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Chapter

Mechanism, Model, and Upscaling
of the Gas Flow in Shale Matrix:
Revisit
Zhiming Hu, Yaxiong Li and Yanran Li

Abstract

Shale gas accounts for an increasing proportion in the world’s oil and gas supply,
with the properties of low carbon, clean production, and huge potential for the
compensation for the gradually depleted conventional resources. Due to the ubiq-
uitous nanopores in shale matrix, the nanoscale gas flow becomes one of the most
vital themes that are directly related to the formulation of shale gas development
schemes, including the optimization of hydraulic fracturing, horizontal well spac-
ing, etc. With regard to the gas flow in shale matrix, no commonly accepted
consensus has been reached about the flow mechanisms to be considered, the
coupled flow model in nanopores, and the upscaling method for its macroscopic
form. In this chapter, the propositions of wall-associated diffusion, a physically
sound flow mechanism scheme, a new coupled flow model in nanopores, the
upscaling form of the proposed model, and the translation of lab-scale results into
field-scale ones aim to solve the aforementioned issues. It is expected that this work
will contribute to a deeper understanding of the intrinsic relationship among vari-
ous flow mechanisms and the extension of the flow model to full flow regimes and
to upscaling shale matrix, thus establishing a unified model for better guiding shale
gas development.

Keywords: shale gas, diffusion, viscous flow, coupling coefficient,
generalized model, pore size distribution, macroscopic form

1. Introduction

Shale gas refers to a kind of self-generating and self-preserving natural gas,
which gathers mainly in a free or adsorbed state in the organic-rich dark shale or
high-carbon mud shale [1]. With vast reserves and the potential to offset the
gradually depleted conventional resources worldwide and cut down carbon
emissions at the same time, shale gas is playing an increasingly important role in
ensuring global energy safety. Because shale matrix is characterized by various
nanopores, where the gas flow is of high nonlinearity and complexity, an in-depth
study of the mathematical model for the gas flow capacity in shale matrix is in
urgent demand.

The mechanisms considered in different literature are listed in Table 1. It is
obvious that opinions vary greatly on the flow mechanism scheme applied. The
noteworthy aspects include the following: what the relationship among the various
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flow mechanisms of shale gas, e.g., slippage, Fick diffusion, Knudsen diffusion, etc.,
is; whether there is a repeated superposition of these mechanisms for specific flow
calculation; and how to deal with the relationship among the various flow mecha-
nisms, etc. There is no clear answer to these problems in current literature.

Figure 1 shows the common research methodology of the flow models used in
different literature. It indicates that because the method of the continuum model
with a boundary condition based on the molecular one is considered inconsistent
and the limitations and drawbacks of first-order, second-order, and 1.5-order slip
models are described, some studies, which are listed in Figure 1, are inclined to add
related flow mechanisms linearly. Furthermore, the mathematical models of viscous
flow and various types of diffusion do not fully agree with common flow cognition
as these theories and models were experimentally verified or developed for a lim-
ited range of conditions [27]. For this reason, coupling coefficients are introduced to
rectify this kind of limitation, so as to enhance the correspondence between the
flow model and Knudsen number (Kn). Finally, because the secondhand average
method, e.g., assuming the pore space of shale to be composed of a certain number
of isodiametric pores regardless of the pore size distribution, is widely used in the
research of shale gas flow, more explicit means, like taking the existence of various
pore sizes in shale into account, should be adopted for transforming the flow model
in nanopores to that in macroscopic-scale shale matrix.

Literature Mechanisms considered

Klinkenberg [2] Slip flow

Javadpour [3], Haghshenas et al. [4],

Wu et al. [5], Sun et al. [6]

Knudsen diffusion and slippage

Veltzke and Thöming [7] Viscous flow and Knudsen diffusion

Li et al. [8] Continuum flow, slip flow, transition flow, and free molecular

flow

Mi et al. [9] Diffusion and slippage, where the form of diffusion varies

according to the Knudsen number range, including Fick

diffusion, transitional diffusion, and Knudsen diffusion

Song et al. [10] Viscous flow, Knudsen diffusion, and surface diffusion, with

surface diffusion not considered for inorganic pores

Table 1.
Different flow mechanism schemes in literature.

