We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Quantized Neural Networks and
Neuromorphic Computing for

Embedded Systems

Shiya Liu and Yang Yi

Abstract

Deep learning techniques have made great success in areas such as computer
vision, speech recognition and natural language processing. Those breakthroughs
made by deep learning techniques are changing every aspect of our lives. However,
deep learning techniques have not realized their full potential in embedded systems
such as mobiles, vehicles etc. because the high performance of deep learning tech-
niques comes at the cost of high computation resource and energy consumption.
Therefore, it is very challenging to deploy deep learning models in embedded
systems because such systems have very limited computation resources and power
constraints. Extensive research on deploying deep learning techniques in embedded
systems has been conducted and considerable progress has been made. In this book
chapter, we are going to introduce two approaches. The first approach is model
compression, which is one of the very popular approaches proposed in recent years.
Another approach is neuromorphic computing, which is a novel computing system
that mimicks the human brain.

Keywords: machine learning, deep learning, model compression, algorithms,
pattern recognition, neuromorphic computing

1. Introduction

Deep learning is a branch of machine learning that is inspired by the biological
processes of human brain and it is not a new concept. The reason it was not popular
earlier is because there were not enough computational power and data available
many years ago. With the development of the semiconductor industry and Internet,
the stronger computational power and tremendous data generated by the Internet
make the use of deep learning techniques possible [1-10].

Even though deep learning techniques have made great success in many fields,
we still have not realized their full potential, especially in embedded systems
because such systems do not have enough computation power. In the era of mobile
computing, enabling deep learning techniques running on mobile devices is very
important and a lot of researchers have been working on this area [4, 6]. Researches
have been conducted in two directions. The first direction aims to reduce model size
and computation of deep learning models. The second direction is to design new
hardware architectures that have much stronger computation power. In this chap-
ter, we are going to introduce two approaches. The first technique is quantization,

1 IntechOpen

Intelligent System and Computing

which is used to reduce the computation and model size of deep learning models.
The second technique is neuromorphic computing, which is a new hardware archi-
tecture to enhance the computation power.

2. Neural network

Artificial neural network is a computing system that is capable of mimicking the
human brain. The purpose of an artificial neural network is to identify patterns in
input data and learn an approximate function that maps inputs to outputs. The most
basic building units of neural network are neurons, which have inputs, outputs and
a processing unit. To better learn complicated patterns in input data, a neural
network consists of a huge number of neurons, which are organized into layers of
neurons [11, 12]. These layers of neurons are stacked on each other so that the
output of a layer is the input of the following layer. A neuron in a layer is connected
to multiple neurons in previous layer in order to receive data from those neurons.
Data received from neurons in previous layer are multiplied by corresponding
weights and the product results are accumulated together to generate an output.

2.1 Single neuron

The most basic building unit of a neural network is neuron. A neuron receives
data from multiple neurons from previous layer and each of these data is multiplied
by a weight. Then, these weighted data are accumulated together to generate an
output. A non-linear function is applied to the output before the output is sent out
to other neurons. More details about why we need a non-linear function are
presented in Section 2.3. The working mechanism of a single neuron can be
expressed as,

Out = Zwixi +b (1)

where x; is the 7y, input, w; is the weight corresponding to iy, input, b is the bias
value and Out is the accumulated output.

Figure 1 illustrates a single neuron with three inputs where x4, x, and x3 are the
three inputs and w1, w, and w3 are weights corresponding to inputs x4, x2 and x3.
The output of this neuron can be computed using Eq. (1).

WaX2

AE
S NP ESp ISP PP |

/ = ‘x\
| > \
=

3
+
=3

=

Figure 1.
Single neuron with three inputs.

2

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772/intechopen.91835

Input Layer Hidden Layer Output Layer

Figure 2.
Neural network with hidden layer.

2.2 Multilayer perceptron

Multilayer perceptron (MLP) is a kind of neural network that has at least one
layer of neurons between the input and output layer. Hidden layers are layers
between the input and output layer. The reason why multilayer perceptron is
introduced is that it makes a neural network much more powerful and is able to
learn very complicated patterns in input data. If there is no layer between the input
and output layer, the input is transformed to output by a linear transformation
function and the neural network can only work on linearly separable data. To enable
neural network to handle data that are not linearly separable, we need to have at
least one layer between the input and output layer. Meanwhile, non-linear functions
are applied to the outputs of hidden layers. Let us take the MLP neural network in
Figure 2 as an example. This neural network has three inputs, two outputs and
one hidden layer with four neurons. Lines represent connections between neurons.
Each connection has an associated weight and we use weight matrices to represent
the connections between the input, hidden and output layer.

The behaviour of the neural network in Figure 2 can be expressed mathemati-
cally using Eq. (2).

y = Wy -hi+ by

where 0 is the non-linear activation function; symbol - is the dot product
between two matrices; W is the weight matrix between the input and hidden layer;
W is the weight matrix between the hidden and output layer; /4 is the output of the
hidden layer; x is the neural network input and y is the neural network output.

Input x is mapped to four neurons by a weight matrix W first and then each
neuron is applied a non-linear activation function. /4 is the output of the hidden layer
and this output is multiplied by another weight matrix W to obtain final result y.

2.3 Non-linear activation function

Non-linear activation function [13, 14] is very important for MLP. Without a
non-linear activation function, neural network does a linear transformation from

3

Intelligent System and Computing

input to output no matter how many hidden layers exist between the input and
output layer. It is because the linear transformation of a linear transformation is still
a linear transformation and thus any number of hidden layers can be deducted to a
single linear transformation. Let us take the MLP neural network in Figure 2 as an
example. Without non-linear activation, the neural network can be expressed
mathematically as,

l’l1:W1'X+b1
(3)

y =Wy -hi+b;

Substituting /1 with Wy - x + by, we can have,
y:W2‘<W1'x+b1)+b2 (4)

:>y:W2-W1-x+W2-b1+b2

Assume, W = W;1- Wy and b = W, - b1 + bs,

y=W-x+b (5)

Therefore, the MLP neural network in Figure 2 can be expressed mathematically
as a single linear transformation from input to output.

