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Chapter

Deep Learning: Exemplar Studies
in Natural Language Processing
and Computer Vision
Selma Tekir and Yalin Bastanlar

Abstract

Deep learning has become the most popular approach in machine learning in
recent years. The reason lies in considerably high accuracies obtained by deep
learning methods in many tasks especially with textual and visual data. In fact,
natural language processing (NLP) and computer vision are the two research areas
that deep learning has demonstrated its impact at utmost level. This chapter will
firstly summarize the historical evolution of deep neural networks and their funda-
mental working principles. After briefly introducing the natural language
processing and computer vision research areas, it will explain how exactly deep
learning is used to solve the problems in these two areas. Several examples
regarding the common tasks of these research areas and some discussion are also
provided.

Keywords: deep learning, machine learning, natural language processing,
computer vision, transfer learning

1. Introduction

Early approaches of artificial intelligence (AI) have sought solutions through
formal representation of knowledge and applying logical inference rules. Later on,
with having more data available, machine learning approaches prevailed which
have the capability of learning from data. Many successful examples today, such as
language translation, are results of this data-driven approach. When compared to
other machine learning approaches, deep learning (deep artificial neural networks)
has two advantages. It benefits well from vast amount of data—more and more of
what we do is recorded every day, and it does not require defining the features to be
learned beforehand. As a consequence, in the last decade, we have seen numerous
success stories achieved with deep learning approaches especially with textual and
visual data.

In this chapter, first a relatively short history of neural networks will be pro-
vided, and their main principles will be explained. Then, the chapter will proceed to
two parallel paths. The first path treats text data and explains the use of deep
learning in the area of natural language processing (NLP). Neural network methods
first transformed the core task of language modeling. Neural language models have
been introduced, and they superseded n-gram language models. Thus, initially the
task of language modeling will be covered. The primary focus of this part will be
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representation learning, where the main impact of deep learning approaches has
been observed. Good dense representations are learned for words, senses,
sentences, paragraphs, and documents. These embeddings are proved useful in
capturing both syntactic and semantic features. Recent works are able to compute
contextual embeddings, which can provide different representations for the same
word in different contextual units. Consequently, state-of-the-art embedding
methods along with their applications in different NLP tasks will be stated as the use
of these pre-trained embeddings in various downstream NLP tasks introduced a
substantial performance improvement.

The second path concentrates on visual data. It will introduce the use of deep
learning for computer vision research area. In this aim, it will first cover the
principles of convolutional neural networks (CNNs)—the fundamental structure
while working on images and videos. On a typical CNN architecture, it will explain
the main components such as convolutional, pooling, and classification layers.
Then, it will go over one of the main tasks of computer vision, namely, image
classification. Using several examples of image classification, it will explain several
concepts related to training CNNs (regularization, dropout and data augmentation).
Lastly, it will provide a discussion on visualizing and understanding the features
learned by a CNN. Based on this discussion, it will go through the principles of how
and when transfer learning should be applied with a concrete example of real-world
four-class classification problem.

2. Historical evolution of neural networks and their fundamental
working principles

2.1 Historical evolution of neural networks

Deep neural networks currently provide the best solutions to many problems in
computer vision and natural language processing. Although we have been hearing
the success news in recent years, artificial neural networks are not a new research
area. In 1943, McCulloch and Pitts [1] built a neuron model that sums binary inputs,
and outputs 1 if the sum exceeds a certain threshold value, and otherwise outputs 0.
They demonstrated that such a neuron can model the basic OR/AND/NOT

Figure 1.
A neuron that mimics the behavior of logical AND operator. It multiplies each input (x1 and x2) and the bias
unit þ1ð Þ with a weight and thresholds the sum of these to output 1 if the sum is big enough (similar to our
neurons that either fire or not).
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functions (Figure 1). Such structures are called neurons due to the biological inspi-
ration: inputs (xi) represent activations from nearby neurons, weights (wi) repre-
sent the synapse strength to nearby neurons, and activation function ( fw) is the cell
body, and if the function output is strong enough, it will be sensed by the synapses
of nearby neurons.

In 1957, Rosenblatt introduced perceptrons [2]. The idea was not different from
the neuron of McCulloch and Pitts, but Rosenblatt came up with a way to make
such artificial neurons learn. Given a training set of input-output pairs, weights are
increased/decreased depending on the comparison between the perceptron’s output
and the correct output. Rosenblatt also implemented the idea of the perceptron in
custom hardware and showed it could learn to classify simple shapes correctly with
20 � 20 pixel-like inputs (Figure 2).