Figure 1.
A brief summary of the common methodology used in different research [11–32].
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Based on the literature survey for shale gas flow in shale matrix, we know that
the flow mechanism scheme with its corresponding coupling method is very crucial
and has not yet been solved. In addition, although the integration method using
specific functions has been proposed to facilitate the consideration of various pore
sizes in shale matrix, real shale experiments are rarely involved to realize this point
with definitely determined parameters.

Firstly, in this chapter, the concept of wall-associated diffusion is presented to
clarify the relationship between slippage effect and several types of diffusion. Sec-
ondly, a physically sound flow mechanism scheme, which considers both division of
mechanical mechanisms in nanopores and partition of flow space, has been pro-
posed by virtue of the proposition of wall-associated diffusion. Thirdly, the cou-
pling coefficients corresponding to the flow mechanisms considered are deduced to
comply with the basic flow regime cognition, so as to establish a new coupled flow
model in nanopores. Fourthly, the pore size distribution experiments for real shale
samples from a gas field are utilized to realize the upscaling transformation of the
flow model in nanopores into that in the macroscopic-scale shale matrix, with
definitely determined fitting parameters for the establishment of a unified model
for the gas flow prediction in shale matrix. Finally, a case study is presented to show
how the lab-scale results are translated into field-scale ones.

2. Flow mechanisms in gas-shale matrix

There are many types of flow mechanisms in shale matrix, including slippage
effect, Fick diffusion, transition diffusion, Knudsen diffusion, surface diffusion,
etc. It can be seen from the literature survey in Section 1 that different flow
mechanism schemes have formed aiming at establishing a calculation model to
properly characterize the nanoscale shale gas flow. There may be views that the
more flow mechanisms are taken into account, the more precise the established
models are. However, this is not the opinion in this chapter.

As is known, Klinkenberg [33] first discovered in 1941 the phenomenon that,
when measuring the gas permeability of rock, not only the measurement result is
higher than the liquid measurement value but also it has strong pressure depen-
dence and attributed it to the slippage behavior of gas in the rock pores. Specifi-
cally, gas slippage refers to the phenomenon that the near-wall gas molecules
move relative to the wall surface when flowing through the medium channels
[34]. In essence, the gas slip flow results from the interaction of gas molecules
and pore walls, so the gas molecules in the vicinity of walls are in motion and
contribute an additional flux, which is macroscopically characterized by the
non-zero gas velocities on channel walls, thus resulting in slip flow [35, 36]. The
jump model assumes that the adsorbed gas molecules jump from one adsorption
site to the adjacent adsorption site on the pore surface, which is considered to be
suitable for the research on the surface diffusion of the adsorbed gas in shale
nanopores [37]. Meanwhile, when the molecular mean free path is obviously
larger than the pore diameter, the gas-wall collision dominates, and the collision
between gas molecules is secondary, which is characterized by Knudsen diffusion
[9, 38, 39].

In brief, both Knudsen diffusion and surface diffusion lead to non-zero moving
speeds of the gas molecules around walls. Furthermore, from the viewpoint of
microscopic motion mechanisms, they are both related to gas–solid interactions,
which is consistent with slippage phenomenon in essence. Therefore, a new concept
named “wall-associated diffusion” [40] is proposed, which characterizes the overall
role of surface diffusion and Knudsen diffusion, as shown in Figure 2.
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The proposition of wall-associated diffusion has practical significance and
multiple research significance as follows [40].

To begin with, in terms of mechanical mechanisms, since wall-associated diffu-
sion describes the diffusion mechanisms of shale gas related to gas-wall interactions,
it bridges the relationship between slippage effect and several types of diffusion,
which prevents reduplicated superposition of shale gas flow mechanisms in nanoscale
pores. This is where the practical significance lies. Besides, wall-associated diffusion
can be regarded as a detailed form of slippage effect, dividing slippage effect into two
distinct parts, i.e., surface diffusion and Knudsen diffusion. The two parts differ
obviously in their mechanical mechanisms and motion patterns. Accordingly, the
research significance of wall-associated diffusion involves not only the function of
morphological descriptions but also the possibility of slip phenomenon research by
different mechanical mechanisms. Lastly, another research significance is that wall-
associated diffusion breaks through the limitation that the concept of slippage does
not apply for high Knudsen number, with, however, the fact that wall effects still
contribute to gas flow for high Knudsen number. Therefore, in extremely small
nanopores, for example, where slip flow regime is not applicable, the wall-associated
diffusion derived from physical morphology can well be used to explore the so-called
slip phenomenon in other flow regimes apart from slip flow regime.