2.4 Types of hidden layers

In MLP neural networks [15], there are hidden layers between the input and
output layer and these hidden layers play a very important role in performances of
MLP neural networks. There are many different types of hidden layers such as
convolutional layers, fully-connected layers, pooling layers and so on. In this sec-
tion, we are going to present more details about convolutional layers and fully-
connected layers.

2.4.1 Fully-connected layers

In fully-connected layers, each neuron is connected to all neurons in previous
layers and each connection has an associated weight. Each output of a neuron from
previous layers is multiplied by a weight associated with the connection. Then, the
product result is accumulated together.

Let us take the hidden layer of MLP neural network in Figure 2 as an example.
The hidden layer in Figure 2 is a fully-connected layer. Each neuron in the hidden
layer connects all three inputs in the input layer and generates one output. The
weight matrix is represented in Eq. (6). In the weight matrix, each row represents
the weights of a neuron and thus the matrix size is 4 x 3 since there are four outputs
and three inputs.

w1 Wi Wi3
Wy Wxn W3

W = (6)
W31 W3 W33

W41 W42 W43
The input can be represented as matrix that has the size of 3 x 1.

X = [x1 X) .’)C3] (7)

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772 /intechopen.91835

Mathematically, fully-connected layer is computed as a matrix multiplication,
Out =W -X (8)

2.4.2 Convolutional layer

The convolutional layer is a layer used in many deep learning applications,
especially in computer vision [1, 2, 16-18]. In computer vision, processing and
understanding an image is a major task. An image has three dimensions, which are
width, height and channel. Meanwhile, an image is highly structured and has strong
spatial dependency [11].

The convolution layer has a group of kernels and each of these kernels has three
dimensions, which are width, height and channel. The width and height of a kernel
are hyper-parameters defined by designers. The size of a channel is equal to the
channel size of previous layer. Unlike a fully-connected layer, each neuron in a
convolutional layer is only connected to a small spatial region of neurons but all
channels in the previous layer. The size of this spatial region depends on the width
and height of each kernel. Each kernel slides over the whole image with a specific
stride to extract features such as edge feature from the image. Therefore, each
kernel extracts a specific feature we want to obtain from each local region.

Let us use Figure 3 above as an example to demonstrate how convolution layer
works. In Figure 3, the image only has one channel with size 6 x 6 x 1 and there is
one kernel with size 3 x 3 x 1. Assume the weight of this kernel is

1 0 1
W=|(0 1 0 9)
1 0 1

Then, the weight matrix W is multiplied by the pixels of a small region in the
image element-wise and then these product results are accumulated together.
Assume we are applying our kernel on the yellow region of the image in Figure 3.
Then, we can get the output Out using Eq. (10),

Out =WoX

Out=1x04+0x1+4+1x0+
O0x04+1x1+0x1+
1x14+0x1+1x1=3

(10)

where © represents element-wise product between two matrixes.

oOf 1| O

of 1] 1

1] 1|1

Figure 3.
Image and convoluted output.

Intelligent System and Computing

Convolution layer has a couple of advantages compared to other layers when
dealing with images. These features make the convolution layer very popular in the
area of computer vision. First of all, convolutional layers need much less weights
compared to fully-connected layers. In a fully-connected layer, a neuron is
connected to all neurons in previous layers. If the dimension of previous layer is
very large, the number of weights required by the fully-connected layer is very
large since the total number of weights is equal to the number of neurons in
previous layer times the number of neurons in fully-connected layer. Secondly, the
convolution layer focuses on local spatial regions instead of the whole image and
many applications benefit from this characteristic. For example, when dealing with
object detection in an image, we only need to focus on regions where the object
appears and other regions such as background are not needed when we are trying to
detect the object in an image. Thirdly, the convolution layer is translation invariant.
It means that the responses of a kernel to an object are the same regardless the
location of the object in an image.

3. Model compression

In the era of mobile computing, enabling deep learning techniques running on
mobile devices is very important. In general, large and complicated models tend to
have high performance, but it increases the computation requirement dramatically.
Embedded systems do not have sufficient computation and memory resource to
support the model complexity of a high-performance deep learning model. There-
fore, deploying deep learning models in embedded systems without sacrificing
much performance has been a hot research topic [6, 19-22].

3.1 Model quantization

Deep learning models use floating-point arithmetic in both training and infer-
ence phases. Floating-point arithmetic needs many computation resources, which is
one of the reasons why deploying deep learning models in embedded systems is
difficult. To address this issue, researchers have proposed many approaches
[4-6, 23-29] to replace the floating-point arithmetic during the inference phase.
Low bit-precision arithmetic [30-32] is one of those approaches.

In the low-bit arithmetic approach, floating-point numbers and floating-point
arithmetic are still used in the training phase. After training is done, model weights
and activation layers are quantized using low-bit integer numbers such as 8-bit or
16-bit integers. During inference, integer arithmetic is used instead of floating-
point arithmetic and thus the computation resource requirement is reduced
dramatically.

3.1.1 Quantization scheme

In Ref. [4], the authors proposed a quantization scheme that is successfully
adopted in TensorFlow [33]. During the inference phase, the proposed quantization
scheme uses integer-only arithmetic while floating-point arithmetic is still used in
the training phase. Since this approach uses different data type in training and
inference phases, creating a one-to-one mapping between floating-point number
and integer number is needed. The authors use Eq. (11) [4] to describe the mapping
between a floating-point number and integer number.

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772/intechopen.91835

r=S(q—Z2) (11)

In this equation, S and Z are quantization parameters, which are constant for
each layer. There is only one set of quantization parameters associated for each
activation layer and weights layer.

