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Chapter

Discrete Time Sliding Mode
Control
Jagannath Samantaray and Sohom Chakrabarty

Abstract

This chapter discusses the concept of discrete-time sliding mode control
(DTSMC) and its design procedure. It also covers how the states are brought to a
predefined sliding surface mathematically and kept in a region near to the surface
within a small band. This band is termed as an ultimate band in the field of DTSMC,
which denotes the degree of robustness. Researchers have been working to find out
different approaches to reach to that surface, but the most promising and well-
defined way is reaching law approach. The idea of reaching law is discussed briefly
in this chapter with examples for better understanding of the design procedure. In
this chapter, a small introduction of continuous time sliding mode control
(CTSMC) is given. Finally, the current state of the art is presented.

Keywords: sliding mode control, variable structure control, chattering,
reaching law, robustness, quasi-sliding band, relative degree, ultimate band

1. Introduction

The elevator statement about sliding mode control (SMC) is that it is one of the
robust control design techniques which is mathematically well-structured and
assures performance in the presence of certain class of disturbance and uncer-
tainties. Due to this it is used for controlling practical uncertain systems. It is
originated from the concept of variable structure control (VSC). The name VSC
itself describes that there is more than one structure defining a system which
describes the complete behavior of the variable structure systems. In VSC, the
control input is logically so chosen that the final closed-loop system behavior
becomes stable regardless of the natures of the substructures (stable or unstable).
This gives rise to a new system behavior not a part of any of the substructures. This
phenomenon of getting a new system behavior is called sliding mode in the domain
of variable structure control [1–4].

The design procedure of SMC consists of two steps. The first step is to design a
sliding surface appropriately which decides the behavior of the system during
sliding. Then a control action is designed so that all the state trajectories are steered
to the sliding surface in finite time and then forced to stay on the surface. Once the
sliding is established, i.e., the trajectories are on the sliding surface, the system
becomes invariant to modelling inaccuracies and exogenous disturbances. The term
“invariant” is stronger than robustness as it satisfies certain conditions additionally.
The whole design procedure can be observed in three modes or phases, i.e., reaching
mode, sliding mode, and steady-state mode. Reaching mode is the phase where the
state trajectories are driven to the sliding surface. It is also known as hitting mode or
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non-sliding mode. In sliding mode, the trajectories are restrained and kept moving
along the surface towards the equilibrium point or reference point. Finally, in
steady-state mode, the system reaches its final state, which would be zero-error
state, constant offset state, or limit-cycle state. Different modes of VSC are shown
in Figures 1 and 2.

SMC is always being judged by its steady-state mode, more specifically for
chattering. Chattering is a high-frequency oscillation around the equilibrium point
which arises due to the discontinuous nature of the control action. Due to this, the
well-designed control action stands unsuitable for many practical applications. This
behavior creates a problem of wear and tears in the mechanical parts, vibrations in
the machines or flapping of wing vanes in aerospace, hitting effect, etc. Hence, it is
unwanted in the light of implementation. The discontinuous nature demanded by
the control action cannot be delivered by any real physical actuator due to its finite
bandwidth. The numerical computation done by a computer is also limited by

Figure 1.
Trajectories of ideal variable structure systems.

Figure 2.
Trajectories of practical variable structure systems.
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certain clock cycles. A lot of works have been done in the field of chattering
elimination and reduction. Schemes like continuous approximation around the
sliding surface (quasi-sliding mode) [1–3], higher-order sliding mode [5–8],
discrete-time sliding modes are a few way outs for the process of chattering. Here in
this chapter, the concept of discrete-time sliding mode (DTSM) design is discussed.
Readers can explore more in the field of continuous time higher-order sliding mode
whose theory is rich and well-structured.

2. Discrete-time sliding mode control

Control system designs are streaming from continuous to discrete design with the
invention of digital circuitry. High-performance computing devices, portablemicropro-
cessors, and plug and play features make the sophisticated design easy to implement.
Discrete-time slidingmode control is the obvious transformation from the continuous
time slidingmode control for the real-time application. Like continuous time sliding
mode control, DTSMC is also easy to design and also well-suited for implementation.

