form corresponding to this problem is given by

1

2

1 1

�1 1

" #

v�nΔtn

vþnþ1Δtn

( )

þΩ
2

24

3 1

5 3

" #

v�n Δtn

vþnþ1Δtn

( )

¼
v�nΔtn

0

( )

�

Ω
2un
2

Ω
2un
2

8

>

>

<

>

>

:

9

>

>

=

>

>

;

,

(19)

Figure 3.
Energy decay characteristics of v-tDGM; (a) temporal variation of normalized total energy and (b) phase
diagram obtained with different time-step sizes.
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where Ω ¼ ωnΔtn. Subsequently, eliminating vþn in Eq. (19),

unþ1

v�nþ1Δtn

� �

¼ A Ωð Þ
un

v�n Δtn

� �

, (20)

where A is the amplification matrix given by,

A Ωð Þ ¼

Ω
4 � 30Ω2 þ 72

Ω
4 þ 6Ω2 þ 72

�6Ω2 þ 72

Ω
4 þ 6Ω2 þ 72

6Ω4 � 72Ω2

Ω
4 þ 6Ω2 þ 72

�30Ω2 þ 72

Ω
4 þ 6Ω2 þ 72

2

6

6

6

6

4

3

7

7

7

7

5

: (21)

To investigate the stability of v-tDGM one should look into the eigenvalues of A

(here, denoted by λ1 and λ2). Let the modulus of λ be denoted by λj j ¼
ffiffiffiffiffiffiffiffi

λλ ∗
p

with λ ∗

denoting the complex conjugate of λ. Accordingly, the spectral radius of A can be
described by ρ Að Þ ¼ max i¼1,2 λi Að Þj j. It can be easily shown that v-tDGM satisfies
all criteria for the spectral stability [11, Chapter 9]: (a) ρ≤ 1, (b) eigenvalues of A of
multiplicity greater than one are strictly less than one in modulus. It proves that v-
tDGM is an unconditionally stable time-marching scheme (for more details, readers
are referred to [4]).

3.3 High-frequency response of TDG/FEM

Figure 4 plots the frequency responses of ρ Að Þ for v-tDGM. It is evident that
ρ≤ 1 which proves that present algorithm is unconditionally stable. The v-TDG/
FEM, however, cannot attenuate spurious high-frequency contents since ρ

∞
¼ 1

(see Figure 4). However, v-tDGM provides negligible attenuation in the small
frequency regime as ρ is close to one in this regime.

3.4 Accuracy of v-tDGM

In [4], it is shown that u in Eq. (20) satisfies the following finite difference stencil.

unþ1 � 2a1un þ a2un�1 ¼ 0, (22)

where a1 ¼ TraceA=2 and a2 ¼ detA. Let us now denote the exact solutions by
u tð Þ and v tð Þ. Then the local truncation error τ tð Þ corresponding to Eq. (22) at any
time t becomes

u tþ Δtð Þ � 2a1u tð Þ þ a2u t� Δtð Þ ¼ Δt2τ tð Þ (23)

Subsequently, by expanding u tþ Δtð Þ and u t� Δtð Þ about t by using Taylor
series, and by using Eq. (17), it can be proved that v-tDGM is consistent and third
order accurate, i.e., τ tð Þj j⩽ 1

72Δt
3 [4]. Accordingly, one can use the Lax equivalence

theorem to prove the convergence of the algorithms.
A direct consequence of the convergence is that the solution of Eq. (17) can be

given by following expression [1]:

un ¼ exp � ζΩtn
Δt

	 


k1 cos
Ωtn
Δt

	 


þ k2 sin
Ωtn
Δt

	 
� �

(24)
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with

Ω ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � a21
p

a1

 !

ζ ¼ � 1

2Ω
ln a2ð Þ (25)

where ζ denotes the algorithmic damping ratio, Ω is the frequency of the
discrete solutions, and the coefficients k1 and k2 are determined by the displace-
ment and velocity initial conditions.

Further, to investigate the accuracy of v-tDGM, algorithmic damping ratio,

which is a measure of amplitude decay, and relative frequency error Ω� Ω
� �

=Ω,
which is a measure of relative change in time period, are plotted in Figure 5. From
Figure 5a it can be observed that ζ is comparable with the HHT-α scheme, however,
it is significantly smaller than the uv-tDGM. It is evident that the Houbolt and
Wilson-θ methods are too dissipative in the low-frequency range, therefore, these
algorithms are not suitable for the long-duration numerical simulations. Further-
more, v-tDGM has smallest frequency error which can be attributed to its third

Figure 4.
Frequency response of spectral radius ρ for v-tDGM.

