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Abstract

Human African trypanosomiasis (HAT) and Chagas disease are neglected 
tropical diseases (NTDs) due to parasite protists from the Trypanosoma genus 
transmitted by insect vectors. Trypanosomiases affect mostly poor populations in 
the developing countries, and the development of new antitrypanosomal drugs is 
underinvested by governments and the pharmaceutical industry. In this chapter, 
we described the development of 4-thiazolidinone and thiazole derivatives with 
heterocyclic fragments which exhibit good inhibition of trypanosome growth and 
might constitute potential candidates for the development of new drugs against try-
panosomiasis. Antitrypanosomal design, mainly within structure-based design, led 
to the synthesis of 5-ene-4-thiazolidinone-3-alkanecarboxylic acids; 2,3-disubsti-
tuted 4-thiazolidinones; thiazolidinone-pyrazoline, phenylindole-thiazolidinone, 
and imidazothiadiazole-thiazolidinone hybrids; as well as 4-thiazolidinone-based 
fused heterocycles, especially thiopyrano[2,3-d]thiazoles, and non-thiazolidinone 
compounds–namely, isothiocoumarine derivatives. Moreover, antitrypanosomal 
4-thiazolidinones are of special interest in the search for new antimalarial and anti-
leishmanial agents. Also many active anticancer agents among the abovementioned 
4-thiazolidinones have been discovered.

Keywords: sleeping sickness, Chagas disease, antitrypanosomal drugs, 
thiazolidinone derivatives, hybrids

1. Introduction

Trypanosomatid infections belong to the neglected tropical diseases (NTDs)–a 
group of communicable diseases spread in 149 countries in the tropical and sub-
tropical regions of the globe and affecting more than 1 billion people [1]. These 
vector-borne parasitic diseases are associated with poverty, contact with infectious 
vectors, as well as limited accesses to health services [2]. Human trypanosomiasis is 
caused by kinetoplastids, flagellated protists of Trypanosoma genus transmitted by 
an insect vector [3].

Trypanosoma brucei gambiense (T.b. gambiense) and Trypanosoma brucei rhod-
esiense (T.b. rhodesiense) are transmitted by the tsetse fly and cause two forms of 
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human African trypanosomiasis (HAT) known as sleeping sickness when neuro-
logical manifestations associated with presence of parasites in the brain become 
apparent [4]. T.b. gambiense accounts for more than 98% of reported cases; T.b. 
rhodesiense is responsible for an acute infection and represents under 2% of reported 
cases [5]. Other Trypanosoma species (e.g., T. vivax, T. congolense, and T. evansi) 
affect cattle, causing animal African trypanosomiasis (Nagana) and contributing to 
livestock losses. Cattle are also a reservoir of infection for human trypanosomes [6]. 
Therefore, the necessity to control animal trypanosomiasis should not be underes-
timated within the concept of “one health” [7]. There had been several devastating 
HAT epidemics during the twentieth century, the last one occurred in the late 
1990s with estimated near 300,000 cases. Thanks to the coordinated work of the 
WHO and governmental and nongovernmental organizations to combat NTDs, 
the number of cases reported in 2009 has dropped below 10,000 for the first time 
in 50 years. This trend persists, and in 2019 there were less than 1000 incidences of 
HAT, although the estimated number of people being at risk of infection is near 65 
million. First signs and symptoms of HAT are observed a few weeks after infection. 
During the first hemolymphatic stage, trypanosomes invade the human host and 
locally multiply spreading via the lymph and blood to various peripheral organs. 
The following meningoencephalitic stage develops when the parasites invade the 
brain parenchyma crossing the blood-brain barrier. The second stage of HAT is 
characterized by neurological disturbances and neuropsychiatric and sleep disor-
ders [4]. If left untreated, the disease leads to coma and death [8]. Vector control 
is an important issue in the efforts taken to eliminate HAT. This is evidenced by 
the elimination of trypanosomiasis in Zanzibar Island due to tsetse clearance. This 
approach is still difficult to implement on a continent; therefore chemotherapy 
remains the main tool in the HAT management [9]. Difficulty of vaccine develop-
ment because of the antigenic variation of the parasite surface proteins has been one 
more unsolved problem [10].

Chagas disease (American trypanosomiasis) caused by Trypanosoma cruzi (T. 
cruzi) is a devastating human disease with about 8 million infected people mostly 
in Latin and South America. Over the past decades, due to migration and popula-
tion mobility, Chagas disease cases were reported in Europe, the United States, and 
Canada [11]. It is transmitted to man during the bite of a bloodsucking triatomine 
bug, via its feces or urine through skin breaks or mucous membranes, and occasion-
ally causing outbreaks through contaminated food. Transmission through blood 
transfusion and pregnancy is also possible and, less frequently, through organ 
transplantation or laboratory accidents [12–14]. Once the parasite reaches the human 
host, it multiplies in the host’s cells in the amastigote form that differentiates into the 
infective trypomastigote form, which is released after the host cell rupture, causing 
inflammatory reactions and leading to megaesophagus, megacolon, and cardiac 
conduction disturbances [15, 16]. Since Chagas disease was discovered in 1909, 
numerous studies have been carried out to investigate the pathogenesis of acute and 
chronic phases of the disease [11]. While the acute phase is often asymptomatic or 
characterized by non-specific symptoms, except sometimes occurring chagoma or 
Romaña sign, the chronic phase can be subdivided into an asymptomatic indeter-
minate phase and a symptomatic determinant phase [17]. Between 60% and 70% of 
serologically positive patients have no manifestation of the disease; in the remaining 
30–40%, cardiac and gastrointestinal complications develop, indicating a symptom-
atic determinant phase [18]. If earlier autoimmune reactions were thought to be the 
primary factors leading to the lesions associated with the chronic stage, recent inves-
tigations showed that the persistence of parasites also contribute to the inflammatory 
processes, leading to cardiac or gastrointestinal complications. Therefore treatment 
success depends greatly on the elimination of T. cruzi from the organism [16].
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1.1 Treatments of trypanosomiasis