3. Control problem formulation

Consider an uncertain discrete-time system:

x kþ 1ð Þ ¼ Ax kð Þ þ B u kð Þ þ f kð Þ½ � (1)

where the states x kð Þ∈
n, control input u∈

m, f ∈
m, and the output y∈.

f kð Þ is the disturbance coming from an exogenous system and is upper bounded
by fm. A, B are system matrix and input matrix, respectively, and are having
appropriate dimensions. Here the problem is either to stabilize the system, i.e.,
lim k!∞x kð Þ ¼ 0, or to track a time-varying trajectory, i.e., lim k!∞x kð Þ ¼ xd kð Þ,
where xd kð Þ is the desired trajectory. But tracking can be treated as error stabiliza-
tion mathematically, i.e., by making lim k!∞e kð Þ ¼ 0 where e kð Þ ¼ x kð Þ � xd kð Þ.
The system (1) will be transferred to error space e kþ 1ð Þ ¼ Ae kð Þ þ Bu kð Þ þ f kð Þ þ
Axd kð Þ � xd kþ 1ð Þ. So here in this chapter, only stabilization is addressed for single-
input single-output system.

3.1 Controller design by Gao’s reaching law

3.1.1 Design procedure

Here the aim is to design a control law u kð Þ such that lim k!∞x kð Þ ¼ 0. The first
step is to choose a sliding variable as

s kð Þ ¼ cTx kð Þ (2)

where c is a sliding variable design parameter. Next step is to choose Gao’s
reaching law [9].

s kþ 1ð Þ ¼ αs kð Þ � βsign s kð Þ þ d kð Þð (3)

where α∈ 0, 1ð Þ and β>0 and d kð Þ are assumed to be the same as the uncertain
quantity cTBf kð Þ and are bounded by dm ¼ ∣cTBfm∣. A detailed selection procedure
of α and β is given in the next section. Using Eqs. (1)–(3), one can write
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s kþ 1ð Þ ¼ cTx kþ 1ð Þ ¼ cTAx kð Þ þ cTB u kð Þ þ f kð Þ½ � (4)

cTAx kð Þ þ cTB u kð Þ þ f kð Þ½ � ¼ αs kð Þ � βsign s kð Þ þ d kð Þð (5)

and control input can be derived as

u kð Þ ¼ � cTB
� ��1

cTAx kð Þ � αs kð Þ þ βsign s kð Þð �
�

(6)

By applying this control input (6), states are brought to a band around the
sliding surface s kð Þ ¼ 0 by assuming cTB to be non-singular.

3.1.2 Procedure to choose the sliding variable parameter

The system (1) can be transformed to regular from by using QR factorization
method [10]. There exists an invertible linear operator, T, which transforms system
(1)–(7):

x1 kþ 1ð Þ ¼ a11x1 kð Þ þ a12x2 kð Þ

x2 kþ 1ð Þ ¼ a21x1 kð Þ þ a22x2 kð Þ þ b2 u kð Þ þ f kð Þ½ �
(7)

where a11 ∈
n�mð Þ� n�mð Þ, a12 ∈

n�mð Þ�m, a21 ∈
m� n�mð Þ, a22 ∈

m�m, and
b2 ∈

m�m. b2 is assumed to be non-singular.
cT ¼ c1 Im½ � should be chosen such that the nominal closed loop system (i.e.,

without disturbance) should be stable. The sliding variable is chosen as

s kð Þ ¼ c1x1 kð Þ þ Imx2 kð Þ (8)

where c1 ∈
m� n�mð Þ and Im are a unity matrix of order m. During the period of

ideal sliding,

c1x1 kð Þ þ Imx2 kð Þ ¼ 0

) x2 kð Þ ¼ �c1x1 kð Þ
(9)

Then the system in closed loop is described by

x1 kþ 1ð Þ ¼ a11 � a12c1ð Þx1 kð Þ (10)

which guarantees the asymptotic stability by choosing negative real value of the
spectrum of a11 � a12c1ð Þ, i.e., Re σ a11 � a12c1ð Þ½ �<0.