By virtue of the concept of wall-associated diffusion, the flow mechanism
scheme used in this work is to be discussed next.

There is no doubt that all the mechanisms, such as continuum flow, slip flow,
Knudsen diffusion, bulk diffusion, etc., have been studied in previous literature for
the exploration of shale gas flow. However, it is a determinative flow mechanism
scheme that is vital. According to the literature survey, apart from combining the
Navier-Stokes solution with slip boundary condition whose deficiency has been
mentioned in Section 1, there is also a trend in literature to assume a combination of
certain flow mechanisms and check the consistency of the model results with
experimental data. This method is favorable from an engineering point of view but
meanwhile leads to the status that coincidence often exists and no commonly
accepted consensus has formed currently. In this work, we discuss the issue physi-
cally. Firstly, due to the multiple advantages of wall-associated diffusion over the
concept of slippage effect, slippage effect is replaced with wall-associated diffusion
in the following discussion. On the one hand, the flow space in nanopores can be
divided into two parts: the bulk phase region and the Knudsen layer [41]. On the
other hand, the microscopic mechanical mechanisms can be divided into the gas–
gas and gas-wall interactions. If a new comprehensive flow scheme, including
viscous flow and bulk diffusion which belong to bulk phase flow and surface
diffusion and Knudsen diffusion which are associated with gas-wall interactions
causing non-zero flow velocities near pore walls, is proposed, the considerations of
the division of flow space and mechanical mechanisms can be both realized.

Figure 2.
Relationship between wall-associated diffusion and slippage effect [40].
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It should be noted that with the help of the methodology applied here, some flow
mechanisms that are easily omitted are now included, such as bulk diffusion, an
important diffusion process which is controlled by a mechanical mechanism obvi-
ously different from Knudsen diffusion. Furthermore, because the individual flow
expressions, e.g., those for viscous flow and diffusion, were experimentally verified
or developed for a limited range of conditions [27], the proposed physical flow
mechanism scheme avoids unnecessary attempts to fit the mathematical models to
experimental data so as to determine which flow mechanisms should be considered,
laying a solid foundation for the research on the coupled flow model in nanopores
discussed below.

To conclude, taking both division of mechanical mechanisms in nanopores and
partition of flow space into account, viscous flow and bulk diffusion, which belong
to bulk phase flow and result from gas–gas interactions, and surface diffusion and
Knudsen diffusion, which are associated with gas-solid interactions and result in
non-zero flow velocities near pore walls, are included in the proposed flow
mechanism scheme.

3. Coupled model of shale gas flow in nanopores

Based on the flow scheme proposed in Section 2, the flow mechanisms consid-
ered include viscous flow, bulk diffusion, surface diffusion, and Knudsen diffusion.
Considering the influence of adsorption layers, in which the system is assumed to
reach dynamic adsorption equilibrium state instantaneously, the mass flow of the
four mechanisms can be expressed, respectively, as:

ND ¼ �
10�36

πρavg

8μ
rin �

pdm
pL þ p

� �4 dp

dl
(1)

Nb ¼ NF ¼ � 10�9MkB
3Rμdm

rin �
pdm

pL þ p

� �2 dp

dl
(2)

NK ¼ � 2� 10�27

3

8πM

RT

� �0:5

rin �
pdm

pL þ p

� �3 dp

dl
(3)

Ns ¼ �0:016� 10�22 � exp �0:45q

RT

� �

ρsM

pVstd

qLp

pL þ p
� 1� ϕco

ϕco

πrin
2 dp

dl
(4)

where ND = viscous mass flow in a pipe, kg�s�1.
Nb = mass flow of bulk diffusion, kg�s�1.
NF = mass flow of Fick diffusion, kg�s�1.
NK = mass flow of Knudsen diffusion, kg�s�1.
Ns = mass flow of surface diffusion, kg�s�1.
rin = inner radius of a pipe, nm.
ρavg = density of gas at average pressure of inlet and outlet, kg�m�3.
μ = gas viscosity, Pa�s.
dm = diameter of gas molecules, nm.
pL = Langmuir pressure, Pa.
dp/dl = pressure gradient, Pa�m�1.
M = molecular weight, kg�mol�1.
R = universal gas constant, =8.314 J�mol�1�K�1.
kB = Boltzmann constant, =1.38 � 10�23 J�K�1.
T = ambient temperature, K.
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ρs = density of shale matrix, kg�m�3.
Vstd = molar volume of gas under standard conditions, m3�mol�1.
qL = Langmuir volume, m3�kg�1.
Φco = porosity of a core sample, dimensionless.
The expression of Fick diffusion (2) is referred to as bulk diffusion and