The constant S is a floating-point number, which is a scale constant to represent
the size of each quantization level. For example, assume we are going to quantize
a floating point » in a layer to an 8-bit integer number. To calculate the scale
constant S, we obtain the maximum and minimum floating-point number of the
layer first. We use 7, and 7,,, to represent the maximum and minimum floating-
point number respectively. Since we are using an 8-bit integer number, there are
n=2% =256 quantization levels. Then, the constant scale S can be computed as,

S — Vmax — Vmin (12)
n—1

In terms of Z, it represents real number 0 using quantized integer. The reason
why we need an exact number to represent number 0 is that number 0 is wildly
used in deep learning such as zero-padding in convolutional neural network.
Representing number 0 exactly improves the performance of deep learning models.
The number 0 can be calculated using Eq. (13) [4].

Z=q,,, — rounding (Vygm> (13)

In Eq. (13), g,,;, is the minimum quantization level of our quantized integer. For
example, if we use an unsigned 8-bit integer, ¢, . is equal to 0. 7,,;,, and S are two
floating-point numbers representing the minimum values of a layer and the scale
constant of this layer, respectively. Because Z is an integer, we need to round ¢ to
the nearest integer. However, Eq. (13) only works for the case where 7,,;, is smaller
than 0 and 7,,,, is larger than 0. To make it work for all cases, we use the following
approaches to handle those cases. If 7, is larger than 0, we set 7,,;, to 0 and
calculate scale constant S using the new 7,,;,. If 7,,,, is smaller than 0, then we set
"max to 0 and calculate scale constant S using the new 7,,,,. After we obtain the scale
constant S, then we can calculate the zero-point.

3.1.2 Integer-only multiplication

After floating-point numbers are quantized into integers using the quantization
scheme described in Eq. (11), the authors in [4] describe their approaches of how
to compute multiplication between two floating-point numbers using quantized
integers.

Assume we are going to compute the multiplication between two floating-point
numbers 7; and 7,. The multiplication result is stored in floating-point number 7.
We first quantize the floating-point numbers 74, 7, and r3 into quantized integer
numbers g, ¢, and g, respectively using Eq. (11). We have scale constants S1, S,
and S3 corresponding to r4, 7, and 3. Meanwhile, we have quantized zero-points Zj,
Z3 and Z3 corresponding to 71, 7, and 73.

"= Sl((h _Zl)
r=S(q, — Z2) (14)
rs = S3(q5 — Z3)

Intelligent System and Computing

Then, we want to compute the product between r; and ;. We have,

r3 =1r1r
=>S3(q; — Z3) = S1(q, — Z1)S2(9, — 22) (15)
S$152
=>q3 =23 +S—3 (41 = 21) (4, — 22)
In Eq. (15) [4], every arithmetic is between two integers except %, which is a
floating-point number. To make the whole computation integer-only, the authors in
[4] proposed an approach to quantize the floating-point number %

Firstly, the authors found that M = Sé—fz is always in the interval (0, 1) and used
Eq. (16) [4] to describe the relationship between M and M,

M =2"M, (16)

In Eq. (16), the authors in [4] set Mj to a number between 0.5and 1.z is a
positive integer number. Using Eq. (16), the authors in [4] make M to be a fixed-
point multiplier. If a 16-bit integer is used in the multiplication, M, can be
represented as a 16-bit integer, which is 2°M, and bit-shift operation is used to
compute the multiplication of 27™. Then, the whole expression can be computed
using integer-only arithmetic.

3.2 Quantization-aware training

There are two common approaches to train quantized neural networks. The first
approach is to train neural networks using floating-point numbers and then quantize
weights and activation layers after training. However, this approach might not work
for some models. In [4], the authors found that this approach does not work for small
models because small models tend to have significant accuracy drops. The authors in
[4] listed two reasons for accuracy drops. The first one is that weight distribution is
large for different output channels. The large weight distribution makes channels
with small weights range have large quantization errors. The second reason is that
outlier weight values cause the quantization of weights much less accurate.

Because of the reasons mentioned above, the authors in [4] proposed a training
approach that includes the quantization effects in the forward pass of training.
Backward pass of training works as traditional training method and floating-point
numbers are still used for weight and activation layers. During forward pass of
training, the authors in [4] use Eq. (17) to quantize each layer and these equations
are applied to each floating-point number element-wise.

Clamp(r;a,b) := min (max (x,a),b)
b—a
n—1 (17)

>s(a,b,n) +a

s(a,b,n) =

clamp(r;a,b) —a
s(a,b,n)

q(rsa,b,n):= Vound<

where r is a floating-point number; a, b are the maximum and minimum values
of a layer and n is quantization level. For example, n = 2% = 256 quantization levels
if a 8-bit integer is used.

The function round is to rounding the number to its nearest integer.

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772/intechopen.91835

For weights, the authors’ proposed to set a and b to the minimum and maximum
floating-point number of a weight layer respectively. In terms of activation layer,
the authors used exponential moving averages to track the minimum and maximum
floating-point numbers of an activation layer. After we have the range parameter a
and b, we can compute other parameters easily. This approach has been
implemented in Tensorflow [33, 34].

3.3 Comparison between different quantization approaches

Binarized neural network: Binarized neural network is an aggressive quantiza-
tion approach that quantizes each weight to a binary value. In binary neural net-
works, dot product between two matrices can be completed by bit count operation,
which is an operation to count the number of 1 s in a vector. The binary neural
network in [5] achieves 32x reduction in model size and 58 x speed up without
losing much accuracy compared to equivalent neural network using single-precision
values.

DoReFa-Net: DoReFa-Net is one of the most popular quantization approaches.
This quantization approach not only applies quantization on weight and activation
layers, but also on gradients. Through applying quantization on gradients, the
training speed could be increased significantly. In [25], the proposed DoReFa-Net
achieved 46.1% top-1 accuracy on ImageNet using 2-bit activations, 1-bit weights
and trained with 6-bit gradients.