1.1.1 HAT

Suramin, pentamidine, melarsoprol, and eflornithine have been used to treat 
HAT for decades [19, 20] (Figure 1). An important advance was the development of 
the nifurtimox-eflornithine combination therapy (NECT), which has now became 
the standard first-line treatment for the second stage of T.b. gambiense HAT [20, 21]. 
Choice of the drug as well as duration of treatment depends on the stage of the dis-
ease and the parasite subspecies. Pentamidine isethionate is the first-line treatment 
for the first stage of T.b. gambiense disease, while suramin is used in the treatment of 
first stage of HAT caused by T.b. rhodesiense. Intravenous treatment with suramin, 
although usually effective, especially when given early in the disease, can result in 
potential complications such as renal failure, skin lesions, anaphylactic shock, bone 
marrow toxicity, and neurological complications. Pentamidine, administered by 
the intramuscular route or intravenously, despite non-negligible undesirable effects 
(hypoglycemia, prolongation of the QT interval on electrocardiogram, hypoten-
sion, and gastrointestinal features), is in general well tolerated by patients and is 
usually effective [22, 23]. NECT, being the first-line treatment for the second stage 
of T.b. gambiense disease, consists of nifurtimox delivered orally and eflornithine 
delivered intravenously. In the case of contraindications to nifurtimox, eflornithine 
may be given as a monotherapy for T.b. gambiense HAT (meningoencephalitic 
stage), but it is not recommended for T.b. rhodesiense disease [4, 24]. Melarsoprol 
is restricted to the treatment of the second stage of T.b. rhodesiense HAT because 
of severe adverse drug reactions, such as an encephalopathy syndrome that occurs 
in 5–18% of all treated cases and may be fatal [25–27]. The only indication of 

Figure 1. 
Drugs used for human trypanosomiasis treatment.
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melarsoprol for the treatment of T.b. gambiense HAT appears in the case of disease 
relapse after administering NECT or eflornithine monotherapy.

New effective oral monotherapy of HAT with fexinidazole has been developed 
and approved, so in 2018 the European Medicines Agency’s (EMA) Committee 
for Medicinal Products for Human Use issued a positive opinion for fexinidazole 
treatment of T.b. gambiense HAT [28–30]. According to new WHO guidelines, under 
particular conditions, fexinidazole may replace pentamidine as first-line treatment 
in patients with the first stage of T.b. gambiense HAT and replace nifurtimox-eflorni-
thine combination therapy as first-line treatment in patients with the second stage 
of T.b. gambiense HAT with fewer than 100 cerebrospinal fluid white blood cells 
per μL. These recommendations cannot be applied for the treatment of patients 
younger than 6 years or with a bodyweight less than 20 kg [31, 32]. One more 
new oral compound developed for treatment of all stages of T.b. gambiense HAT is 
acoziborole being at late Phase II/III of clinical trials [31].

1.1.2 Chagas disease

Only two drugs are currently available, nifurtimox and benznidazole (Figure 1), 
that both are active in the acute stage of the disease (up to 80% efficacy), though 
of limited efficacy against the established chronic stage of the disease [14, 33]. 
Benznidazole is a nitroimidazole, which generates radical species in aerobic and 
anaerobic conditions [34], and is the agent of choice for monotherapy of Chagas 
disease because of its extensive security and efficacy profile. Generalized adverse 
effects [17] as well as occasionally reported resistance to benznidazole make nifurti-
mox usage an alternative treatment. Both drugs produce important adverse reac-
tions, especially in adults, because newborn, nursing, and small children tolerate 
these drugs better [35, 36]. In the acquired acute period, 70% of the cases are cured, 
and in newborn and nursing children with congenital Chagas disease, 98–100% 
cure is obtained. On the one hand, there is evidence about efficiency of benzni-
dazole in early chronic infections [33], but on the other hand, the expediency of 
antitrypanosomal treatment in the chronic stages remains controversial, because of 
significant toxicity profiles and the unproven role in preventing the cardiomyopathy 
progression. Therefore, therapy for the majority of patients suffering from chronic 
Chagas disease consists mostly in nonetiologic treatments [11]. New effective and 
safety drugs are needed, especially for the chronic stage treatment [37].

1.2 Drug discovery strategies

As American and African trypanosomiases affect mostly poor population in 
the low- and middle-income countries and have not been interesting for the big 
pharmaceutical companies for years, a number of public and private institutions, 
partnerships, and consortia were initiated. For example, the Special Programme for 
Research and Training in Tropical Diseases of WHO (WHO/TDR), the European 
Commission [38] as a government agency, or the international Drugs for Neglected 
Diseases Initiative (DNDi) [39] had emerged. The work of these organizations has 
had an undeniable positive impact on the development of novel therapies and for 
the elimination of trypanosomiasis.

