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Chapter

Dipolar Interactions: Hyperfine
Structure Interaction and Fine
Structure Interactions
Betül Çalişkan and Ali Cengiz Çalişkan

Abstract

The interaction between the nuclear spin and the electron spin creates a hyperfine
structure. Hyperfine structure interaction occurs in paramagnetic structures with
unpaired electrons. Therefore, hyperfine structure interaction is the most important
of the fundamental parameters investigated by electron paramagnetic resonance
(EPR) spectroscopy. For EPR spectroscopy the two effective Hamiltonian terms are
the hyperfine structure interaction and the electronic Zeeman interaction. The
hyperfine structure interaction has two types as isotropic and anisotropic hyperfine
structure interactions. The zero-field splitting term (electronic quadrupole fine
structure), the nuclear Zeeman term, and the nuclear quadrupole interaction term are
among the Hamiltonian terms used in EPR. However, their effects are not as much as
the term of the hyperfine structure interaction. The zero-field splitting term and the
nuclear quadrupole interaction term are the fine structure terms. The interaction of
two electron spins create a zero-field splitting, the interaction between the two
nucleus spins form the nuclear quadrupole interaction. Hyperfine structure interac-
tion, zero-field interaction, and nuclear quadrupole interaction are subclasses of
dipolar interaction. Interaction tensors are available for all three interactions.

Keywords: dipolar interaction hyperfine structure, isotropic hyperfine structure,
anisotropic hyperfine structure, the zero-field splitting, the nuclear quadrupole
interaction, the electronic Zeeman interaction, the nuclear Zeeman term, EPR

1. Dipolar interactions

Dipolar interaction occurs due to the interaction between the two spins. If one
spin becomes an electron spin and the other spin becomes a nucleus spin, this
interaction is called a hyperfine structure interaction. If two of the spins are electron
spin or both are nucleus spin, this interaction is called fine structure interaction.
The dipolar interaction Hamiltonian is expressed as

ϰ ¼
μ1
!

:μ2
!

r3
�
3 μ1

!
: r
!

� �

μ2
!

: r
!

� �

r5

2

4

3

5 (1)

where μ1
! and μ2

! are the magnetic dipole moments for each spin (electron spin or
nucleus spin).
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1.1 Hyperfine structure interaction

The interaction between the magnetic dipole moment of the nucleus and the
magnetic dipole moment of the electron gives the hyperfine structure interaction.
There are two types of hyperfine structure interaction. These are isotropic
hyperfine interaction and anisotropic hyperfine interaction.

1.1.1 Isotropic hyperfine structure

Isotropic superfine interaction is also known as Fermi contact interaction. The
Hamiltonian term of isotropic hyperfine structure interaction is expressed as

ϰ ¼ gegNβeβN
8π

3
S
!

: I
!

:δ rð Þ

� �

(2)

where ge= g-value of the electron, gN= g-value of the nucleus, βe = Bohr

magneton, βN= nuclear magneton, S
!
¼ electron spin operator, I

!
= nuclear spin

operator, and δ rð Þ = Dirac delta function for the distance between the electron and
the nucleus.

In a shorter way, it is expressed as

ϰ ¼ aS
!

: I
!

(3)

The isotropic hyperfine constant is written as

a ¼
8π

3
gegNβeβNδ rð Þ (4)

Here a is called the isotropic hyperfine constant, S
!
is the spin angular momen-

tum of the electron, and I
!
is the spin angular momentum of the nucleus.

1.1.2 Anisotropic hyperfine structure

Anisotropic hyperfine interaction is also called dipolar interaction or dipole–
dipole interaction. The Hamiltonian term of anisotropic hyperfine structure
interaction is expressed as

ϰ ¼ gegNβeβN
3 S

!
: r
!

� �

I
!

: r
!

� �

r5
�

S
!

: I
!

r3

2

4

3

5 (5)

More specifically, the expression of the anisotropic hyperfine interaction in the
Cartesian coordinate is written as

ϰ ¼ gegNβeβN
3x2 � r2ð Þ

r5
IxSx þ

3y2 � r2ð Þ

r5
IySy þ

3z2 � r2ð Þ

r5
IzSz þ

3xy

r5
IxSy þ IySx
� �

�

þ
3yz

r5
IySz þ IzSy
� �

þ
3xz

r5
IxSz þ IzSx

�	 �

(6)
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In a shorter way, it is expressed as

ϰ ¼ S
!