Log-based quantization: In [35], the authors proposed a multiplication-free
hardware accelerator for deep neural networks. The proposed approach quantizes
each weight to the nearest powers of two using logarithmic and rounding functions.
In terms of the activation layer, the authors quantize each output to an 8-bit integer.
By quantizing each weight to the nearest powers of two, multiplication between two
integers could be replaced by bit-shift operations, which could reduce the resource
utilization significantly. In [35], the authors demonstrate that the proposed quanti-
zation approach achieves almost the same accuracy as floating-point version but
reduces energy consumption significantly.

3.4 Progress in model compression

Besides quantization approaches, many other model compression approaches
are proposed. Pruning approach is one of the most popular approaches for model
compression [6]. Pruning approach reduces the size of weights by removing some
weights if these weights meet certain criteria. Besides weights, pruning approach
could be also applied to activations and biases.

Knowledge distillation is another very popular approach for model compression
[36]. There are two models, namely teacher model and student model, in knowl-
edge distillation approach. Teacher model is a trained model. In addition, it has
much larger model size than the student model. The main idea of knowledge
distillation is to transfer the knowledge of teacher model to student model so that
student model could have comparable performance to that of teacher model.

4. Neuromorphic computing

Neuromorphic computing [10, 37-50] is an emerging computing system that
mimics the architecture of human brain. Carver Mead proposed the concept of
neuromorphic computing in the late 1980s [43, 51-53]. Neuromorphic computing
systems exploit spiking neural network to process information. Compared to

Intelligent System and Computing

conventional neural networks, spiking neural networks are more analogous to
human brains and consume much less power. Recently, neuromorphic computing
has been successfully applied to many applications [54-59].

4.1 Spiking neurons

The basic building block of spiking neuron networks is spiking neurons. The
working mechanism of spiking neuron is different from that of neurons introduced
in Section 2.1. Spiking neurons exchange information through electrical pulses,
which are also called spikes. Spikes are discrete, time-dependent data and are
represented as binary signals. In [8], the authors introduced several properties of
spiking neurons. In the first place, spiking neurons receive information from many
inputs and generate one output. Secondly, generating a spike depends on the
amount of excitatory and inhibitory inputs. Thirdly, a spiking neuron’s received
spikes from other spiking neurons are integrated over time and will fire spikes if the
integrated result is over a certain threshold.

4.1.1 Neuron models

There are several commonly used spiking neuron models such as leaky integrate-
and-fire, Hodgkin-Huxley [60] and Fitzhugh Nagumo neuron models.

Leaky integrate-and-fire: According to [61], leaky integrate-and-fire neuron
model is the simplest model to implement and the operation of leaky integrate-and-
fire neuron can be completed using few floating-point operations such as additions
and multiplications. However, there is no phasic spiking in leaky integrate-and-fire
model since the model only has one variable. Meanwhile, spiking latencies do not
exist in spikes because the threshold is fixed. The behaviour of leaky integrate-and-
fire neuron model can be expressed using Eq. (18) [61]. If voltage V reaches a
certain threshold level Vy,, then a spike is fired and voltage V is reset to c.

av
i I4+a —bV,ifV >V, thenVresettoc (18)

In Eq. (18), a, b, c and Vy, are the parameters.

FitzHugh-Nagumo: FitzHugh-Nagumo neuron model [61] is more complicated
compared to the leaky integrate-and-fire model and needs slightly more floating-
point operations. The model has multiple variables and thus it has phasic spiking.
Meanwhile, spikes of FitzHugh-Nagumo neuron model have spiking latencies
because the threshold is not fixed. The behaviour of the FitzHugh-Nagumo neuron
model can be expressed using Eq. (19) [61].

d—V:a +bV +cV24+dV3 —u
du
a = E(C'V —u)

Hodgkin-Huxley: Hodgkin-Huxley [60] is a much more complicated neuron
model compared to leaky integrate-and-fire and Fitzhugh-Nagumo neuron models.
It is described by multiple equations and many parameters. In [61], the authors
state that the parameters of the Hodgkin-Huxley neuron model are biophysically
meaningful. More importantly, the Hodgkin-Huxley neuron model is very helpful
for researchers to investigate single-cell dynamics. However, this model is hard to

10

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772/intechopen.91835

implement since it requires over 100 floating-point operations. More details about
this model can be found in [60].

4.1.2 Leaky integrate-and-fire spiking neuron model

In this section, we are going to present more details about leaky integrate-and-
fire spiking neuron models. The behaviour of integrate-and-fire spiking neuron
model can be described using Eq. (18). If voltage V is above a certain voltage
threshold Vy,, it will fire spikes and voltage V is reset to 0. The behaviour of leaky
integrate-and-fire model can be described by the circuit shown in Figure 4.

4.2 Neuromorphic computing for embedded systems

As we stated above, embedded systems have very limited computation resources
and power constraints. Compared to conventional neural networks, spiking neural
networks are more analogous to human brains and consume much less power.
Because of these features, neuromorphic computing is suitable for embedded sys-
tems. A lot of researchers [62-66] have implemented neuromorphic computing in
embedded systems such as FPGA. In [63], the authors implement liquid state
machine on FPGA for speech recognition. The overall architecture achieves 88 x
speed up compared to CPU implementation. Meanwhile, the proposed approach
reduces 30% power consumption.

4.3 Hardware implementation of spiking neural networks

A lot of researchers have been working on the hardware implementation of
spiking neural networks and many neuromorphic chips have been developed. For
example, in Stanford University, Neurogrid [67] and TrueNorth [68] have been
developed by IBM.