represented by Nb.
The case study in literature [42] shows that although the equations of viscous

flow and diffusion already contain variables varying with temperature, pressure,
and other factors, they make sense within only a certain range of flow regimes and
deviate from the actual situation within other range that is not taken into account.
Introducing coupling coefficients to different flow mechanisms can help modify the
correspondence between the mathematical models (i.e., those of viscous flow and
diffusion) and Knudsen number and establish generalized models without segment
processing as Kn varies.

In contrast to the coupling coefficients reported in published literatures
[29, 31, 43, 44], the derivation of new coupling coefficients corresponding to
the proposed flow mechanism scheme is performed, and the coupling
coefficient of one certain flow mechanism will not be optionally set as 100%.
The coupling coefficients of viscous flow, bulk diffusion, Knudsen diffusion, and
surface diffusion are represented by f1(Kn), f2(Kn), f3(Kn), and f4(Kn) respectively,
which are the functions of Kn. The expressions of the coupling coefficients are
set according to the characteristics of flow regimes, where the following
assumptions are used:

1.Let f1(Kn) + f2(Kn) = 1/(1 + Kn) and f3(Kn) + f4(Kn) = Kn/(1 + Kn) based on
the molecular collision theory that the ratio of collision frequency between
molecules to total collision frequency and that of molecule-wall collision
frequency to total collision frequency are 1/(1 + Kn) and Kn/(1 + Kn),
respectively [30].

2.When Kn equals to 0, only viscous flow is assumed to exist [45], i.e., f1(Kn) = 1
and f2(Kn) = f3(Kn) = f4(Kn) = 0.

3.It is transition flow when 10�1
< Kn < 10, and several diffusion processes

play roles at the same time ([31, 46]; thus, f1(Kn) is assumed to be negligible
at the logarithmic median of this range [29, 43], i.e., f1(Kn) is close to 0
when Kn > 1.

4.As Kn approaches to 0 or is sufficiently large, f2(Kn) is close to 0.

5. f3(Kn) is small when Kn < 1 and increases significantly when Kn > 1, until
close to 1 in the range of Kn > 10 [29, 43].

6.In the whole range of flow regimes, f1(Kn), f2(Kn), f3(Kn), and f4(Kn) should
all be nonnegative and change smoothly with Kn to embody the gradual
evolvement of the flow as the condition varies.

Based on the above narrations, it physically defines that f1(Kn) = e�αKn,
f2(Kn) = 1/(1 + Kn) � e�αKn, f3(Kn) = e�β/Kn, and f4(Kn) = Kn/(1 + Kn) � e�β/Kn,
where α and β are dimensionless constants determining the bump levels of the
variation curves. α and β are set as 5 and 1.8 [42], respectively, to further realize
the compliance of the coupling coefficients with the narrated flow regime
characteristics.
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Hence, the mass flow in nanopores can be expressed as:

N ¼ e�5KnND þ 1

1þ Kn
� e�5Kn

� �

Nb þ e�1:8=KnNK þ Kn

1þ Kn
� e�1:8=Kn

� �

Ns (5)

where N = mass flow in a pipe, kg�s�1.
The variation curves of the four coupling coefficients and f1(Kn) � ND,

f2(Kn) � Nb, f3(Kn) � NK, and f4(Kn) � Ns with Kn are depicted in
Figures 3 and 4 [42].

The benefits of introducing the above coupling coefficients to viscous flow and
diffusion are significant:

1. It is clear that because f1(Kn), f2(Kn), f3(Kn), and f4(Kn) are all nonnegative,
the segment processing of mathematical models can be avoided, i.e., Eq. (5)
can be uniformly used for the coupling calculation in the scope of 0 < Kn < ∞,
without the need to change the functional forms by reason of the limited
applicability of coupling coefficients.

2.Eq. (5) bridges the gaps between different flow regimes, i.e., the jumps of flow
rates at the critical points between different regimes have vanished.
Furthermore, the mathematical models are further constrained by virtue of the
molecular collision theory to better reflect the basic flow regime knowledge.