3.1.3 Analysis of reaching law

Reaching law for a continuous plant is given by

_s tð Þ ¼ �μs tð Þ � ksign s tð Þð Þ (11)

The discrete version of Eq. (11) is proposed by Gao [9] as

s kþ 1ð Þ � s kð Þ ¼ �μτs kð Þ � kτsign s kð Þð Þ

s kþ 1ð Þ ¼ 1� μτð Þs kð Þ � kτsign s kð Þð Þ
(12)

s kþ 1ð Þ ¼ αs kð Þ � βsign s kð Þð Þ (13)

where τ>0 is the sampling time. μ>0 and k>0. α ¼ 1� μτ and β ¼ kτ>0.
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He proposed few attributes of discrete-time variable structure control to get the
trajectories of satisfactory nature. The following attributes are the basis of discrete-
time reaching law. If the following conditions are satisfied by the control law, then
it is said to achieve the discrete-time sliding mode.

1.The discrete-time control drives the state trajectories monotonically towards
the sliding surface from anywhere in the state space and crosses the surface in
finite time.

2.From the point of crossing the surface, trajectories will cross the surface in
each sampling time, which makes a zigzag motion around the surface.

3.The amplitude of the zigzag oscillation about the surface is non-increasing and
restrained the trajectories within a priori band.

The motion of the system is said to be quasi-sliding mode if it satisfies the
attributes (2) and (3). Ultimate band denotes the steady-state behavior of the
system where the trajectories stay within it for all time in future. If the arithmetic
value of the ultimate band is zero, then it is called the ideal quasi-sliding mode.

These attributes are fundamental basis on which the concept of DTSMC stands,
but many researchers have already designed it in several other ways.

Remark 1: The value of α and β should be chosen such that all the attributes
should be satisfied. To satisfy those attributes, α∈ 0, 1ð Þ must be chosen. For exam-
ple, for ∣α∣> 1, monotonic nature catered by first attribute may be violated. Simi-
larly, for α ¼ 0, the sliding variable oscillates in a constant band of β which again
violates the first attribute.

Remark 2: The sign term in Eq. (13) confirms the satisfaction of the second and
third attributes. But β should be chosen appropriately; otherwise the third attribute
may not be satisfied. This reaching law is also known as switching reaching law as the
sliding variable switches around the sliding surface s kð Þ ¼ 0, i.e., from positive to
negative or vice versa. With higher sampling rate, the control input (6) may create a
problem during implementation as the actuator cannot be pushed for such oscillation.

Remark3: For reaching law(3),βmust be chosenmore than 1þα
1�α

dmwhered kð Þ≤ dm.

The explanation is given below.
As per the second and third attributes, if s kð Þ>0, then s kþ 1ð Þ<0 and

s kþ 2ð Þ>0 must hold. If by applying control input derived in Eq. (6), s kð Þ becomes
approximately zero and considering the system is affected by maximum value of
disturbance, i.e., dm, then one finds from Eq. (3)

s kþ 2ð Þ ¼ α2s kð Þ � αβsign s kð Þð Þ � βsign s kþ 1ð Þð Þ þ αd kð Þ þ d kþ 1ð Þ (14)

For positive and small value of s kð Þ, further from Eq. (14)

s kþ 2ð Þ ¼ �αβsign s kð Þð Þ � βsign s kþ 1ð Þð Þ þ αd kð Þ þ d kþ 1ð Þ (15)

To show s kþ 2ð Þ>0 considering extreme value of disturbance �dm, the right-
hand side of Eq. (15) must be greater than zero:

or, � αβ þ β � αdm � dm >0

) β 1� αð Þ � 1þ αð Þdm >0

) β>
1þ α

1� α
dm

(16)

5

Discrete Time Sliding Mode Control
DOI: http://dx.doi.org/10.5772/intechopen.91245



The value of β comes out same for the case s kð Þ<0, when s kþ 1ð Þ>0 and
s kþ 2ð Þ<0 must hold.

Remark 4: The ultimate band (δ) for the reaching law (13) is given by

δ ¼ β

1þα
[10].

By applying the control input, the sliding variable s kð Þ becomes a very less value,
i.e., δ; then for positive value of s kð Þ and dm, one finds from Eq. (13)

�δ ¼ αδ� β

) �δ 1þ αð Þ ¼ �β

) δ ¼
β

1þ α

(17)

Similarly, the ultimate band for the reaching law (3) can be derived as δ ¼
β þ dm by taking s kð Þ ¼ 0.