Neurogrid: Neurogrid [67] is a mixed-signal hardware system for simulating
biological brains. This system exploits analog circuits to implement all circuits
except axonal arbors to improve energy efficiency and axonal arbors are
implemented using digital circuits. The whole system consists of 16 Neurocores and
each Neurocore has a 256 x 256 silicon-neuron array, a receiver, a transmitter and
two RAMs. Neurogrid is able to simulate a million neurons by only consuming few
watts.

TrueNorth: TrueNorth [68] is a brain-inspired neurosynaptic processor and
uses non-von Neumann architecture. The whole system has 4096 cores, 1 million
digital neurons and 256 million synapses. TruhNorth achieves 58 giga-synaptic
operations per second (GSOPS) and 400 GSOPS per watt. More importantly, the
authors have successfully implemented several applications such as object

Output
9]

0 Threshold

I
|
pd

Trefractory

il

Figure 4.
Leaky integrate-and-fire model.

11

Intelligent System and Computing

recognition on TrueNorth, and it has much lower power consumption compared to
conventional processors.

4.4 Recent progress in neuromorphic computing

Spiking neural networks exploit spikes to represent information and thus effec-
tive and efficient approaches of representing information using spikes are very
important. In spiking neural networks, input is encoded into spikes and each spike
is represented as a single binary bit. There are two types of encoding approaches
[7, 10, 45, 47, 69-72]. The first type of encoding approach is rate encoding. In rate
encoding, input is encoded as the rate of spikes over an encoding window [7, 69].
Temporal encoding is also an encoding approach. Inter-spike interval encoding is a
method of doing temporal encoding. In inter-spike encoding, the information is
encoded by the time difference between two adjacent spikes [7, 69, 70].

Researchers have successfully implemented neural encoder using hardware
[10, 62, 69]. In [62], the authors proposed a spike time-dependent encoder on
FPGA. In [69], the authors implemented an inter-spike interval-based encoder for
neuromorphic processors using analog integrated circuits. The proposed analog
implementation of inter-spike interval encoder gets rid of ADCs and Op-amp and
thus consumes less power.

In recent years, an increasing number of researchers have started to implement
neuromorphic computing using analog integrated circuits [46, 47, 49, 50, 71, 73-79].
Compared to digital implementation, analog implementation of neuromorphic com-
puting is more energy efficient. Meanwhile, analog implementation consumes less
chip area.

Three-dimensional integrated circuits (3D IC) technique [80-82] is an emerging
technique to improve the performance of integrated circuits. Compared to conven-
tional fabrication techniques, three-dimensional integrated circuits technique con-
sumes less power and uses small footprint. Recently, 3D IC technique has been
applied to neuromorphic computing [79, 83-93]. Through the 3D IC technique,
power consumption and chip area are reduced dramatically [88].

5. Conclusion

In the era of mobile computing and internet of things, embedded systems are
everywhere. It can be found in consumer electronics, automobile, industrial and
many other applications. Without embedded systems, our daily life would become
extremely inconvenient. Deep learning is a technology, which is as important as
embedded systems to our daily life. In recent years, deep learning is becoming a
fundamental technology that impacts every aspect of our daily life. Therefore,
deploying deep learning in embedded systems draws a lot of attention nowadays.
Researchers have been conducting researches in many directions. For example,
researchers are designing new layers and applying quantization techniques to
reduce computation. Meanwhile, new architectures such neuromorphic computing
are proposed. Through these techniques, many deep learning models are
implemented in embedded systems successfully.

12

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems
DOI: http://dx.doi.org/10.5772 /intechopen.91835

Author details

Shiya Liu* and Yang Yi

The Bradley Department of Electrical and Computer Engineering, Virginia
Polytechnic Institute and State University (Virginia Tech), Virginia, USA

*Address all correspondence to: shiyal@vt.edu

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

13

Intelligent System and Computing

References

[1] He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. 2016. pp. 770-778

[2] Ren S, He K, Girshick R, Sun J. Faster
r-cnn: Towards real-time object
detection with region proposal networks.
In: Advances in Neural Information
Processing Systems. 2015. pp. 91-99

[3] Graves A, Mohamed A-R, Hinton G.
Speech recognition with deep recurrent
neural networks. In: 2013 IEEE
International Conference on Acoustics,
Speech and Signal Processing; IEEE.
2013. pp. 6645-6649

[4] Jacob B et al. Quantization and
training of neural networks for efficient
integer-arithmetic-only inference. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2018. pp. 2704-2713

[5] Rastegari M, Ordonez V, Redmon J,
Farhadi A. Xnor-net: Imagenet
classification using binary convolutional
neural networks. In: European
Conference on Computer Vision;
Springer. 2016. pp. 525-542

[6] Han S, Mao H, Dally WJ. Deep
compression: Compressing deep neural
networks with pruning, trained
quantization and huffman coding.
Computer Vision and Pattern
Recognition. 2015

[7] Bouvier M et al. Spiking neural
networks hardware implementations and
challenges: A survey. ACM Journal on
Emerging Technologies in Computing
Systems (JETC). 2019;15(2):22

[8] Ponulak F, Kasinski A. Introduction
to spiking neural networks: Information
processing, learning and applications.
Acta Neurobiologiae Experimentalis.
2011;71(4):409-433

14

[9] Rathi N, Panda P, Roy K. STDP-
based pruning of connections and
weight quantization in spiking neural
networks for energy-efficient
recognition. Neural and Evolutionary
Computing. 2018;38(4):668-677

[10] Zhao C et al. Energy efficient
spiking temporal encoder design for
neuromorphic computing systems. IEEE
Transactions on Multi-Scale Computing
Systems. 2016;2(4):265-276

[11] Zhang A, et al. Dive into deep
learning; Unpublished draft. 2019.
p. 319

[12] Goodfellow I, Bengio Y, Courville A.
Deep Learning. MIT Press; 2016

[13] Maas AL, Hannun AY, Ng AY.
Rectifier nonlinearities improve neural
network acoustic models. Proceedings
ICML. 2013;30(1):3