In general, three known major approaches to novel drug development, including 
antitrypanosomals, may be outlined: (i) ligand-based approach, (ii) target-based 
drug discovery [40], and (iii) phenotype-based drug discovery [41]. Different types 
of compounds, namely, thiosemicarbazones, thiazolidines, triazole- and furan-based 
compounds, benzofuran derivatives, peptidyl compounds, peptidomimetics acyl- 
and arylhydrazones, etc. have been studied as novel antitrypanosomal agents [42].
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In ligand-based approaches, already known active synthetic and natural com-
pounds or approved drugs are used as starting scaffolds to develop novel agents 
[43]. For example, development of pentamidine analogues resulted in the lead 
compound DB289 that underwent preclinical and clinical studies [44]. Other 
examples of the abovementioned approach are label extension or search for the new 
indications of existing drugs [45].

Target-based approaches involve screening of drug libraries with established 
targets, within target repurposing strategy, or screening libraries of novel com-
pounds against a definite protein target. The structures of identified hit compounds 
are often optimized in order to increase their selectivity and pharmacokinetic 
properties or decrease their toxicity [46]. It should be mentioned that the target 
validation status used in the antitrypanosomal drug discovery often has not been 
clear. WHO/TDR Target Prioritization Network helps the scientists in the rational 
drug design of antiparasitic agents including antitrypanosomal drugs. The TDR 
Targets database, developed by this organization, contains information on vali-
dated, essential, as well as putative targets; it also can serve as a tool for prioritiza-
tion of targets in whole genomes [47, 48].

1.3 Examples of targets used in novel antitrypanosomal agent development

1.3.1 Trypanosomatid peptidases

Numerous studies showed that intra- and/or extracellular trypanosomatid 
peptidases play important roles in different cell functions including invasion, 
intracellular survival, replication, differentiation, infectivity, immune evasion, and 
nutrition. “Validated” trypanosomatid peptidases belong to the endopeptidases and 
include cruzipain, prolyl oligopeptidases (POPs; T. cruzi), congopain (T. congo-
lense), rhodesain (T.b. rhodesiense), and brucipain (T.b. brucei) [49]. For example, 
the cysteine peptidase cruzipain being differentially expressed in the different 
stages of T. cruzi, along with other peptidases, is responsible for parasite survival, 
differentiation, and growth. Cruzipain is a sulfated glycoprotein, which is investi-
gated not only as a drug target but also as a candidate for vaccine development [50]. 
Selective inhibitors of this peptidase arrest metacyclogenesis in vitro and block the 
proliferation of both extracellular epimastigotes and intracellular amastigotes. The 
main lysosomal cysteine peptidases rhodesain, brucipain, and congopain are cathep-
sin L-like proteases [49]. They may play a role in anemia and immunosuppression 
due to infection, and conversely, anti-cysteine peptidase antibodies may modulate 
the trypanosome-induced pathology [51]. Oligopeptidases B and Tc80 are serine 
protease representatives of the prolyl oligopeptidase family [49]. Oligopeptidase 
B is involved in the mammalian host cell invasion by the trypomastigotes [52]. It 
retains full catalytic activity when released into the host bloodstream providing 
anomalous degradation of host peptide hormones that reinforces the importance 
of its protein-processing activity [53]. POP Tc80 has been detected in all the devel-
opmental stages of T. cruzi but is secreted by the trypomastigotes. POP Tc80 was 
shown to exhibit the unusual property of cleaving collagens I and IV, fibronectin, 
and peptide hormones. POP TC80 inhibitors block the host cell invasion by trypo-
mastigotes; selectivity between parasitic and human POPs toward inhibitors could 
be expected [54, 55].

1.3.2 Nitroreductases

Nitroreductases are mainly associated with the nifurtimox mode of action. The 
activity of type I nitroreductase is believed to be “oxygen-insensitive” as it does not 
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involve oxygen in the reduction process and therefore does not cause the reactive 
oxygen species production. In contrast, the activity of type II nitroreductase results 
in the production of superoxide anions, so it is considered “oxygen-sensitive.” 
Nifurtimox selectivity toward parasites was associated with the expression of type 
I nitroreductase. But, considering that nifurtimox-treated trypanosome extracts 
contain superoxide anions and nitro anion radicals, an oxidative stress with a type II 
nitroreductase involving is generally accepted to be the main trypanocidal mode of 
its action [56].

1.3.3 Dolicholphosphate mannose synthase

Dolicholphosphate mannose synthase is a mannosyltransferase critically 
involved in glycoconjugate biosynthesis in T. brucei. Variant surface glycoprotein 
(VSG) dimers, covering the surface of the parasite and undergoing constant 
antigenic variation, act as a physical diffusion barrier for components of the innate 
immune system as the parasite switches between many immunologically distinct 
VSG genes. All VSG variants are linked to the plasma membrane via glycosylphos-
phatidylinositol (GPI) anchors. The biosynthesis of GPI anchor was shown to be 
essential for viability of the bloodstream form of T. brucei, thus validating it as a 
drug target against HAT [57].