Figure 5.
Accuracy of v-tDGM: (a) algorithmic damping ratio, and (b) relative frequency error in low frequency regime
(after [4]).
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order accuracy (refer, Figure 5b). It can be stated that these characteristics of v-
tDGM, such as very low numerical dispersion and dissipation, third-order accuracy,
and unconditional stability, make this scheme suitable for long-time simulations.
However, at present, the only possible drawback to this method is its incapability to
attenuate the spurious high-frequency components.

4. Statement of problem

A dam-reservoir-soil (DRS) system which is subjected to the spatially uniform

horizontal (a
g
1 tð Þ) and vertical (a

g
2 tð Þ) component of ground motion is depicted in

Figure 6. Reservoir domain contains linear, inviscid, irrotational, and compressible
fluid and solid domain (dam and underlying soil) is treated as isotropic, homoge-

neous, linear elastic material. Computation domain of soil (Ωs) and fluid (Ω f ) are
obtained by prescribing the viscous boundary conditions at the artificial boundaries

[10]. Let Γ
f
f and Γ

f
∞
be the free surface and upstream artificial boundary of fluid

domain. Γ
f
fs, Γ

f
fd, Γ

s
fd and Γ

s
fs denote the fluid-soil, fluid-dam, dam-fluid and soil-fluid

interfaces, respectively. Further, the outward unit normal vectors to the fluid and

solid boundary are given by ns and n f , respectively.
Further, hydrodynamic pressure distribution in the reservoir is modeled by the

pressure wave equation,

1

c2
∂
2p

∂t2
� ∇

2p ¼ 0 in Ω
f

∀t∈ 0,Tð Þ, (26)

with following initial and boundary conditions.

p x, 0ð Þ ¼ 0;
∂p x, 0ð Þ

∂t
¼ 0 in Ω

f at t ¼ 0 (27)

p x, tð Þ ¼ 0 on Γ
f
f ∀t∈ 0,Tð Þ (28)

∇p � n f ¼ �ρ f ∂v

∂t
� n f on Γ

f
fd ∪Γ

f
fs ∀t∈ 0,Tð Þ (29)

Figure 6.
Schematic diagram of dam-reservoir-soil (DRS) system subjected to seismic ground motion.
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∇p � n f ¼ � 1

c

∂p

∂t
þ 1

c

∂p
∞

∂t
on Γ

f
∞

∀t∈ 0,Tð Þ (30)

In Eq. (26), ∇2 denotes the Laplace’s operator, p x, tð Þ denotes the hydrodynamic
pressure in the water (in excess of hydrostatic pressure) and c denotes the speed of
sound in water. Eq. (29) denotes the time dependent boundary condition at fluid-

dam and fluid-soil interface, respectively, where ρ f is the mass density of fluid, and
v is the velocity of solid domain (i.e., dam or soil). Eq. (30) is due to the viscous
boundary condition at the upstream truncated boundary of reservoir. The first term
in this equation corresponds to an array of dashpots placed normal to the truncated

boundary Γ
f
∞
, and the second term is due to the free-field response of reservoir.

Let us now consider the initial-boundary value problem of the solid domain
which is described by,

ρs
∂
2u

∂t2
� ∇ � s � ρsb ¼ 0 in Ω

s
∀t∈ 0,Tð Þ, (31)

u x, tð Þ ¼ g x, tð Þ on Γ
g

∀t∈ � 0,Tð Þ, (32)

σ � ns ¼ h on Γ
þ
∞
∪Γ

s
fd ∪Γ

s
fs ∀t∈ 0,Tð Þ, (33)

u x, 0ð Þ ¼ u0 xð Þ, ∂u

∂t
x, 0ð Þ ¼ v0 xð Þ in Ω

s at t ¼ 0: (34)

Furthermore, following time dependent boundary conditions will be considered
in Eq. (33):

σ � ns ¼ �cv v� v∞ð Þ þ σ
∞ � ns on Γ

L
∞
∪Γ

R
∞

(35)

σ � ns ¼ �ch � vþ 2ch � vin on Γ
B
∞

(36)

σ � ns ¼ � ph xð Þ þ pðx, tÞ

 �

ns on Γ
s
fd ∪Γ

s
fs (37)

In addition, solid domain is considered to be an isotropic, homogeneous, linear
elastic material with

σij ¼ λεkkδij þ 2μεij, (38)

εij ¼
1

2

∂ui
∂x j

þ ∂u j

∂xi

	 


: (39)