Remark 5: For nominal system (without disturbance) with the reaching law
(13), states are converged to zero asymptotically, but the sliding variable is
converged to zero in finite time.

Justification: By choosing an appropriate value of α and very small value of β and
with the control input in Eq. (6), finite time convergence is achieved. Once it is
achieved, then s kþ 1ð Þ ¼ s kð Þ ¼ 0:

s kþ 1ð Þ ¼ cTAx kð Þ þ cTBu kð Þ ¼ 0 (18)

Equivalent control is found as

ueqv kð Þ ¼ � cTB
� ��1

cTAx kð Þ (19)

Substituting Eq. (19) in system (1), one gets

x kþ 1ð Þ ¼ I � B cTB
� ��1

cT
h i

Ax kð Þ (20)

The value of c should be chosen such that the eigenvalues of should lie within a
unit circle. Once this is satisfied, the asymptotic convergence is guaranteed.

Example 1: Let us take a discrete-time state space model:

x kþ 1ð Þ ¼
0 1

�1 �2

� �

x kð Þ þ
0

2

� �

u kð Þ þ f kð Þ½ � (21)

Here the aim is to stabilize the states by using discrete-time sliding mode con-
trol. f kð Þ is the disturbance which is upper bounded by 0:01. The value of cT is
chosen as 0:1 � 1½ �. The value of α is chosen as 0:1, and the value of β is taken as
0:2544 as per Remark 3. The value of ultimate band is found to be 0:4544. Simula-
tion is done in MATLAB/Simulink in discrete setting with sampling time 1 ms. With
the control input derived in Eq. (6), stabilization is done within an ultimate band.
Initial value of states is taken as �1 1½ �. The amount of control effort is calculated

by taking
PT

k¼0∣u kð Þ∣, where simulation is run for T seconds.
From Figures 3 and 4, it is clear that the sliding variable cross-recrosses the

s kð Þ ¼ 0 in each sampling time and reaches the sliding surface in finite time and
stays within a band. It can also be seen that it is bounded by the calculated ultimate
band. States of the system are within a band and can be seen in Figure 5. The
control input is shown in Figure 6 and the control effort is found to be 0.2642 when
the simulation is run for 2 s.
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3.2 Controller design by Utkin’s reaching law

Prof. Drakunov and Prof. Utkin proposed a non-switching reaching law where
the sliding variable s kð Þ reaches to the sliding surface s kð Þ ¼ 0 in one time step
rather than in finite time suggested in [9]. It is motivated by the concept of dead-
beat control in discrete-time concept where the steady-state output is attained by
the minimal use of control law [11]. Reaching law is given as

s kþ 1ð Þ ¼ 0 (22)

For uncertain disturbance affected system, reaching law is given as

s kþ 1ð Þ ¼ d kð Þ (23)

For the system (1) and using the reaching law (23), the control law is modified as

u kð Þ ¼ � cTB
� ��1

cTAx kð Þ (24)

Figure 3.
Sliding variable s(k) evolution for Gao’s reaching law.

Figure 4.
Magnified part of sliding variable s(k) of Figure 3
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Remark 6: The ultimate band for Eq. (23) is dm which is lesser than that of
ultimate band found from Gao’s reaching law.

Remark 7: More control effort may be required as it steers the trajectories to
zero in a single step rather than in finite number of steps.

Remark 8: There is no switching demanded across the sliding surface. Hence the
control input derived in Eq. (24) becomes more feasible in higher sampling rate.

To reduce the control effort, following control input umod kð Þ can be given to the
system:

umod kð Þ ¼

u kð Þ if u kð Þ≤ um

um
u kð Þ

∣u kð Þ∣
if u kð Þ> um

8

<

:

(25)

where um >0 is the maximum value of control that can be given to the system
and u kð Þ is the control input derived in Eq. (24). In this case the system does not
converge to the ultimate band in a single step.

System (21) is considered with the control input derived in Eq. (24) with the
same parameters. Ultimate band is calculated as 0:02. From Figure 7, it can be

Figure 5.
Evolution of states of the system using Gao’s reaching law.