1.3.4 Dihydrofolate reductase

Dihydrofolate reductase (DHFR) is a key enzyme of the folate metabolism, 
deeply studied in the design of a number of anticancer, antibacterial, and anti-
malarial agents [58]. Detailed structural analysis of T. brucei and T. cruzi DHFRs 
showed their differences from the human enzyme, indicating them as attractive 
targets for the development of selective antitrypanosomals. Well-known DHFR 
inhibitors, as trimethoprim and pyrimethamine, are weakly active against T. brucei 
and T. cruzi DHFR unlike methotrexate being reported to inhibit T. cruzi enzyme in 
nanomolar concentrations [59].

1.3.5 Trypanothione reductase

Trypanothione reductase (TryR)–an enzyme of the NADPH-dependent flavo-
protein oxidoreductase family–converts trypanothione disulfide into the physi-
ologically relevant reduced dithiol. TryR is essential for growth of trypanosomatids 
as in the absence of catalase and glutathione peroxidase, the trypanothione system 
is involved in response to an oxidative stress. To some extent, trypanothione disul-
fide serves as glutathione in mammalian cells. Although mammalian glutathione 
reductase is homologous to parasite TryR, there are significant differences in their 
active sites [60, 61].

1.3.6 Kinases

The genomic analysis of T. brucei and T. cruzi revealed 156 and 171 eukaryotic 
protein kinases (PKs) in the parasite genomes. Atypical PKs representing four fami-
lies, RIO, alpha, PIKK, and PDK, had also been discovered. Such an amount of PKs 
that are key mediators of signal transduction indicates the important role they play 
in trypanosomatid life cycles [62]. The differences in structure between trypanoso-
matid PKs and mammalian PKs as well as the evidence that some trypanosomatid 
PKs are vital for the parasite make these enzymes suitable for the antitrypanosomal 
drug search [63].
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1.3.7 Triosephosphate isomerase

Triosephosphate isomerase (TIM) catalyzes the interconversion between glyc-
eraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway 
[64]. The presence of TIM in both human and parasite (68–74% of identity between 
both enzymes) makes targeting this enzyme problematic [65]. The structures of 
T. brucei and T. cruzi TIMs are also quite similar, except the structural differences 
that influence their different sensitivity to sulfhydryl reagents. T. cruzi TIM showed 
the highest sensitivity, constituting a good target for the development of selective 
therapeutics for the Chagas disease [66].

1.3.8 Farnesyl diphosphate synthase

Farnesyl diphosphate synthase (FPPS) catalyzes isopentenyl diphosphate and 
dimethylallyl diphosphate condensation resulting in the formation of geranyl 
diphosphate and subsequently farnesyl diphosphate that are precursors for the 
biosynthesis of isoprenoid derivatives (e.g., dolichols, sterols) and for protein pre-
nylation. Bisphosphonates, such as alendronate and risedronate, are considered to 
be ligands for T. cruzi FPPS [67]. FPPS is an attractive target for antichagasic drug 
development as it is essential for parasite’s growth and proliferation [68, 69].

1.3.9 Cyclic nucleotide-specific phosphodiesterases

Cyclic nucleotide-specific phosphodiesterases (PDEs) are also shown to be 
promising antitrypanosomal drug targets [70]. There are four distinct PDE families 
encoded in the genome of T. brucei [71].

Kinase inhibitors [72], such as human Aurora kinase inhibitors, typified by 
danusertib [73], and human epidermal growth factor receptor (EGFR) inhibitors 
lapatinib and canertinib [74] are examples of successful implementations of the 
target repurposing strategy when pathogen targets are matched with known 
homologous human targets.

One more variation of target-based drug design is the screening of known drug 
libraries in order to establish new pharmacological profile. For example, screening 
of a library of bioactive compounds against TryR [75] led to identification of a new 
class of TryR inhibitors based on indatraline, a nonselective monoamine reuptake 
inhibitor [76].

1.3.10 Lanosterol 14α-demethylase

Lanosterol 14α-demethylase or CYP51, which belongs to the family of cyto-
chrome P450s, is one of the most promising antitrypanosomal targets. This enzyme 
is involved in the ergosterol biosynthesis, taking part in the production of compo-
nents of the plasma membranes and serving as precursors for regulatory molecules 
that modulate growth, division, differentiation, and development processes [77, 78]. 
Fungicides as well as clinically used antifungal azoles inhibit CYP51 that along with 
the resemblance of sterol biosynthesis in trypanosomatids to such in fungi [79], 
makes lanosterol 14α-demethylase an attractive target for the design of antitrypano-
somal agents.

In the era of target therapy, phenotypic screening that lies in pharmacological 
screening of chemical libraries against whole-cell or biological system should not be 
neglected [80–82]. This approach is particularly advantageous in the search of anti-
trypanosomals [83, 84], as the success strongly depends on the penetration proper-
ties of the drug into the parasite as well as on the crossing of the blood-brain barrier. 
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Sometimes, high-affinity ligands toward validated trypanosomal targets were 
shown ineffective in vivo against the parasite because not crossing the membranes, 
that is one more argument in favor of the whole-cell phenotypic assays [42]. Target 
resolution from phenotypic hits may also contribute to drug discovery process [84].