In Eqs. (31)–(34), ρs, u, σ, b, g, h, u0 and v0, denote mass density, displacement,
Cauchy’s stress tensor (positive in tension), externally applied body force density,
prescribed displacement, external surface traction, initial value of displacement and
velocity, respectively. Eq. (37) represents time varying boundary condition due to
the hydrostatic, ph xð Þ, and hydrodynamic, p x, tð Þ, pressure of impounded water
acting on the dam-fluid and fluid-soil interface. Furthermore, In Eqs. (35)–(37), v∞

and σ∞ are the velocity and the stress due to the free-field response of unbounded

soil domain. In addition, ΓL
∞
, ΓR
∞
, and Γ

B
∞
represent left, right and bottom truncated

boundaries of soil domain, respectively. In Eqs. (35) and (36), first term corre-
sponds to the Lysmer and Kuhlemeyer viscous boundary condition. Physically, it
represents a series of dashpots placed at the truncated boundaries of soil domain in
parallel and normal directions (see Figure 6b). Further, these terms facilitate the
absorption of outgoing scattered wave motion and attempt to model the radiation

damping due to the semi-infinite soil domain. Where cv and ch are the damping

10
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coefficients matrices for the dashpots placed at vertical and horizontal truncated
boundaries:

cv ¼
ρscL 0

0 ρscT

� �

, ch ¼
ρscT 0

0 ρscL

� �

, (40)

in which, cL and cT are the speed of longitudinal wave (P-wave) and transverse
wave (S-wave) in the unbounded soil domain, respectively. Lastly, in Eqs. (38) and
(39), λ and μ are the Lame parameters, and δij is the Kronecker delta function.

5. Space-time finite element method

Recently, ST/FEM is employed to solve dam-reservoir-soil interaction problem
[10] in which the resultant matrix-vector form is given by

K
f
11

h i

Q 1f g þ K
f
12

h i

Q 2f g � 1

2
H f
� �

V1f g þ 1

2
H f
� �

V2f g ¼ J
f
1

n o

(41)

K
f
21

h i

Q 1f g þ K
f
22

h i

Q 2f g � 1

2
H f
� �

V1f g þ 1

2
H f
� �

V2f g ¼ J
f
2

n o

(42)

Ks
11

� �

V1f g þ Ks
12

� �

V2f g þ 3Δt2n
24

Hs½ � Q 1f g þ Δt2n
24

Hs½ � Q 2f g ¼ Js1

 �

(43)

Ks
21

� �

V1f g þ Ks
22

� �

V2f g þ 5Δt2n
24

Hs½ � Q 1f g þ 3Δt2n
24

Hs½ � Q 2f g ¼ Js2

 �

(44)

where Q 1f g and Q 2f g represent the spatial nodal values of auxiliary variable q ¼
∂p=∂t at time tþn and t�nþ1, respectively. Similarly, V1f g and V2f g are the spatial nodal

values of velocity field at time tþn and t�nþ1, respectively (for more details see [10]).
Further, In Eqs. (41) and (42),

K
f
11

h i

¼ 1

2
M f
� �

þ 3Δt2n
24

K f
� �

þ Δtn
3

C f
∞

� �

, (45)

K
f
12

h i

¼ 1

2
M f
� �

þ Δt2n
24

K f
� �

þ Δtn
6

C f
∞

� �

, (46)

K
f
21

h i

¼ � 1

2
M f
� �

þ 5Δt2n
24

K f
� �

þ Δtn
6

C f
∞

� �

, (47)

K
f
22

h i

¼ 1

2
M f
� �

þ 3Δt2n
24

K f
� �

þ Δtn
3

C f
∞

� �

, (48)

where

M f
� �

¼
ð

Ω
f
NTN

1

c2
dΩ (49)

K f
� �

¼
ð

Ω
f
∇N � ∇NT dΩ (50)

C f
∞

� �

¼
ð

Γ
f
∞

NTN
1

c
ds (51)

denote mass matrix, diffusion matrix, and viscous boundary at the upstream

truncated boundary, respectively. The fluid-solid coupling matrix H f
� �

is given by,

11

Space-Time Finite Element Method for Seismic Analysis of Concrete Dam
DOI: http://dx.doi.org/10.5772/intechopen.91916



H f
� �

¼
ð

Γ
f

fs
∪Γ

f

fd

NTNρ fn f ds (52)

and right hand side spatial nodal vectors in Eqs. (41) and (42) becomes,

J
f
1

n o

¼ M f
� �

Q 0f g � Δtn
2

K f
� �

P0f g þ Δtn
3

C f
∞

� �

Q∞

1


 �

þ Δtn
6

C f
∞

� �

Q∞

2


 �

(53)

J
f
2

n o

¼ �Δtn
2

K f
� �

P0f g þ Δtn
6

C f
∞

� �

Q∞

1


 �

þ Δtn
3

C f
∞

� �

Q∞

2


 �

(54)

where Q 0f g and P0f g correspond to the nodal values of q and p at time tn, and

Q∞

1


 �

and Q∞

2


 �

are the free field hydrodynamic response of reservoir at time tn
and tnþ1, respectively.