Figure 6.
Control input for Gao’s reaching law.
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noticed that the sliding variable does not have zigzag motion in each sampling time
like the sliding variable found in Figure 4 which shows the non-switching type.
Trajectories of states are shown in Figure 8. Control input is also non-switching
type which makes it more practically implementable and is shown in Figure 9. The
control effort is numerically found to be 0.0243 which is lesser than that of the
Gao’s control effort for this case. But it should be noted that the control effort may
be higher for other systems. This is explicitly mentioned in the Remark section.

3.3 Controller design by Bartoszewicz’s reaching law

Prof. Andrzej Bartoszewicz in [12] suggested a non-switching type reaching law
which is linear in nature. Reaching law conditions is given as

s kð Þ> ν ) �ν≤ s kþ 1ð Þ< s kð Þ

s kð Þ< � ν ) s kð Þ< s kþ 1ð Þ< ν

or, ∣s kð Þ∣< ν ) ∣s kþ 1ð Þ∣ ≤ ν

(26)

Figure 7.
Sliding variable s(k) evolution for Utkin’s reaching law.

Figure 8.
States of the system using Utkin’s reaching law.
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for ν>0. Reaching law is proposed by considering a priori function P f kð Þ and is

given as

s kþ 1ð Þ ¼ P f kþ 1ð Þ þ d kð Þ

P f kð Þ ¼

l ∗ � k

l ∗
s 0ð Þ for k< l ∗

0 for k≥ l ∗

8

<

:

(27)

where l ∗ is a positive integer and must satisfy the condition l ∗ < s 0ð Þ
2dm

.

Control input required to stabilize the states in system (1) with this reaching law
is derived as

u kð Þ ¼ � cTB
� ��1

cTAx kð Þ � P f kþ 1ð Þ
� �

(28)

Remark 1: The ultimate band for the reaching law (27) is dm.
Remark 2: Here the states may or may not hit the sliding surface s kð Þ ¼ 0.
Remark 3: Due to the linear control input derived in Eq. (28), the implementa-

tion becomes easy for higher sampling rate.

Figure 9.
Control input for Utkin’s reaching law.

Figure 10.
Sliding variable s(k) evolution for Bartoszewicz’s reaching law.
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Remark 4: The term l ∗ shows the rate of decay and is a tuning parameter which
does a control bargain in terms of amount of control effort and faster convergence.
Lesser the value of l ∗ , more the control input and vice versa.

By taking the same example as in Eq. (21), control input derived in Eq. (28) is
used for stabilization. l ∗ is chosen as 0:1. Sliding variable is shown in Figure 10.
Ultimate band is found to be 0:02 which is clearly visible in the magnified part of
sliding variable shown in Figure 11. States stay within a band near to zero and the
trajectories are shown in Figure 12. Control input is shown in Figure 13 and the
control effort is found to be 0:037. The remark 2 explanation can be seen in
Figure 11. If we take l ∗ ¼ 0:1, then control effort will be 0:14. Hence the designer
should take a good care before choosing the value of l ∗ .

4. Relative degree two discrete-time sliding variable

Higher relative degree-based reaching laws are explored in the search for better
robustness in terms of ultimate band and finding the benefits of using the delayed

Figure 11.
Magnified part of sliding variable s(k) of Figure 10.

Figure 12.
Evolution of states of the system using Bartoszewicz’s reaching law.
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output instead of using the current output of interest. Many advancements are done
in this domain [13–17]. But here only the relative degree two (RD2) is explained
briefly. Readers are encouraged to study the advancement in this domain (from the
reference citations above).

The concept of reaching law discussed in the Section 3 is of relative degree one
(RD1) as the control input appears at the unit delay of the output. Similarly, in RD2
the control input and output are just two steps far. In general, relative degree r of an
output means that the control input u kð Þ appears first time at the rth delay of the
output. Here the sliding variable is denoted as s2 kð Þ to signify the relative degree
two. The sliding variable is considered as s2 kð Þ ¼ cT2 x kð Þ, where c2 is chosen such

that cT2 B ¼ 0 but cT2AB 6¼ 0. With this sliding variable, control input does not appear
on the kþ 1ð Þth instant but appears first time in the kþ 2ð Þth instant of s2 kð Þ.
Reaching law for the sliding variable is suggested in [13]. Using the system (1) and
with sliding variable s2 kð Þ ¼ cT2 x kð Þ, one can get

s2 kþ 1ð Þ ¼ cT2 x kþ 1ð Þ ¼ cT2Ax kð Þ þ cT2 B u kð Þ þ f kð Þ½ � ¼ cT2Ax kð Þ (29)