It should be mentioned that the parasites of Leishmania genus belong to the 
same order Kinetoplastida as Trypanosoma ssp. sharing some phylogenetic similari-
ties [85]. Similar structural and biochemical features include, for example, special 
organelles (kinetoplast (mitochondrion with a discrete structured DNA body), 
glycosomes (involved in glycolysis)), a sub-pellicular microtubular corset, and a 
unique thiol metabolism [10, 86]. Interesting is that hit compounds found in anti-
trypanosomal screening may be used for the design of agents against Leishmania 
ssp. [87, 88] or vice versa.

2. 4-Thiazolidinone frame in the design of antitrypanosomals

4-Thiazolidinones are well-known class of azoles, which have been investigated 
for many decades as useful tools for the design and development of new drugs 
[89–93]. 4-Thiazolidinone scaffolds (2,4-thiazolidinedione, rhodanine (2-thioxo-
4-thiazolidinone), 2-alkyl(aryl)-substituted and 2-amino(imino)-substituted 
4-thiazolidinones) (Figure 2) are used as privileged structures and substructures in 
the modern medicinal chemistry [94–98] for the design of new anti-inflammatory, 
antitumor, antimicrobial, antidiabetic, antibacterial agents, etc. The synthetic 
approaches for these heterocycles are well known and described [96].

Majority of the 4-thiazolidinone-based hit and lead compounds, drug-like 
molecules, and approved drugs belong to derivatives containing the exocyclic 
double bond at C5 position—5-ene-4-thiazolidinones [96, 97]. These compounds, 
especially rhodanine derivatives, are possible Michael acceptors and are claimed 
as frequent hitters or pan-assay interference compounds (PAINS), being treated 
as useless in the drug discovery process because of their possible/predicted insuf-
ficient selectivity [99]. This statement should not be regarded as a general knockout 
criterion that excludes such screening hits from further development and should be 
studied in more detail [96, 97, 100, 101]. Therefore, “4-thiazolidinones and related 
scaffolds should not be regarded as problematic or promiscuous binders per se” [95], 
while “positive” properties of Michael acceptors should be effectively used [95, 97]. 
For instance, Michael acceptors are among the most effective activators of Nrf2 
through the Keap1 modification, which open new perspectives in the treatment of 
inflammation, cancer, etc. [102]. Moreover, Michael acceptor properties are often 
not confirmed in experimental studies [103, 104] under conditions similar to physi-
ological ones.

The search for new antimicrobial and antiparasitic agents based on 4-thia-
zolidinone cores is one of the earliest directions of biological studies of 4-thia-
zolidinones. The structural similarity of 4-azolidinones with penicillin antibiotics 
was the stimulus to the study of such type of activity [90, 105–107]. However, 

Figure 2. 
Main 4-thiazolidinone-based scaffolds.
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currently the effects of 4-thiazolidinones are not related to the “penicillin” mode 
of action [91, 96].

In the field of antiprotozoal agent search, the design of antitrypanosomal agents 
based on thiazolidinone scaffolds is of special interest [42, 108]. Data on the search 
for new antitrypanosomal agents among 4-thiazolidinone derivatives present 
mostly investigations on the inhibition of parasite growth (phenotype screening) 
mainly within a privileged substructure-based design. A much smaller number of 
publications are devoted to the study of the mechanism of action or the design of 
high-affinity ligands to “validated” targets [42, 96].

One of the arguments for the study of 4-thiazolidine-based compounds as anti-
trypanosomal agents is the thesis that thiazoles, especially 4-thiazolidinones, are 
considered as thioureas/thiosemicarbazones’ cyclic analogues and biomimetics [42, 
96, 108, 109]. Different (thio)ureas/(thio)semicarbazides were reported as inhibi-
tors of the trypanosome proliferation [110–112] and had shown high affinity to 
the antitrypanosomal targets: cruzain and rhodesain [109, 113], cysteine proteases 
[114], etc. Different classes of “drug-like” molecules based on a thiazolidinone scaf-
fold have been designed and synthesized in the process of search for antitrypano-
somals [42, 115–119]. One of the most prominent directions is the conjugation of 
the thiazolidinone core with other different molecular fragments (mainly privileged 
substructures) [120, 121] that proves the efficiency of a molecular hybridization 
approach and a hybrid pharmacophore approach for the design of new antitrypano-
somals [122–124].

Combination of 4-thiazolidinone and pyrazoline cores led to the synthesis of 
rows of promising trypanocidal agents (1–4) (Figure 3) with sub-micromolar 
activity levels against T.b. brucei and T.b. gambiense [121, 125–127] and low toxicity 
levels against mammalian cells.

Compounds with an enamine linker 5, 6 (Figure 4) were designed based on the 
early hits 1, 2 (4-thiazolidinone and pyrazoline cores are bonded without additional 
linker). Most active compounds from these series, 5-[5-(4-methoxyphenyl)-3-naph-
thalen-2-yl-4,5-dihydropyrazol-1-ylmethylene]-3-methyl-2-thioxothiazolidin-4-one 
(IC50 = 0.6μM) and 5-[5-(2-hydroxyphenyl)-3-(4-methoxyphenyl)-4,5-dihydro-
pyrazol-1-ylmethylene]-3-(3-acetoxyphenyl)-2-thioxothiazolidin-4-one (IC50 
= 0.7μM), possess sub-micromolar activities and high selectivity indexes [121]. 
Elongation of the enamine bearing linker group (compounds 6) led to a decrease of 
the activity, and modification of the N3 position of thiazolidinone core (compounds 

Figure 3. 
Thiazolidinone-pyrazoline conjugate synthesis.
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5 as well as compounds 2 and 4) was considered as crucial for the trypanocidal 
activity (methyl or small aryl fragments are desirable) [127].