In Eqs. (43) and (44),

Ks
11

� �

¼ 1

2
Ms½ � þ 3Δt2n

24
Ks½ � þ αΔtn

3
Ms½ � þ βΔtn

3
Ks½ � þ Δtn

3
Cs
∞

� �

, (55)

Ks
12

� �

¼ 1

2
Ms½ � þ Δt2n

24
Ks½ � þ αΔtn

6
Ms½ � þ βΔtn

6
Ks½ � þ Δtn

6
Cs
∞

� �

, (56)

Ks
21

� �

¼ � 1

2
Ms½ � þ 5Δt2n

24
Ks½ � þ αΔtn

6
Ms½ � þ βΔtn

6
Ks½ � þ Δtn

6
Cs
∞

� �

, (57)

Ks
22

� �

¼ 1

2
Ms½ � þ 3Δt2n

24
Ks½ � þ αΔtn

3
Ms½ � þ βΔtn

3
Ks½ � þ Δtn

3
Cs
∞

� �

, (58)

in which Ms½ �, and K½ �s are the mass and stiffness matrix for the solid domain
[12], α and β are the coefficients of Rayleigh damping, and matrix Cs

∞

� �

is due to the

dashpots placed at truncated boundaries of soil domain which has the form,

Cs
∞

� �

¼ Cs
v

� �

þ Cs
h

� �

¼
cv11 0

0 cv22

� �

þ ch11 0

0 ch22

" #

(59)

cvii
� �

¼
ð

Γ
L
∞
∪Γ

R
∞

cviiN
TNds i ¼ 1, 2 nosumð Þ, (60)

chii
� �

¼
ð

Γ
B
∞

chiiN
TNds i ¼ 1, 2 nosumð Þ, (61)

the solid-fluid coupling matrix,

Hs½ � ¼
ð

Γ
s
fs
∪Γ

s
fd

NTNnsds, (62)

and right hand side spatial nodal vectors is given by,

Js1

 �

¼ Ms½ � V0f g � Δtn
2

Ks½ � U0f g þ 2Δtn
3

Cs
h

� �

Vin
1


 �

þ 2Δtn
6

Cs
h

� �

Vin
2


 �

þΔtn
3

Cs
v

� �

V∞1

 �

þ Δtn
6

Cs
v

� �

V∞2

 �

þ Δtn
2

Fext
1


 �

þ Δtn
2

F∞1

 �

�Δtn
2

Hs½ � Phf g þ P0f gð Þ,

(63)
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Js2

 �

¼ �Δtn
2

Ks½ � U0f g þ 2Δtn
6

Cs
h

� �

Vin
1


 �

þ 2Δtn
3

Cs
h

� �

Vin
2


 �

þ Δtn
6

Cs
v

� �

V∞1

 �

þΔtn
3

Cs
v

� �

V∞2

 �

þ Δtn
2

Fext
2


 �

þ Δtn
2

F∞2

 �

� Δtn
2

Hs½ � Phf g þ P0f gð Þ,

(64)

where U0f g, V0f g, and P0f g are spatial nodal values of u, v, and p at time tn,

Phf g is nodal values of hydrostatic pressure, and Fext
1


 �

and Fext
2


 �

are nodal force
vector due to external body forces at time tn and tnþ1, respectively,

Fext
a


 �

¼
ðþ1

�1

ð

Ω
s
h

TaNρsb dΩdθ: (65)

Further, the force vector F∞a¼1,2


 �

is due to the free-field stress at the vertical

viscous boundaries of soil domain [13], and described by,

F∞a¼1,2


 �

¼
ðþ1

�1

ð

Γ
L
∞
∪Γ

R
∞

TaNσ
∞ � nsdsdθ: (66)

Lastly, nodal values of displacement and pressure field at time tnþ1 are computed
by following expression in a post-processing step.

U2f g ¼ U0f g þ Δtn
2

V1f g þ V2f gð Þ (67)

P2f g ¼ P0f g þ Δtn
2

Q 1f g þ Q 2f gð Þ (68)

6. Numerical examples

In this section, ST/FEM with block iterative algorithm has been employed to
study the response of the concrete gravity dam to the horizontal earthquake motion
(see [10]). In the numerical modeling two cases are considered; (i) dam-reservoir
(DR) system, in which foundation is considered to be rigid, and (ii) dam-reservoir-
soil (DRS) system, in which the foundation is an elastic deformable body.