3.Taking the viewpoints of Refs. [30, 32] as examples for comparison with this
work, it should be noted that slip flow refers to the enhanced flow, including
the part of original viscous flow and the other part called slippage effect which
is represented by the non-zero velocities of the near-wall molecules due to gas-
wall interactions. Therefore, it is more suitable to regard the ratio of gas–gas
collision frequency to total collision frequency as the total coupling coefficient
of viscous flow and bulk diffusion rather than that of the slip flow [30, 32].

4.The same examples [30, 32] are used for comparison. It is continuum flow
when Kn approximates to 0. However, the coupling coefficient of slip flow is 1
when Kn = 0 in papers [30, 32], implying slip flow dominates in continuum
flow regime, which contradicts the flow regime knowledge. This issue has
been solved in this chapter.

Figure 3.
Variation curves of the coupling coefficients (dimensionless) of viscous flow, bulk diffusion, Knudsen diffusion,
and surface diffusion with Kn (dimensionless) [42].
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4. Coupled mathematical model in macroscopic-scale shale matrix

In this section, the experimental results of full-scale pore size distributions of
real shale samples from a gas field are combined with the coupled flow model in
nanopores to realize the upscaling transformation of the flow model into that in
macroscopic-scale shale matrix by integration.

In the unitary model which is widely used for the flow estimation on a
macroscopic scale [12, 18–22], indirect averaging methods are applied, e.g., the
pore space of shale is assumed to be composed of a certain number of isodiametric
pores, regardless of the pore size distributions. Some research [15, 47] used
specific functions to characterize the probability density function of shale pore
size distributions, with, however, assumed parameters for the purpose of
conducting parameter sensitivity analysis. Here, the fitting parameters needed for
the macroscopic form of the derived coupled flow model in nanopores are
obtained by performing the experiments of pore size distributions of real shale
samples from a gas field.

Michel et al. [15] and Xiong et al. [47] described the probability density function
of shale pore size distributions as logarithmic normal distribution. Enlightened
by their studies, the following expression is used to fit the experimental data of
full-scale shale pore size distributions:

f rinð Þ ¼ 1

rinσ
ffiffiffiffiffi

2π
p e�0:5

Inrin�η

σð Þ2 (6)

Figure 4.
Variations of viscous flow and diffusion with Kn (dimensionless) after introducing coupling coefficients for the
gas flow in pores of (a) 5 nm, (b) 10 nm, (c) 20 nm, and (d) 40 nm at 353 K. f1*ND, f2*Nb, f3*NK, and f4*Ns

denote the results of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion, respectively [42].
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where η = normal mean, dimensionless.
σ = variance, dimensionless.
Three kinds of experiments, i.e., the high-pressure mercury intrusion experi-

ment, the liquid nitrogen adsorption experiment, and the low-temperature carbon
dioxide adsorption experiment, were performed, and the full-scale pore size distri-
bution data of the three shale samples from the Well “Ning 203”, Longmaxi forma-
tion of Changning-Weiyuan district, Sichuan Basin of China, were obtained by
stitching the three results together according to the effective range of each experi-
ment, where the total volume of pores greater than 100 nm is attributed to the pore
whose radius is closest to 100 nm in the experiments allowing for the difficulty of
curve fitting caused by the severe fluctuations of the pore size data [42]. The values
of η and σ are listed in Table 2. Because the samples “Ning 203-219”, “Ning
203-240”, and “Ning 203-250” are all taken from a depth interval of 2300-2400 m,
the three groups of data in Table 2 are averaged, i.e., η = 0.8055 and σ = 0.9060, to
represent the typical shale pore size distribution in this depth range.