[14] Leshno M, Lin VY, Pinkus A,
Schocken §J. Multilayer feedforward
networks with a nonpolynomial

activation function can approximate any
function. 1993;6(6):861-867

[15] Pinkus A. Approximation theory of
the MLP model in neural networks.
1999;8:143-195

[16] Qi CR, Su H, Mo K, Guibas LJ.
Pointnet: Deep learning on point sets for
3d classification and segmentation. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2017. pp. 652-660

[17] Krizhevsky A, Sutskever I,

Hinton GE. Imagenet classification with
deep convolutional neural networks. In:
Advances in Neural Information
Processing Systems. 2012. pp. 1097-1105

[18]]Ji S, Xu W, Yang M, Yu K. 3D
convolutional neural networks for
human action recognition. IEEE

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems

DOI: http://dx.doi.org/10.5772/intechopen.91835

Transactions on Pattern Analysis and
Machine Intelligence. 2012;35(1):
221-231

[19] Han S, Pool], Tran J, Dally W.
Learning both weights and connections
for efficient neural network. In:

Advances in Neural Information
Processing Systems. 2015. pp. 1135-1143

[20] Desoli G et al. 14.1 a 2.9 tops/w deep
convolutional neural network soc in fd-
soi 28 nm for intelligent embedded
systems. In: 2017 IEEE International
Solid-State Circuits Conference
(ISSCC); IEEE. 2017. pp. 238-239

[21] Howard AG et al. Mobilenets:
Efficient convolutional neural networks
for mobile vision applications. 2017.
arXiv preprint arXiv:1704.04861

[22] Sandler M, Howard A, Zhu M,
Zhmoginov A, Chen L-C. Mobilenetv2:
Inverted residuals and linear
bottlenecks. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. 2018.

pp- 4510-4520

[23] Hubara I, Courbariaux M, Soudry D,
El-Yaniv R, Bengio Y. Quantized neural
networks: Training neural networks
with low precision weights and
activations. 2017;18(1):6869-6898

[24] Wu], Leng C, Wang Y, Hu Q,
Cheng J. Quantized convolutional neural
networks for mobile devices. In:
Proceedings of the IEEE Conference on

Computer Vision and Pattern
Recognition. 2016. pp. 4820-4828

[25] Zhou S, Wu Y, Ni Z, Zhou X,
Wen H, Zou Y. Dorefa-net: Training
low bitwidth convolutional neural

networks with low bitwidth gradients.
2016. arXiv preprint arXiv:1606.06160

[26] Zhu C, et al. Trained ternary

quantization. 2016. arXiv preprint
arXiv:1612.01064

15

[27] Lin X, Zhao C, Pan W. Towards
accurate binary convolutional neural
network. In: Advances in Neural
Information Processing Systems. 2017.

pp- 345-353

[28] Han S, Mao H, Dally WJ. A deep
neural network compression pipeline:
Pruning, quantization, huffman
encoding. 2015;10

[29] Zhang X, Zhou X, Lin M, Sun J.
Shufflenet: An extremely efficient
convolutional neural network for mobile
devices. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. 2018.

pp. 6848-6856

[30] Lin D, Talathi S, Annapureddy S.
Fixed point quantization of deep
convolutional networks. In:

International Conference on Machine
Learning. 2016. pp. 2849-2858

[31] Anwar S, Hwang K, Sung W. Fixed
point optimization of deep
convolutional neural networks for
object recognition. In: 2015 IEEE
International Conference on Acoustics,
Speech and Signal Processing (ICASSP);
IEEE. 2015. pp. 1131-1135

[32] Zhou A, Yao A, Guo Y, Xu L,

Chen Y]J. Incremental network
quantization: Towards lossless cnns with
low-precision weights. 2017. arXiv
preprint arXiv:1702.03044

[33] Abadi M et al. Tensorflow: A system
for large-scale machine learning. In: 12th
{USENIX} Symposium on Operating
Systems Design and Implementation
({OSDI} 16). 2016. pp. 265-283

[34] Abadi M et al. Tensorflow: Large-
scale machine learning on
heterogeneous distributed systems.
2016. arXiv preprint arXiv:1603.04467

[35] Tann H, Hashemi S, Bahar RI,
Reda S. Hardware-software codesign of
accurate, multiplier-free deep neural

Intelligent System and Computing

networks. In: 2017 54th ACM/EDAC/
IEEE Design Automation Conference
(DAC); IEEE. 2017. pp. 1-6

[36] Hinton G, Vinyals O, Dean J.
Distilling the knowledge in a neural
network. Machine Learning. 2015

[37] Burr GW et al. Neuromorphic
computing using non-volatile memory.
Advances in Physics: X. 2017;2(1):89-124

[38] Furber S. Large-scale neuromorphic
computing systems. Journal of Neural
Engineering. 2016;13(5):051001

[39] Kim D, Kung J, Chai S,
Yalamanchili S, Mukhopadhyay S.
Neurocube: A programmable digital
neuromorphic architecture with
high-density 3D memory. In: 2016
ACM/IEEE 43rd Annual International
Symposium on Computer Architecture
(ISCA); IEEE. 2016. pp. 380-392

[40] Liu X et al. RENO: A high-efficient
reconfigurable neuromorphic computing
accelerator design. In: 2015 52nd ACM/
EDAC/IEEE Design Automation
Conference (DAC); IEEE. 2015. pp. 1-6

[41] Monroe D. Neuromorphic
computing gets ready for the (really)
big time. Communications of the ACM.
2014;57(6):13-15. DOI: 10.1145/2601069

[42] Schuman CD et al. A survey of
neuromorphic computing and neural
networks in hardware. 2017. arXiv
preprint arXiv:1705.06963

[43] Mead C, Ismail M. Analog VLSI
Implementation of Neural Systems. Vol.
80. Springer Science & Business Media;
2012

[44] Calimera A, Macii E, Poncino M.
The human brain project and

neuromorphic computing. Functional
Neurology. 2013;28(3):191

[45] Zhao C, et al. Spike-time-dependent
encoding for neuromorphic processors.