Here the control input does not appear in s2 kþ 1ð Þ but appears in s2 kþ 2ð Þ.
Hence we should check for s2 kþ 2ð Þ:

s2 kþ 2ð Þ ¼ cT2Ax kþ 1ð Þ ¼ cT2A
2x kð Þ þ cT2AB u kð Þ þ f kð Þ½ � (30)

Here the control input appears in the dynamics of s2 kþ 2ð Þ, so it is RD2:

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ

�β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ
(31)

where ∣d2 kð Þ∣ ≤ d2m ¼ ∣cT2AB∣fm. The reaching law (31) is analyzed, and the
dynamics of states during reaching and at steady-state are explained via the follow-
ing lemmas [13], and estimate of robustness is given by the calculation of ultimate
band:

Lemma 1 [13]: If β2 >
d2m
1þα

and sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ, then ∣s2 kþ 2ð Þ∣ is

strictly smaller than ∣s2 kð Þ∣ or s2 kþ 2ð Þ crosses the hyperplane s2 kð Þ ¼ 0.
Proof: For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ 1, from Eq. (31) we find

Figure 13.
Control input for Bartoszewicz’s reaching law.
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s2 kþ 2ð Þ≤ α2s2 kð Þ � 1þ αð Þβ2 þ d2m < s2 kð Þ (32)

since β2 >
d2m
1þαð Þ.

For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ �1, from Eq. (31) we find

s2 kþ 2ð Þ≥ α2s2 kð Þ þ 1þ αð Þβ2 � d2m > s2 kð Þ (33)

From the above two inequalities, it is clear that ∣s2 kþ 2ð Þ∣< ∣s2 kð Þ∣ or
sign s2 kþ 2ð Þð Þ ¼ �sign s2 kþ 1ð Þð Þ ¼ �sign s2 kð Þð Þ, meaning that s2 kþ 2ð Þ crosses the
hyperplane.

The above lemma signifies that if both x kð Þ and x kþ 1ð Þ lie on the same side of
the sliding hyperplane, then the state at the next sample instant, i.e., x kþ 2ð Þ, is
either on the same side and nearer to the surface or lies on the opposite side of the
sliding hyperplane. With increasing k, there exists an instant where the states will
cross the sliding hyperplane, s2 kð Þ ¼ 0 for a finite value of k.

Lemma 2 [13]: If β2 >
d2m
1�α

and sign s2 kþ 1ð Þð Þ ¼ �sign s2 kð Þð Þ, then

sign s2 kþ 2ð Þð Þ ¼ sign s2 kð Þð Þ.
Proof: With sign s2 kþ 1ð Þð Þ ¼ �sign s2 kð Þð Þ, from Eq. (31), we get

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ

� β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ

¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ þ β2sign s2 kð Þð Þ þ d2 kð Þ

¼ α2s2 kð Þ þ 1� αð Þβ2sign s2 kð Þð Þ þ d2 kð Þ

(34)

Since β2 >
d2m
1�α

, then for any ∣d2 kð Þ∣< d2m, we get sign s2 kþ 2ð Þð Þ ¼ sign s2 kð Þð Þ.

This lemma shows that β2 >
d2m
1�α

is the necessary and sufficient condition for

crossing and recrossing the sliding hyperplane at each successive instant, i.e.,
achieving the quasi-sliding mode as defined in [9]. This is because the condition on
β2 in Lemma 1 is already covered by β2 in Lemma 2.

The ultimate band δ2 for the sliding surface s2 kð Þ indicates the robustness of the
system. It is the maximum value that s2 kð Þ can attain on either side of s2 kð Þ ¼ 0 and
can be calculated by putting s2 kð Þ ¼ δ2 and maximizing the disturbance in a bid to
maximize the value of s2 kþ 2ð Þ. Hence

δ2 ¼ α2δ2 � αβ2 þ β2 þ d2m (35)

This leads to

δ2 ¼
1� αð Þβ2 þ d2m

1� α2ð Þ
(36)