The number of single pipes in shale with the radius range of rin to rin + drin is
expressed in Eq. (7). By integrating in the entire pore size range, the flow rate in
shale is obtained as Eq. (8):

1018ϕcoVco

πrin2Lco
f rinð Þdrin (7)

Q ¼
ð

rin, max

rin,min

1018NϕcoVco

πrin2Lco
f rinð Þdrin (8)

where Vco = apparent volume of a core sample, m3.
Lco = length of a core sample, m.
rin,min = lower limit of integration, which should be larger than 0.19 nm because

the diameter of methane molecules is 0.38 nm [48].
rin,max = upper limit of integration.
The macroscopic-scale mathematical model of shale gas flow can be obtained by

substituting Eqs. (5) and (6) into Eq. (8) as:

Q ¼
ð

rin,max

rin,min

1018 e�5KnND þ 1
1þKn � e�5Kn

� �

Nb þ e�1:8=KnNK þ Kn
1þKn � e�1:8=Kn

� �

Ns

h i

ϕcoVco

πrin3Lcoσ
ffiffiffiffiffi

2π
p e�0:5

Inrin�η

σð Þ2drin

(9)

Literature survey shows that there are several main upscaling methods of flow
models from microscopic to macroscopic scale, i.e.:

Method (1): the commonly used unitary model [12, 18–22] as already mentioned.
Method (2): the sum method of calculating the permeability of every straight

capillary tube [27].

Samples η/dimensionless σ/dimensionless

Ning 203-219 0.9428 1.0890

Ning 203-240 1.3530 1.2100

Ning 203-250 0.1207 0.4189

Average 0.8055 0.9060

Table 2.
Fitting results of η and σ.
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Method Description/equation Advantages Shortcomings

Unitary pipe

model [12]
q ¼ nqh ¼ ϕAb

πRh
2 qh(q, total

flow, m3�s�1; n, the number

of pipes of hydraulic radius

Rh, dimensionless; qh, flow

rate of single pipe, m3�s�1;

ϕ, porosity, dimensionless;

Ab, bulk surface area of

porous media normal to

flow direction, m2; Rh,

hydraulic radius, m)

Simple in formula and

easy for calculation

Negligence of pore

structure, e.g., different

pore shapes, pore

connectivity, etc.

Integral pipe

model (this

chapter)

Q ¼
ð

rin,max

rin,min

1018NϕcoVco

πrin3Lcoσ
ffiffiffiffiffi

2π
p

�e�0:5
Inrin�η

σð Þ2drin

(Q , total flow, kg�s�1; rin,

max and rin,min, the

minimum and maximum

values of the inner radius of

pipes, nm; N, mass flow in a

pipe, kg�s�1; Φco, porosity of

a core sample,

dimensionless; Vco,

apparent volume of a core

sample, m3; rin, inner radius

of a pipe, nm; Lco, length of

a core sample, m; σ,

variance, dimensionless; η,

normal mean,

dimensionless)

Make the consideration

of various pore sizes

happen; easy for

calculation

Negligence of pore

structure, e.g., different

pore shapes, pore

connectivity, etc.

Total addition

model [27]

q ¼ P

i
qi

(q, total flow, m3�s�1; qi,

flow rate of the ith single

pipe, m3�s�1)

Consider the flow rate in

every single pipe

Impractical to implement;

negligence of pore

structure, e.g., different

pore shapes, pore

connectivity, etc.

Model of

statistical sum of

permeability

from each shape

type [49, 50]

kapp,pm
� �

eff
¼

k
x

100
app,pm

� �

slit

� k1�
x

100
app,pm

� �

tube

2

6

4

3

7

5

(kapp,pm, apparent

permeability modified for

ultratight porous media, m2;

x/100, percentage of

rectangular slits pores;

(1�x/100), percentage of

cylindrical pores)

Pore shapes, i.e.,

rectangular slits and

cylindrical tubes, are

taken into account

The quantification of the

percentages of different

pore types using image

analysis tools is hard to

implement; negligence of

various pore sizes

3D fractal model

[51]

Please refer to Eqs. (24)–

(27) in literature [51] for the

specific expressions where

the formulas are complex

Multi-scale pore size

distribution and tortuous

flow line in 3D space of

shale matrix are

characterized

Many parameters to be

determined; negligence of

different pore shapes

Homogenization

model [52, 53]

The homogenization

method is used to upscale

gas flow through two

distinct constituents, a

mineral matrix and organic

matter. A gas flow in a two-

constituent composite

The constituents, i.e.,

mineral matrix and

organic matter, in shale

are taken into account

Multiple assumptions;

redundant processing for

model establishment and

solution
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Method (3): the statistical sum method of the individual permeability from each
shape type [49, 50].