Figure 7 depicts the physical dimensions of the dam-reservoir system. Length
of the reservoir in upstream direction is 200 m, and length of the soil domain in
horizontal and vertical direction is 440m and 150m, respectively. For the dam, elastic
modulus, E, mass-density, ρs, and Poisson’s ratio, ν, are 28:0 GPa, 2347:0 kg/m3,
and 0:20 respectively, and for the foundation, E ¼ 40:0 GPa, ρ ¼ 2551:0 kg/m3, and

Figure 7.
Physical dimensions of dam-reservoir system (after [10]).
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ν ¼ 0:20. Material damping in the solid domain is modeled by Rayleigh damping with
ξ ¼ 5% viscous damping specified for the foundation and dam separately.

Figure 8 represents the accelerogram (horizontal component) recorded at a
control point on the free surface; the maximum and minimum values of accelera-
tion are 396:7 Gal (at t ¼ 15:19 s) and �449:6 Gal (at t ¼ 14:82 s), respectively.
Further, numerical simulations are performed for a total time duration of 45 s with
a uniform time step size Δt ¼ 0:01. Time history graphs of acceleration at the crest
of the dam in DR and DRS systems are plotted in Figure 9 where it can be seen that

Figure 8.
Time history of horizontal component of ground motion recorded at free-surface.

Figure 9.
Acceleration response at the crest of dam in DR and DRS system; time history of (a) horizontal component and
(b) vertical component of acceleration, and Fourier spectrum of (c) horizontal component and (d) vertical
component of acceleration (after [10]).
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Figure 10.
Temporal response of (a) normalized hydrodynamic pressure, (b) principal tensile stress and (c) principal
compressive stress at the base of dam in DR and DRS system (after [10]).

Figure 11.
(a) and (c): Hydrodynamic pressure field in the reservoir, and (b) and (d): magnified deformed configuration
of dam at times t = 18:02 s and t = 18:08 s (after [10]).
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the deformation characteristics of underlying foundation significantly decreases the
responses for dam. To this end, absolute maximum value of horizontal and vertical
component of acceleration obtained for DRS are 1489:89 Gal and 597:47 Gal,
respectively, and for the DR system these values are equal to 3897:10 Gal and
1274:65 Gal. In addition, Fourier spectrum of time-series of acceleration at the crest
indicates that in the case of DRS there is a significant decay in the amplitudes and an
elongation of time period as compare to the DR system.

Interestingly, in both cases, it is observed that the critical location for pressure is
at the base of the dam. Figure 10 presents the evolution of p, maximum principle
tensile and compressive stresses with time at this location. It is clearly visible that
dynamic interactions between the dam-reservoir and the deformable underlying
ground significantly lower the hydrodynamic pressure and maximum stresses in the
dam. Lastly, the hydrodynamic pressure field and deformed configuration of dam
(magnified 500 times) in the DRS system at time t = 18.02 s and t = 18.08 s are
presented in Figure 11.

7. Conclusions

In this chapter, novel concepts of time-discontinuous Galerkin (tDGM) method
is presented. A method called v-tDGM is derived to solve second order ODEs in
time. In this method velocity is the primary unknown and it remain discontinuous
at discrete times. Thereby, the time-continuity of velocity is satisfied in a weak
sense. However, displacement is obtained by time-integration of the velocity in a
post-processing step by virtue of which it is continuous in time. It is demonstrated
that the present method is unconditionally stable and third-order accurate in time
for linear interpolation of velocity in time. Therefore, it can be stated that the
numerical characteristics of the v-ST/FEM scheme, therefore, make it highly suit-
able for computing the response of bodies subjected to dynamic loading conditions,
such as fast-moving loads, impulsive loading, and long-duration seismic loading,
among others.

Subsequently, ST/FEM is used to compute the response of a dam-reservoir-soil
(DRS) system to the earthquake loading while considering all types of dynamic
interactions. An auxiliary variable q representing the first order time derivative of
the pressure is treated as the primary unknown for the reservoir domain. Similarly,
velocity v is the primary unknown for the solid domain. Both v and q are interpo-
lated such that they remain discontinuous at the discrete times. Hydrodynamic
pressure and displacements are the secondary unknowns in the present formulation
which are computed by time integration of q and v, respectively. It is concluded
that the dynamic interactions between the dam-reservoir system and the underly-
ing deformable foundation significantly dampen the seismic response of the
dam and the reservoir and elongate the time period of the acceleration response
of the dam.
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