It should be noted that mentioned compounds are considered as prominent 
anticancer agents [127] and compounds 5 showed a strong antileukemic activity 
with an apoptotic-related mitochondria-dependent mode of action with a prooxi-
dant action [128].

Related 4-thiazolidinone-pyrazoline conjugates 7 (Figure 5) synthesized based 
on an isorhodanine (4-thioxo-2-thiazolidinone) core [129, 130] were also studied 
in vitro against T.b. brucei, and compounds with a micromolar activity were identi-
fied [126].

A moderate antitrypanosomal activity of pyrimidine-thiazolidine-4-one 
hybrids 8 (Figure 6) was reported against bloodstream forms of T.b. brucei (IC50 = 
25–100 μM) [131].

Related 2,3-substituted 4-thiazolidinones 9 with simple aromatic substituents at 
the position C2 and N3 also possessed low to moderate levels of activity against T.b. 
brucei and T.b. gambiense [132]. The synthetic methods for their obtaining are based 
on the one-pot three-component reaction of amine, oxocompound, and thiogly-
colic acid or its derivatives [133, 134]. It should be noted that the abovementioned 
derivatives of thioglycolic acids, namely, 2-mercaptoacrylic acids, can be easily 
synthesized or formed via a metabolic transformation based on simple 5-aryliden-
erhodanines (Figure 7) and possess similar pharmacological profiles [135].

Moreover, simple 5-ene-2,4-thiazolidinones were proposed as possible 
 scaffolds for the design of new antitrypanosomal agents as pteridine reductase 
1 inhibitors [136].

5-Arylidenerhodanine-3-acetic acids 10 (Figure 8) as one of the most studied 
types of thiazolidinones were reported to inhibit the activity of the dolicholphos-
phate mannose synthase and the GPI anchor synthesis and exhibited trypanocidal 
activity against the bloodstream forms of T.b. brucei (ED50 = from 96 to 492 μM) [57]. 
Structure optimization of 4-thiazolidinone-carboxylic acids, including compounds 
with anticancer properties [137, 138], allowed to obtain a series of 2-(5- aminome
thylene-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl esters 11. 
Among them, several hit compounds (2-{5-[(5-chloro-2-methoxyphenylamino)-
methylene]-4-oxo-2-thioxothiazolidin-3-yl}-3-phenylpropionic acid ethyl ester, 
2-(5-{[2-methyl-5-(morpholine-4-sulfonyl)phenylamino]-methylene}-4-oxo-
2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl ester, and 4-{[3-(1-ethoxycar-
bonyl-2-phenylethyl)-4-oxo-2-thioxothiazolidin-5-ylidenemethyl]-amino}-benzoic 

Figure 4. 
5-Enamine 4-thiazolidinone-pyrazoline conjugates.
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acid ethyl ester) inhibited the in vitro growth of T.b. brucei and T.b. gambiense at 
nano- and sub-micromolar concentrations (IC50 = 0.027–1.936 μM), and significant 
selectivity indices (SI = 108–1396) were calculated [139].

Screening of a focused kinase inhibitor library against cultures of T.b. brucei 
allowed identifying a series of active compounds based on 2,4-diaminothiazoles, 
some of them possessing antitrypanosomal activity at the nanomolar range [140]. 
Combination of thiazolidine scaffold with a thiophene moiety yielded thiophen-
2-iminothiazolidine hybrids that showed trypanocidal activity in vitro against T. 
cruzi (amastigote and trypomastigote forms) and cruzain inhibition activity [115].

One of the directions for the design of new antitrypanosomal agents using 
a molecular hybridization approach is the utilization of hydrazone fragments 
(Figure 9) as the linker group for the connection of the thiazole/4-thiazolidinone 
scaffold with the other molecular fragments [117, 141–147].

Screening of 4-thiazolidinone-hydrazones against T. cruzi yielded active 
and non-cytotoxic compounds 12 (Figure 10) [148, 149]. The 2-hydrazolyl-
4-thiazolidinone-5-carboxylic acid derivatives 13 have shown promising activity 
on the cruzipain protease. Compounds were selected based on a virtual screening 
of 500,000 chemical structures (ZINC5 database). Structurally related compounds 
14 (with exocyclic double bond at C5 position) showed the highest antiproliferative 
activity when screened on T. cruzi epimastigotes but were inactive toward cruzipain 
[127]. 5-Alkyl-4-thiazolidinone-2-hydrazones 15 tested in a cruzain inhibition 
assay and against cultures of the epimastigote and trypomastigote forms (T. cruzi, 
Y strain) inhibited the cruzain activity and showed an antiproliferative activity 

Figure 5. 
4-Substituted 2-thiazolidinone synthesis.