Method (4): the 3D fractal model with variable pore sizes [51].
Method (5): the homogenization method to upscale gas flow through two dis-

tinct constituents, a mineral matrix and organic matter [52, 53].
Method (6): the pore network model including pore size distribution, anisot-

ropy, and low connectivity of the pore structure, etc. in shale [54, 55].
The comparison among them is summarized in Table 3.
After reviewing the upscaling methods in Table 3, it is obvious that the method

used in this work is not a bad compromise when compared to method (1) which is
too simple and coarse, methods (2) and (3) where it is impractical and daunting to
count the size/shape of every single pore with huge computational efforts, method
(5) where complex processing for the model establishment and solution is needed,
and methods (4) and (6) where redundant parameters/information about pore
structure need to be assumed or obtained frommultiple ways. Therefore, on the one
hand, only the pore size distribution experiment is needed for the determination of
the upscaling parameters in this chapter to make the consideration of various pore
sizes happen. On the other hand, the derived model in this chapter is practical to
operate, and the results can thus be readily obtained. However, it does not neces-
sarily mean that there is no drawback for the upscaling method used. For example,
although SEM images of the shale samples show that the pores in the organic matter
are mostly circular [56], various types of pore shapes, e.g., cylindrical, triangular,
rectangular shaped, etc., can be detected in shale samples [50, 57]. Singh et al. [50]
concluded that the geometry of pores significantly influences apparent permeability
of shale and diffusive flux. The study of effective liquid permeability in a shale
system by Afsharpoor and Javadpour [58] confirmed that the assumption of sim-
plified circular pore causes apparent permeability to be significantly overestimated
and the discrepancy between the realistic multi-geometry pore model and the
simplified circular pore model becomes more pronounced when pore sizes reduce
and liquid slip on the inner pore wall is taken into account. Xu et al. [59] developed
a model for gas transport in tapered noncircular nanopores of shale rocks and found
the following: (1) pore proximity induces faster gas transport, and omitting pore
proximity leads to the enlargement of the adsorbed gas-dominated region; (2)
increasing taper ratio (ratio of inlet size to outlet size) and aspect ratio weakens real
gas effect and lowers free gas transport; (3) moreover, it lowers the total transport
capacity of the nanopore, and the tapered circular nanopore owns the greatest

Method Description/equation Advantages Shortcomings

porous medium is

considered, in which a

microscopic unit cell is

periodically repeated

Pore network

model [54, 55]

Generate pore network

models by extracting pore

structure information from

real images or generate

porous media by simulating

the sedimentation and

diagenesis processes and

then incorporate relevant

flow mechanisms into the

gas flow models

Pore size distribution,

anisotropy and low

connectivity of the pore

structure, etc. can be

taken into account

Substantial work for

model establishment;

representativeness and

verisimilitude of pore

network models to the real

pore structures remain a

challenge

Table 3.
Comparison of upscaling methods from microscopic to macroscopic scale.
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transport capacity, followed by tapered square, elliptical, and rectangular
nanopores. To conclude, there is still much room for improvement of the upscaling
method in this work in multiple aspects in future research.

5. Translation of lab-scale results into field-scale ones

With the properties of multi-scale pore structures and various reservoir modes,
the shale gas reservoir is complex in reservoir space and occurrence modes, which
in turn leads to different flow mechanisms in multi-scale spaces. Therefore,
adopting single-scale equations and flow simulation methods will not accurately
reveal the flow mechanism in complex shale gas reservoirs [60]. Jiao et al. [61]
established an effective conversion relation between physical simulation parameters
and field parameters based on similarity criterion to better simulate gas reservoir
development. The ideas in literature [61] are narrated as follows.

First, considering the flow mechanism of shale gas in the reservoir, the selected
characteristic physical parameters are permeability K, porosity ϕ, pore radius r,
length L, original pressure pi, flow rate of gas production q, gas compression factor
Z, reservoir temperature T, standard temperature Tsc, and standard atmospheric
pressure psc. According to the π theory, there are four basic dimensions named
length dimension [L], mass dimension [M], time dimension [T], and temperature
dimension [K]. Therefore, each of π is obtained, and field parameters are analyzed
to deduce physical simulation parameters in the experiment according to the simi-
larity criterion, as shown in Table 4.

Second, based on the similarity criterion, the conversion relation between physical
simulation parameters and field parameters can be established, which is expressed as:

qg ¼
πr2KrgKTscp

2
i

LuZTpsc

LuZTpsc
πr2KrgKTscp2i

q

� �

m

(10)

where m indicates that the parameters inside the brackets are for the physical
simulation.