4.1 Design procedure

Here the aim is to design a control law u kð Þ such that lim k!∞x kð Þ ¼ 0. Initially a
sliding variable is chosen as

s2 kð Þ ¼ cT2 x kð Þ (37)

where c2 is a design parameter. The next step is to choose the RD2 reaching law [13]:

13

Discrete Time Sliding Mode Control
DOI: http://dx.doi.org/10.5772/intechopen.91245



s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ � β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ (38)

where α∈ 0, 1ð Þ and β2 >
d2m
1�α

and d2 kð Þ are assumed to be the same as cTABf kð Þ

and are bounded by dm ¼ ∣cTABfm∣. Using Eqs. (1), (37), and (38), one can write

s2 kþ 1ð Þ ¼ cT2 x kþ 1ð Þ ¼ cT2Ax kð Þ þ cT2 B u kð Þ þ f kð Þ½ � ¼ cT2Ax kð Þ (39)

s2 kþ 2ð Þ ¼ cT2Ax kþ 1ð Þ ¼ cT2A
2x kð Þ þ cT2AB u kð Þ þ f kð Þ½ � (40)

cT2A
2x kð Þ þ cT2AB u kð Þ þ f kð Þ½ � ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ

�β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ
(41)

Control input is derived as

u kð Þ ¼ � cTAB
� ��1

cT2A
2x kð Þ � α2s2 kð Þ þ αβ2sign s2 kð Þð Þþβ2sign s2 kþ 1ð Þð Þ�

�

(42)

By applying this control input (42), states are brought to zero by assuming cTB is
non-singular.

Remark 1: Once the sliding happens, s2 kð Þ becomes zero. This guarantees
x1 kð Þ ¼ 0 and x2 kð Þ ¼ 0 in the same time instant. This is shown in [13]. In the
presence of disturbance, finite time bounded stability is achieved instead of finite
time stability [13].

Remark 2: The ultimate band δ2 found in case of RD2 for the reaching law (12)
is always smaller than the ultimate band δ1 found in case of RD1 for the
reaching law (13).

This can be shown mathematically with the help of Eqs. (16), (17) and (36):

δ1 ¼ β þ dm1 >
2dm1

1� α
(43)

where dm1 ¼ kcTBkfm.

δ2 ¼
1� αð Þβ2 þ dm1

1� α2ð Þ
>

2dm2

1� α2
(44)

where dm2 ¼ kcTABkfm. By multiplying ρ> 1 in the right-hand side of inequal-
ities (43) and (44), relationships can be transformed to equalities:

δ1 ¼ ρ
2dm1

1� α
(45)

δ2 ¼ ρ
2dm2

1� α2
(46)

δ2

δ1
¼

2dm2

2dm1 1þ αð Þ
≤

p

1þ αð Þ
(47)

where p ¼ kcA12k>0, it is proved that δ2 < δ1. Detailed proof is explained in [8].

4.2 Results and discussions

System (21) is again taken for showing the results of RD2 reaching law-based
design. Here cT2 ¼ 1 0½ � is chosen. α and β are taken as 0:1 and 0:02544, respec-
tively. The ultimate band is calculated as 0:04131 shown in Figure 15 which is very
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Figure 15.
Magnified part of sliding variable s(k) of Figure 14.

Figure 14.
Sliding variable s(k) evolution for RD2.

Figure 16.
States of the system using RD2 sliding variable.
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less than ultimate band found in the case of Gao’s reaching law as 0:4544 shown in
Figure 4. Time series data of RD2 sliding variable is shown in Figure 14, and the
magnified part is shown in Figure 15. The states are finite-time bounded within a
band too which is shown in Figure 16. The control input required to stabilize is
given in Figure 17, and the amount of control effort is found to be 0:0225.

5. Conclusions

In this chapter, three most popular reaching laws, i.e., Gao’s, Utkin’s, and
Bartoszewicz’s reaching law in relative degree one, are discussed. In addition to that
state-of-the-art research in relative degree two sliding variable for Gao’s is
discussed. Comparison shows better performance in terms of finite time ultimate
boundedness of states and reduced ultimate band of state variable in case of RD2.
The concept of ultimate band, finite-time bounded stability and requirement of
control effort for all the reaching laws are briefly explained. Examples are given
with simulation results for all the cases which show the behavior of the closed-loop
system.
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Figure 17.
Control input using RD2 sliding variable.
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