Figure 6. 
2,3-Disubstituted 4-thiazolidinone synthesis.
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at non-cytotoxic concentrations [150]. Study of analogues, namely, 2-imino-
1,3-thiazoles, showed that the bioisosteric replacement of thiazolidine cycle with 
thiazole led to loss of the cruzain inhibitory activity and a significant reduction of 
the trypanocidal activity. The most potent cruzain inhibitor 2-((1-phenoxypropan-
2-ylidene)hydrazono)-3-phenyl-5-isopropylthiazolidine-4-one also impaired 
intracellular trypomastigote development and attenuated trypomastigote invasion 

Figure 9. 
2-Hydrazono-4-thiazolidinone synthesis.

Figure 7. 
Thiazolidinone-based approach to 2-mercaptoacrylic acid formation.

Figure 8. 
5-Ene-4-thiazolidinone-3-carboxylic acid synthesis.



13

Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents
DOI: http://dx.doi.org/10.5772/intechopen.91861

of macrophages; however it did not eradicate parasite in mice [150]. 2-Aminoacyl-
4-thiazolidinone derivatives also showed good trypanocidal properties against 
T. cruzi; the proline derivative 16 showed differences of efficiency according to the 
parasite strains tested (Y strain vs Colombian strain). Docking analysis to T. cruzi 
cruzain that corroborated the experimental IC50 data and analysis of the binding 
characteristics of tested ligands revealed important interactions, which explain the 
affinity of such derivatives to cruzain [42, 151]. Combination of 4-dialkylaminobi-
cyclo[2.2.2]octane fragment with the 5-unsubstituted 4-thiazolidinone core led to 
compounds 17 with weak to moderate activity against T.b. rhodesiense [152].

Molecular hybridization of the thiazole ring with a pyridine moiety through 
a hydrazine bridge led to identification of selective N-[3-phenyl-3H-thiazol-2-
ylidene]-N′-(1-pyridin-2-yl-ethylidene)-hydrazines inducing the parasite death 
via an apoptotic mechanism [153]. Combination of a thiazole core with fused [6+5] 
or [6+6] scaffolds turned out to be especially interesting, leading to highly active 
and selective antitrypanosomal agents. Synthesized indanone-thiazole hybrids 
18 (Figure 11) provide good trypanocidal properties against T. cruzi (IC50 within 
0.09–1.35 μM, Tulahuen 2 strain); these compounds were also characterized by low 
mammalian cell cytotoxicity [154].

Development of optimization directions of thiazolidinone-hydrazone struc-
tures led to new hybrid molecules bearing thiazolidinone/thiazole and 2-phenyl-
indole/6-phenyl-imidazo[2,1-b][1, 3, 4]thiadiazole cores with hydrazone linkers 19, 
20 [155]. Compounds with sub-micromolar levels of trypanocidal activity toward 
bloodstream forms of T.b. brucei and T.b. gambiense and relatively low cytotoxicity 
upon human primary fibroblasts were identified, as well as some aspects of SAR 
(Figure 12) were derived.

Compounds with a 2-arylindole fragment were more active than 6-aryl-
imidazo[2,1-b][1, 3, 4]thiadiazole analogues. For the compounds without phenyl 
ring attached to the indole fragment, no significant antitrypanosomal activity was 
found as well as for the compounds with a C5-ene-fragment in the 4-thiazolidinone 
core [155].

The main features of the molecular structure of thiazolidinone-hydrazone-
based compounds can be outlined as the following: (i) thiazole core (position C4, 
small aryl or alkyl substituent; C5 position, unsubstituted or small alkyl fragment; 

Figure 10. 
4-Thiazolidinone-hydrazones as trypanocidal agents.
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N3 position, variety of substituents) or 4-thiazolidinone core (C5 position, unsub-
stituted or small alkyl fragment); (ii) hydrazone linker in the C2 position of the 
main core; (iii) additional molecular fragment, diverse substituents (from simple 
alkyl(aryl)ydene fragment to privileged heterocyclic cores); and (iv) target com-
pounds imitating the thiosemicarbazones with trypanocidal activity [147, 153, 155].

The “fixation” of the hydrazone fragment in a pyrazoline core (Figure 13) as 
one of the methods of such compound optimization has been also described for the 
synthesis of active compounds 21, 22 [126, 127].

Figure 11. 
Thiazolidinone-indanone/indole/imidazothiadiazole hybrids.

Figure 12. 
SAR of indole/imidazothiadiazole-thiazolidinone/thiazole hybrids.
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The hit compound from thiazolidinone-pyrazoline hybrids 21 showed inhibitory 
activity on the in vitro growth of T.b. rhodesiense (IC50 = 12 μg/mL) and Leishmania 
donovani (IC50> 30 μg/mL) and a higher influence on Plasmodium falciparum (IC50 > 
5 μg/mL) with cytotoxicity level CC50> 90 μg/mL.

3. Fused heterocyclic molecules based on the core 4-thiazolidinone

Thiopyranothiazoles that frequently are synthesized in hetero-Diels-Alder reac-
tion starting from 5-ene-thiazolidinones are considered as their fused mimetics, 
without Michael acceptor properties, though with saved pharmacological profiles 
(Figure 14) [90, 96, 156, 157].

So, various thiopyranothiazoles serve as a fruitful source of drug-like molecules 
that, unlike their precursors 5-ylidene-4-thiazolidinones, cannot be claimed as 
PAINS [99]. This class of fused thiazolidinone derivatives is characterized by a 
number of different biological activities [158], the most studied being the antitu-
mor activity [96, 157, 159, 160]. Recently, antiparasitic properties of these polycyclic 
compounds have been also reported.