Finally, choose the core sample “Ning 211-1” for an example to conduct dynamic
physical experiment under different conditions, which is used to verify the

Number Similarity

criterion

Similar attributes Physical significance Value of

physical

simulation

Actual value of

reservoir

1 π1 = ϕ Porosity similarity Determine porosity 0.02–0.2 0.02–0.2

2 π2 = Z Compression similarity Determine model gas 0.9–1.2 0.9–1.2

3 π3 = T/TSC Temperature similarity Determine model

temperature

1–1.1 1.1–1.3

4 π4 = r/L Geometric similarity Determine model size 0.3–1 0.3–1

5 π5 = psc/pi Dynamic similarity Determine original pressure

of model

0.002–0.01 0.002–0.005

6 π6 = pw/pi Dynamic similarity Determine conversion

relation for bottom hole

pressure

0–1.0 0.1–1.0

7 π7 ¼
qLuZTpSC

πr2KKrgTSCp2i

Movement similarity Determine production rate 0–0.5 0.1–0.3

Table 4.
Similarity criterion numerals of the gas reservoir physical simulation.
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rationality of the similarity criterion. The related parameters, values of physical
simulation (qm), converted values of field (qg), and actual values of reservoir (q)
are presented in Table 5.

Figure 5 displays the curves of actual values of reservoir and predicted field results
based on similarity conversion, the latter of which are calculated from the physical
experiment. The results calculated by similarity criterion are basically consistent with
the on-site tested data. It is expected that applying the similarity translation from
physical simulation of gas reservoirs is capable of predicting the development perfor-
mance effectively, showing the rationality of the translation method.

6. Conclusions

Based on our study in this chapter, the following conclusions have been reached:

1.A new concept “wall-associated diffusion” was introduced to the study of gas
flow in shale nanopores, which has practical significance and multiple research

Tsc/K 293.15

Φco 5.6%

rm/m 0.0127

r/m 40

Lm/m 0.0557

L/m 20

Tm/K 298.15

T/K 353.15

pi/(10
6Pa) 3.0745 4.0995 5.0800 6.5750 7.6500 10.2300 12.5900

u/(10�5 Pa�s) 1.1560 1.1785 1.2030 1.2461 1.2817 1.3830 1.4944

Zm 0.9481 0.9316 0.9163 0.8942 0.8795 0.8493 0.8294

Z 0.9747 0.9670 0.9602 0.9507 0.9445 0.9326 0.9254

qm/(ml/s) 0.0344 0.0466 0.0570 0.0746 0.0877 0.1205 0.1450

qg/(ml/s) 785.5063 1055.4281 1278.7645 1649.5661 1919.8761 2579.8383 3055.2185

q/(ml/s) 748.2798 1021.0548 1255.2453 1601.7201 1902.6402 2529.7590 3038.9881

Table 5.
Parameters for application.

Figure 5.
Comparison of actual values of reservoir and predicted field results based on similarity conversion.
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significance. By virtue of this concept, viscous flow, bulk diffusion, surface
diffusion, and Knudsen diffusion were considered in the proposed flow
mechanism scheme for nanoscale shale gas flow, with both division of
mechanical mechanisms in nanopores and partition of flow space taken into
account. Viscous flow and bulk diffusion belong to the bulk phase flow, which
result from gas-gas interactions. In addition, surface diffusion and Knudsen
diffusion are of boundary layer flow, which are associated with gas-wall
interactions.

2.An easy-to-operate coupling method of the flow mechanism scheme
containing four coupling coefficients and thus a coupled shale gas flow model
in nanopores, which applies within the scope of full flow regimes and avoids
segment processing, was proposed.

3.Based on the experimental data of pore size distributions of real shale samples
from a gas field, a new coupled upscaling flow model in macroscopic-scale
shale matrix with the experimentally determined fitting parameters was
established. The model uses smooth functions to fit the full-scale pore size
distribution results to facilitate the upscaling transformation of the model in
nanopores into that in the macroscopic matrix.

4.A case study was presented to show how the lab-scale results are translated
into field-scale ones, revealing the rationality of the translation method used.

In summary, sounder in theoretical bases and better in application effects, the
proposed model is expected to be of practical significance for evaluating the gas
flow capacity in shale matrix and guiding gas reservoir development in gas fields.
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