Marvin Minsky who was the founder of MIT AI Lab and Seymour Papert
together wrote a book related to the analysis on the limitations of perceptrons [4].
In this book, as an approach of AI, perceptrons were thought to have a dead end. A
single layer of neurons was not enough to solve complicated problems, and
Rosenblatt’s learning algorithm did not work for multiple layers. This conclusion
caused a declining period for the funding and publications on AI, which is usually
referred to as “AI winter.”

Paul Werbos proposed that backpropagation can be used in neural networks [5].
He showed how to train multilayer perceptrons in his PhD thesis (1974), but due to
the AI winter, it required a decade for researchers to work in this area. In 1986, this
approach became popular with “Learning representations by back-propagating
errors” by Rumelhart et al. [6]. First time in 1989, it was applied to a computer
vision task which is handwritten digit classification [7]. It has demonstrated excel-
lent performance on this task. However, after a short while, researchers started to
face problems with the backpropagation algorithm. Deep (multilayer) neural net-
works trained with backpropagation did not work very well and particularly did not
work as well as networks with fewer layers. It turned out that the magnitudes of

Figure 2.
Mark I Perceptron at the Cornell Aeronautical Laboratory, hardware implementation of the first perceptron
(source: Cornell University Library [3]).

3

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813



backpropagated errors shrink very rapidly and this prevents earlier layers to learn,
which is today called as “the vanishing gradient problem.” Again it took more than a
decade for computers to handle more complex tasks. Some people prefer to name
this period as the second AI winter.

Later, it was discovered that the initialization of weights has a critical impor-
tance for training, and with a better choice of nonlinear activation function, we can
avoid the vanishing gradient problem. In the meantime, our computers got faster
(especially thanks to GPUs), and huge amount of data became available for many
tasks. G. Hinton and two of his graduate students demonstrated the effectiveness of
deep networks at a challenging AI task: speech recognition. They managed to
improve on a decade-old performance record on a standard speech recognition
dataset. In 2012, a CNN (again G. Hinton and students) won against other machine
learning approaches at the Large Scale Visual Recognition Challenge (ILSVRC)
image classification task for the first time.

2.2 Working principles of a deep neural network

Technically any neural network with two or more hidden layers is “deep.”
However, in papers of recent years, deep networks correspond to the ones with
many more layers. We show a simple network in Figure 3, where the first layer is
the input layer, the last layer is the output layer, and the ones in between are the
hidden layers.

In Figure 3, a j
ið Þ denotes the value after activation function is applied to the

inputs in jth neuron of ith layer. If the predicted output of the network, which is

a1
4ð Þ in this example, is close to the actual output, then the “loss” is low. Previously

mentioned backpropagation algorithm uses derivatives to carry the loss to the

previous layers. ∂L
∂a1 4ð Þ represents the derivative of loss with respect to a1

4ð Þ, whereas
∂L

∂a1 2ð Þ represents the derivative of loss with respect to a second layer neuron a1
2ð Þ. The

derivative of loss with respect to a1
2ð Þ means how much of the final error (loss) is

neuron a1
2ð Þ responsible for.

Activation function is the element that gives a neural network its nonlinear
representation capacity. Therefore, we always choose a nonlinear function. If acti-
vation function was chosen to be a linear function, each layer would perform a
linear mapping of the input to the output. Thus, no matter how many layers were
there, since linear functions are closed under composition, this would be equivalent
to having a single (linear) layer.

Figure 3.
A simple neural network with two hidden layers. Entities plotted with thicker lines are the ones included in
Eq. (1), which will be used to explain the vanishing gradient problem.
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The choice of activation function is critically important. In early days of multi-
layer networks, people used to employ sigmoid or tanh , which cause the problem
named as vanishing gradient. Let’s explain the vanishing gradient problem with the
network shown in Figure 3.

∂L

∂a1 2ð Þ
¼ w 2ð Þ � σ0 z 3ð Þ

� �

� w 3ð Þ � σ0 z1
4ð Þ

� �

�
∂L

∂a1 4ð Þ
(1)

Eq. (1) shows how the error in the final layer is backpropagated to a neuron in

the first hidden layer, where w ið Þ denotes the weights in layer i and z j
ið Þ denotes the

weighted input to the jth neuron in layer i. Here, let’s assume sigmoid is used as the

activation function. Then, a j
ið Þ denotes the value after the activation function is

applied to z j
ið Þ, i.e., a j

ið Þ ¼ σ z j
ið Þ

� �

. Finally, let σ0 denote the derivative of sigmoid

function. Entities in Eq. (1) are plotted with thicker lines in Figure 3.
Figure 4 shows the derivative of sigmoid, where we observe that the highest

point derivative is equal to 25% of its original value. And most of the time, deriva-

tive is much less. Thus, at each layer w jð Þ � σ0 z jþ1ð Þ
� �

≤0:25 in Eq. (1). As a result,

products decrease exponentially. ∂L
∂a1 2ð Þ becomes 16 (or more) times smaller than ∂L

∂a1 4ð Þ.