:A0

!
!

: I
!

(7)

where A0

!
!

is called the anisotropic hyperfine coupling tensor. The tensor is
expressed in two ways as diagonal elements and non-diagonal elements.
The diagonal elements of the tensor is expressed as

A0
ii ¼ gegNβeβN

3i2 � r2

r5

� �

, i ¼ x, y, z (8)

The non-diagonal elements of the tensor is expressed as

A0
ij ¼ gegNβeβN

3ij

r5

� �

, i, j ¼ x, y, z (9)

The sum of the isotropic and anisotropic terms fully expresses the hyperfine
structure interaction Hamiltonian and is expressed as

ϰ ¼ aS
!

: I
!
þ S

!
:A0

!
!

: I
!
¼ S

!
:A
!
!

: I
!

(10)

where A
!
!

is the general hyperfine structure tensor.
Figure 1 shows the formation of the hyperfine structure splittings. Figure 2

shows the formation of an EPR spectrum due to the hyperfine structure splittings.

1.2 Fine structure interaction

The fine structure is seen in two ways. The first is the fine structure interaction
between two electron spins. The second is the fine structure interaction between the
two nucleus spins. The fine structure interaction between two electron spin is also

Figure 1.
The formation of the hyperfine structure splittings.
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referred to as zero-field interaction or zero-field splitting. The interaction between
two nuclear spin is called nuclear quadrupole interaction.

1.2.1 Zero-field splitting (interaction)

This interaction between two electron spins is the dipolar interaction. When
writing Hamiltonian for zero-field interaction, the magnetic dipole moments in
Eq. (1) are arranged for two electron spins. In this case, the Hamiltonian of the
zero-field splitting is written as

ϰ ¼ ge
2βe

2 S1
!

: S2

!

r3
�
3 S1

!
: r
!

� �

S2
!

: r
!

� �

r5

2

4

3

5 (11)

More specifically, the expression of the anisotropic hyperfine interaction in the
Cartesian coordinate is written as

ϰ ¼ ge
2βe

2 r2 � 3x2ð Þ

r5
S1xS2x þ

r2 � 3y2ð Þ

r5
S1yS2y þ

r2 � 3z2ð Þ

r5
S1zS2z

�

�
3xy

r5
S1xS2y þ S1yS2x
� �

�
3yz

r5
S1yS2z þ S1zS2y
� �

�
3xz

r5
S1zS2x þ S1xS2zð Þ

�

(12)

In a shorter way, it is expressed as

ϰ ¼ S1
!

:D
!
!

:S2
!

(13)

In general, the Hamiltonian of the zero-field splitting is written as

ϰ ¼ S
!

:D
!
!

:S
!

(14)

where D
!
!

is called the zero-field splitting tensor or the spin–spin coupling tensor.
The tensor is expressed in two ways as diagonal elements and non-diagonal
elements. The diagonal elements of the tensor is expressed as

Figure 2.
The formation of an EPR spectrum due to the hyperfine structure splittings.
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Dii ¼ ge
2βe

2 r2 � 3i2

r5

� �

, i ¼ x, y, z (15)

The non-diagonal elements of the tensor is expressed as.

Dij ¼ ge
2βe

2 3ij

r5

� �

, i, j ¼ x, y, z (16)

The zero-field splittings for s = 1/2, s = 1, and s = 3/2 are shown in Figure 3.

1.2.2 Nuclear quadrupole interaction

The interaction between the nucleus spins is known as the nuclear quadrupole
interaction. The effects of nuclear quadrupole interaction can be observed on the
energy levels of the hyperfine structure for a nucleus with I≥ 1. The Hamiltonian of
the nuclear quadrupole interaction is expressed as

ϰ ¼
eQ

6I 2I � 1ð Þ

X

α, β¼x, y, z

Vαβ

3

2
IαIβ þ IβIα
� �

� δαβI
2


 �

(17)

where Vαβ is the component of the field gradient tensor and eQ is the nuclear
quadrupole moment, and it is a measure of the deviation of charge distribution from
spherical symmetry. The nuclear quadrupole moment is expressed as

eQ ¼

ð

ρN 3z2 � r2
� �

dV (18)

where e is the proton charge, ρN is the distribution function of the nuclear
charge, z is the z-coordinate of the charge element a distance r from the origin. The
integral was taken over the volume of the nucleus.