16

ACM Journal on Emerging Technologies
in Computing Systems (JETC). 2015;
12(3):23

[46] Zhao C, Danesh W, Wysocki BT,
Yi Y. Neuromorphic encoding system
design with chaos based CMOS analog
neuron. In: 2015 IEEE Symposium on
Computational Intelligence for Security
and Defense Applications (CISDA);
IEEE. 2015. pp. 1-6

[47] Zhao C, Li]J, Liu L, Koutha LS, Liu J,
Yi Y. Novel spike based reservoir node
design with high performance spike
delay loop. In: Proceedings of the 3rd
ACM International Conference on

Nanoscale Computing and
Communication; ACM. 2016. p. 14

[48] Mosleh S, Sahin C, Liu L, Zheng R,
YiY. An energy efficient decoding
scheme for nonlinear MIMO-OFDM
network using reservoir computing. In:
2016 International Joint Conference on
Neural Networks (IJCNN); IEEE. 2016.
pp. 1166-1173

[49] Bai K, Yi Y. DFR: An energy-
efficient analog delay feedback reservoir
computing system for brain-inspired
computing. ACM Journal on Emerging

Technologies in Computing Systems
(JETC). 2018;14(4):1-22

[50] Bai K, LiJ, Hamedani K, Yi Y.
Enabling an new era of brain-inspired
computing: Energy-efficient spiking
neural network with ring topology. In:
2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC); IEEE.
2018. pp. 1-6

[51] Mead C. Neuromorphic electronic
systems. Proceedings of the IEEE. 1990;
78(10):1629-1636

[52] Douglas R, Mahowald M, Mead C.
Neuromorphic analogue VLSI. Review
of Neuroscience. 1995;18(1):255-281

[53] Mead C. Analog VLSI and neutral
systems. NASA STI/Recon Technical
Report A. 1989;90

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems

DOI: http://dx.doi.org/10.5772/intechopen.91835

[54] Mosleh S, Liu L, Sahin C, Zheng YR,
YiY. Brain-inspired wireless
communications: Where reservoir
computing meets MIMO-OFDM. IEEE
Transactions on Neural Networks and
Learning Systems. 2017;99:1-15

[55] Hamedani K, Liu L, Atat R, Wu],
YiY. Reservoir computing meets smart
grids: Attack detection using delayed
feedback networks. IEEE Transactions
on Industrial Informatics. 2017;14(2):
734-743

[56] Danesh W, Zhao C, Wysocki BT,
Medley MJ, Thawdar NN, Yi Y. Channel
estimation in wireless OFDM systems
using reservoir computing. In: 2015
IEEE Symposium on Computational

Intelligence for Security and Defense
Applications (CISDA); IEEE. 2015.

pp. 1-5

[57]1 Li], Liu L, Zhao C, Hamedani K,
Atat R, Yi Y. Enabling sustainable cyber
physical security systems through
neuromorphic computing. IEEE

Transactions on Sustainable Computing.
2017;3(2):112-125

[58] Shafin R et al. Realizing green
symbol detection via reservoir
computing: An energy-efficiency
perspective. In: 2018 IEEE International
Conference on Communications (ICC);
IEEE. 2018. pp. 1-6

[59] Yi Y. Neuron Design in
Neuromorphic Computing Systems and
Its Application in Wireless
Communications. Lawrence: The
University of Kansas Center for
Research, Inc.; 2017

[60] Hodgkin AL, Huxley AF. A
quantitative description of membrane
current and its application to conduction

and excitation in nerve. The Journal of
Physiology. 1952;117(4):500-544

[61] Izhikevich EM. Which model to use

for cortical spiking neurons? 2004;
15(5):1063-1070

17

[62] Yi Y et al. FPGA based spike-time
dependent encoder and reservoir design
in neuromorphic computing processors.

Microprocessors and Microsystems.
2016;46:175-183

[63] Wang Q, Li Y, Li P. Liquid state
machine based pattern recognition on
FPGA with firing-activity dependent
power gating and approximate
computing. In: 2016 IEEE International

Symposium on Circuits and Systems
(ISCAS); IEEE. 2016. pp. 361-364

[64] Gomar S, Ahmadi A. Digital
multiplierless implementation of
biological adaptive-exponential neuron
model. IEEE Transactions on Circuits
and Systems I: Regular Papers. 2013;
61(4):1206-1219

[65] Rostro-Gonzalez H, Cessac B,
Girau B, Torres-Huitzil C. The role of
the asymptotic dynamics in the design
of FPGA-based hardware
implementations of gIF-type neural

networks. Journal of Physiology-Paris.
2011;105(1-3):91-97

[66] Neil D, Liu S-C. Minitaur, an event-
driven FPGA-based spiking network
accelerator. 2014;22(12):2621-2628

[67] Benjamin BV et al. Neurogrid: A
mixed-analog-digital multichip system

for large-scale neural simulations. 2014;
102(5):699-716

[68] Akopyan F et al. Truenorth: Design
and tool flow of a 65 MW 1 million
neuron programmable neurosynaptic
chip. 2015;34(10):1537-1557

[69] Zhao C et al. Interspike-interval-
based analog spike-time-dependent
encoder for neuromorphic processors.
IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2017;25(8):
2193-2205

[70] Zhao C, LiJ, Yi Y. Making neural
encoding robust and energy efficient:

Intelligent System and Computing

an advanced analog temporal encoder
for brain-inspired computing
systems. In: Proceedings of the 35th
International Conference on
Computer-Aided Design; ACM. 2016.
p. 115