A series of N-substituted thiopyrano[2,3-d]thiazoles showed excellent inhibi-
tory activity of T.b. brucei (bloodstream form) at the concentration of 10 μg/mL 
in vitro. The most promising compounds were 3-[2-(4-fluoro(chloro)phenyl)-2-
oxoethyl]-3,5a,6,11b-tetrahydro-2Н,5Н-chromeno[4′,3′:4,5]thiopyrano[2,3-d]
thiazol-2-ones and N-(4-chloro(ethylcarboxy)phenyl)-2-(2-oxo-5a-methyl-
(5aRS,11bSR)-3,5a,6,11b-tetrahydro-2Н,5Н-chromeno[4′,3′:4,5]thiopyrano[2,3-d]
thiazol-3-yl)-acetamides 23 (Figure 15) that inhibited more than 95% of parasite 
growth in the above concentration and near quarter at the concentration of 1 μg/
mL [132].

Development of novel synthetic protocols for the thiopyrano[2,3-d]thiazoles and 
their modifications led to the synthesis of new spiro thiopyrano[2,3-d]thiazoles. A 
hit compound rel-(6′R,7′R)-7′-(3,4-dimethoxyphenyl)-1-(4-chlorophenyl)-3′,7′-
dihydro-2H,2′H,5H-spiro[pyrolidin-3,6′-thiopyrano[2,3-d]thiazol]-2,2′,5-trione 24 
(Figure 16), inhibiting growth of T.b. brucei and T.b. gambiense with the IC50 values 
of 0.26 μM and 0.42 μM, respectively, was identified [161].

Effective and feasible method of functionalized thiazolothiopyrane core 
synthesis has been the utilization of norbornene as a dienophile with 5-ylidene-
isorhodanines as heterodienes in the hetero-Diels-Alder reaction. Obtained 
9-aryl(heteryl)-3,7-dithia-5-azatetracyclo[9.2.1.02,10.04,8]tetradecen-4(8)-ones-6 
and their N-arylidene substituted analogues 25 (Figure 17) showed moderate 
trypanocidal activity. The most active representatives possessed IC50 within 

Figure 13. 
“Fixation” of hydrazone fragment for thiazolidinone-pyrazoline hybrid synthesis.
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3.7–4.1 μM against T.b. brucei. Interesting was the dual antileukemic and trypano-
cidal effects observed for some thiopyranothiazoles bearing norbornane moiety 
that may be used for establishing the molecular mode of action for this class of 
compounds [118].

Comparable antitrypanosomal activity was observed for a series of 
isothiochromeno[4a,4-d][1,3]thiazoles 26 (Figure 18) in vitro against bloodstream 
forms of T.b. brucei. It should be mentioned that SAR analysis revealed the positive 
influence of N3-substituent for the trypanocidal activity. The same trend was found 
for the abovementioned tetracyclic thiopyrano[2,3-d]thiazoles 23 and thiopyrano-
thiazoles with norbornane core 25. Good trypanocidal properties along with a low 
acute toxicity in mice (LD50: 240–480 mg/kg) for the isothiochromeno[4a,4-d][1,3]
thiazole hits make such fused systems based on the thiazolidinone core attractive 
scaffolds for the discovery of antitrypanosomals [162].

Figure 16. 
Synthesis of spiro thiopyrano[2,3-d]thiazole derivatives as trypanocidal agents.

Figure 17. 
Thiopyrano[2,3-d]thiazoles bearing norbornane moiety as antitrypanosomal agent.

Figure 14. 
General scheme of thiopyranothiazole core formation.

Figure 15. 
Chromeno-thiopyrano-thiazolidinones as trypanocidal agents.
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One more class of polycyclic fused molecules based on the thiazolidinone scaf-
fold, being tested against T.b. brucei, were different 1-oxo-1H-2-benzothiopyran-
3-carboxylic acids. The latter were synthesized in a result of heterocyclization of 
intermediates obtained in the hydrolysis reaction of 5-arylidenerhodanines with 
substituent in ortho position (Figure 19). Investigated amides did not exhibit sig-
nificant antitrypanosomal effects except 1-oxo-1H-isothiochromene-3-carboxylic 
acid naphthalen-1-ylamide and 7,8-dimethoxy-1-oxo-1H-isothiochromene-3-car-
boxylic acid (4-sulfamoyl-phenyl)-amide 27 that inhibited growth of T.b. brucei 
bloodstream forms [119].

4. Conclusion

Thus, 4-thiazolidinone derivatives, especially thiazolidinone-bearing hybrids, as 
well as fused analogues are efficient compounds for the design of new antitrypano-
somal agents within different drug design strategies. Thiazolidinone derivatives are 
more active than the known thiosemicarbazone analogues. Moreover, they can be 
used as starting compounds for the design and development of non-thiazolidinone 
compounds with trypanocidal activity. In addition, there are many active anti-
cancer agents among 4-thiazolidinones with trypanocidal properties, and some 
active antitrypanosomal 4-thiazolidinones can be interesting for the search for new 
antimalarial and antileishmanial agents.

Conflict of interest

The authors declare no conflict of interest.

Figure 18. 
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