In general, the nuclear quadrupole interaction Hamiltonian is written as

ϰ ¼ I
!

: P
!
!

: I
!

(19)

Figure 3.
The zero-field splittings for (a) s = 1/2, (b) s = 1, and (c) s = 3/2.
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where P
!
!

is called the nuclear quadrupole coupling tensor.
The nuclear quadrupole splittings are shown in Figure 4.

2. Effective Hamiltonian terms in electron paramagnetic resonance
spectroscopy

The hyperfine structure Hamiltonian term, electron Zeeman Hamiltonian term,
nuclear Zeeman Hamiltonian term, the term of the zero-field splitting, and the term
of the nuclear quadrupole interaction are Hamiltonian terms in EPR Spectroscopy.
However, in EPR spectroscopy, the electron Zeeman term and the hyperfine struc-
ture term are effective Hamiltonian terms. Therefore, the effect of the terms other
than the electron Zeeman term and the hyperfine structure term is not taken into
account, since the effect is minimal compared to these two terms. The electron
Zeeman term and the nuclear Zeeman term have not been mentioned before.
Therefore, it will be explained briefly below.

The electron Zeeman interaction occurs as a result of the interaction of the
magnetic dipole moment caused by the spin of the electron with the applied mag-
netic field:

ϰ ¼ �μs
!

:H
!

(20)

ϰ ¼ � γsS
!� �

:H
!

(21)

where γs is the gyromagnetic ratio of electron spin and is written as.

γs ¼ �
gsβe
ℏ

¼ �gsβe in the atomic unit system, ℏ ¼ 1
� �

(22)

Figure 4.
The nuclear quadrupole splittings for (a) Hquadrupole 6¼ 0, H = 0 and (b) for HZeeman≫ Hquadrupole.
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where gs is the spectroscopic splitting factor of the electron spin and is written as

gs ¼ 2 (23)

ϰ ¼ � �gsβeS
!� �

:H
!

(24)

ϰ ¼ gsβeS
!

:H
!

(25)

The nuclear Zeeman interaction occurs as a result of the interaction of the mag-
netic dipole moment caused by the spin of the nucleus with the applied magnetic field:

ϰ ¼ �μI
!

:H
!

(26)

ϰ ¼ � γI I
!� �

:H
!

(27)

where γI is the nuclear gyromagnetic ratio and is written as.

γI ¼
gIβN
ℏ

¼ gIβN in the atomic unit system, ℏ ¼ 1
� �

(28)

where gI is the spectroscopic splitting factor of the nucleus spin and is written as

gI ¼ 1 (29)

ϰ ¼ � gIβN I
!� �

:H
!

(30)

ϰ ¼ �gIβN I
!

:H
!

(31)

The general spin Hamiltonian for EPR spectroscopy can be written as

ϰ ¼ gsβeS
!

:H
!
þ S

!
:A
!
!

: I
!
� gIβN I

!
: H

!

þ I
!

: P
!
!

: I
!
þ S

!
:D
!
!

:S
!

(32)

The effective spin Hamiltonian for EPR spectroscopy can be written as [1–9].

ϰ ¼ gsβeS
!

:H
!
þ S

!
:A
!
!

: I
!

(33)

3. Conclusion

Dipolar interaction can be seen in three ways. These are the hyperfine structure
interaction, the zero-field splitting interaction, and the nuclear quadrupole interac-
tion. Each interaction involves the interaction of two spins. The interaction between a
nucleus spin and an electron spin is mentioned in the hyperfine structure interaction.
The interaction of two electron spins is mentioned in the zero-field splitting interac-
tion. The interaction of two nuclear spins is mentioned in the nuclear quadrupole
interaction. The last two interactions are also known as fine structure interactions.

The hyperfine structure interaction is an important interaction for EPR spec-
troscopy. In EPR spectroscopy, the effect of the hyperfine structure interaction is
taken into account together with the electron Zeeman interaction [10–24]. In addi-
tion, nuclear Zeeman interaction, the zero-field interaction, and the nuclear quad-
rupole interaction have an effect on EPR spectroscopy. However, their effects are
negligible.
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