[71] Li], Zhao C, Hamedani K, Yi Y.
Analog hardware implementation of
spike-based delayed feedback reservoir
computing system. In: 2017
International Joint Conference on
Neural Networks (IJCNN); IEEE. 2017.
pp. 3439-3446

[72] Zhao C, LiJ, An H, Yi Y. Energy
efficient analog spiking temporal
encoder with verification and recovery
scheme for neuromorphic computing
systems. In: 2017 18th International
Symposium on Quality Electronic Design
(ISQED); IEEE. 2017. pp. 138-143

[73] Jiang H et al. Cyclical sensing
integrate-and-fire circuit for memristor
array based neuromorphic computing.
In: 2016 IEEE International Symposium
on Circuits and Systems (ISCAS); IEEE.
2016. pp. 930-933

[74] LiJ, Bai K, Liu L, Yi Y. A deep
learning based approach for analog
hardware implementation of delayed
teedback reservoir computing system.
In: 2018 19th International Symposium
on Quality Electronic Design (ISQED);
IEEE. 2018. pp. 308-313

[75] Bai K, An Q, Yi Y. Deep-DFR: A
memristive deep delayed feedback
reservoir computing system with hybrid
neural network topology. In:
Proceedings of the 56th Annual Design
Automation Conference; 2019. ACM.
2019. p. 54

[76] Bai K, Bradley YY. A path to energy-
efficient spiking delayed feedback
reservoir computing system for brain-
inspired neuromorphic processors. In:
2018 19th International Symposium on
Quality Electronic Design (ISQED);
IEEE. 2018. pp. 322-328

18

[771 Yi Y. Analog Integrated Circuit
Design for Spike Time Dependent
Encoder and Reservoir in Reservoir
Computing Processors. Lawrence,
United States: University of Kansas
Center for Research, Inc.; 2018

[78] Zhao C, Hamedani K, Li], Yi Y.
Analog spike-timing-dependent
resistive crossbar design for brain
inspired computing. IEEE Journal on

Emerging and Selected Topics in
Circuits, and Systems. 2017;8(1):38-50

[79] Ehsan MA, An H, Zhou Z, Yi Y.
Design challenges and methodologies in
3D integration for neuromorphic
computing systems. In: 2016 17th
International Symposium on Quality
Electronic Design (ISQED); IEEE. 2016.
pp. 24-28

[80] Garrou P, Bower C, Ramm P.
Handbook of 3D Integration, Volume 1:
Technology and Applications of 3D
Integrated Circuits. John Wiley & Sons;
2011

[81] Knickerbocker JU et al. 3D silicon
integration. In: 2008 58th Electronic

Components and Technology
Conference; IEEE. 2008. pp. 538-543

[82] Topol AW et al. Three-dimensional
integrated circuits. IBM Journal of
Research and Development. 2006;50
(4.5):491-506

[83] An H, Zhou Z, Yi Y. 3D memristor-
based adjustable deep recurrent neural
network with programmable attention
mechanism. In: Proceedings of the
Neuromorphic Computing Symposium;
ACM. 2017. p. 11

[84] Ehsan MA, An H, Zhou Z, Yi Y.
Adaptation of enhanced TSV
capacitance as membrane property in
3D brain-inspired computing system. In:
2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC); IEEE.
2017. pp. 1-6

Quantized Neural Networks and Neuromorphic Computing for Embedded Systems

DOI: http://dx.doi.org/10.5772/intechopen.91835

[85] An H, Ehsan MA, Zhou Z, Yi Y.
Electrical modeling and analysis of 3D
neuromorphic IC with monolithic inter-
tier vias. In: 2016 IEEE 25th Conference
on Electrical Performance of Electronic
Packaging and Systems (EPEPS); IEEE.
2016. pp. 87-90

[86] An H, Ehsan MA, Zhou Z, Yi Y.
Electrical modeling and analysis of 3D
synaptic array using vertical RRAM
structure. In: 2017 18th International
Symposium on Quality Electronic
Design (ISQED); IEEE. 2017. pp. 1-6

[87] Ehsan MA, Zhou Z, Yi Y. Modeling
and analysis of neuronal membrane
electrical activities in 3d neuromorphic
computing system. In: 2017 IEEE
International Symposium on
Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI); IEEE.
2017. pp. 745-750

[88] An H, Ehsan MA, Zhou Z, Shen F,
Yi YJI. Monolithic 3D neuromorphic
computing system with hybrid CMOS
and memristor-based synapses and
neurons. Integration. 2019;65:273-281

[89] Ehsan MA, Zhou Z, Yi Y.
Neuromorphic 3D integrated circuit: A
hybrid, reliable and energy efficient
approach for next generation
computing. In: Proceedings of the on
Great Lakes Symposium on VLSI 2017;
ACM. 2017. pp. 221-226

[90] An H, Zhou Z, Yi Y. Opportunities
and challenges on nanoscale 3D
neuromorphic computing system. In:
2017 IEEE International Symposium on
Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI); IEEE.
2017. pp. 416-421

[91] Ehsan MA, Zhou Z, Yi Y. Hybrid
three-dimensional integrated circuits: A
viable solution for high efficiency
neuromorphic computing. In: 2017
International Symposium on VLSI
Design, Automation and Test (VLSI-
DAT); IEEE. 2017. pp. 1-2

19

[92] Ehsan MA, An H, Zhou Z,Yi Y. A
novel approach for using TSVs as
membrane capacitance in neuromorphic
3-D IC. IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems. 2017;37(8):
1640-1653

[93] Ehsan MA, Zhou Z, Yi Y. Three
dimensional integration technology
applied to neuromorphic hardware
implementation. In: 2015 IEEE
International Symposium on
Nanoelectronic and Information
Systems; IEEE. 2015. pp. 203-206