Thus, gradients become very small (vanish), and updates on weights get smaller,
and they begin to “learn” very slowly. Detailed explanation of the vanishing gradi-
ent problem can be found in [8].

Figure 4.
Derivative of the sigmoid function.

Figure 5.
Plots for some activation functions. Sigmoid is on the left, rectified linear unit is in the middle, and leaky
rectified linear unit is on the right.
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Today, choices of activation function are different. A rectified linear unit
(ReLU), which outputs zero for negative inputs and identical value for positive
inputs, is enough to eliminate the vanishing gradient problem. To gain some other
advantages, leaky ReLU and parametric ReLU (negative side is multiplied by a
coefficient) are among the popular choices (Figure 5).

3. Natural language processing

Deep learning transformed the field of natural language processing (NLP). This
transformation can be described by better representation learning through newly
proposed neural language models and novel neural network architectures that are
fine-tuned with respect to an NLP task.

Deep learning paved the way for neural language models, and these models
introduced a substantial performance improvement over n-gram language models.
More importantly, neural language models are able to learn good representations in
their hidden layers. These representations are shown to capture both semantic and
syntactic regularities that are useful for various downstream tasks.

3.1 Representation learning

Representation learning through neural networks is based on the distributional
hypothesis: “words with similar distributions have similar meanings” [9] where
distribution means the neighborhood of a word, which is specified as a fixed-size
surrounding window. Thus, the neighborhoods of words are fed into the neural
network to learn representations implicitly.

Learned representations in hidden layers are termed as distributed representa-
tions [10]. Distributed representations are local in the sense that the set of activa-
tions to represent a concept is due to a subset of dimensions. For instance, cat and
dog are hairy and animate. The set of activations to represent “being hairy” belongs
to a specific subset of dimensions. In a similar way, a different subset of dimensions
is responsible for the feature of “being animate.” In the embeddings of both cat and
dog, the local pattern of activations for “being hairy” and “being animate” is
observed. In other words, the pattern of activations is local, and the conceptualiza-
tion is global (e.g., cat and dog).

The idea of distributed representation was realized by [11] and other studies
relied on it. Bengio et al. [11] proposed a neural language model that is based on a
feed-forward neural network with a single hidden layer and optional direct con-
nections between input and output layers.

The first breakthrough in representation learning was word2vec [12]. The
authors removed the nonlinearity in the hidden layer in the proposed model archi-
tecture of [11]. This model update brought about a substantial improvement in
computational complexity allowing the training using billions of words. Word2vec
has two variants: continuous bag-of-words (CBOW) and Skip-gram.

In CBOW, a middle word is predicted given its context, the set of neighboring
left and right words. When the input sentence “creativity is intelligence having fun”
is processed, the system predicts the middle word “intelligence” given the left and
right contexts (Figure 6). Every input word is in one-hot encoding where there is a
vocabulary size (V) vector of all zeros except the one in that word’s index. In the
single hidden layer, instead of applying a nonlinear transformation, the average of
the neighboring left and right vectors (wc) is computed to represent the context. As
the order of words is not taken into consideration by averaging, it is named as a bag-
of-words model. Then the middle word’s (wt) probability given the context
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(p wtjwcð Þ) is calculated through softmax on context-middle word dot product
vector (Eq. (2)). Finally, the output loss is calculated based on the cross-entropy
loss between the system predicted output and the ground-truth middle word.

p wtjwcð Þ ¼
exp wc �wtð Þ

P

j∈V exp w j � wt

� � (2)

In Skip-gram, the system predicts the most probable context words for a given
input word. In terms of a language model, while CBOW predicts an individual
word’s probability, Skip-gram outputs the probabilities of a set of words, defined by
a given context size. Due to high dimensionality in the output layer (all vocabulary
words have to be considered), Skip-gram has higher computational complexity than
CBOW (Figure 7). To deal with this issue, rather than traversing all vocabulary in
the output layer, Skip-gram with negative sampling (SGNS) [13] formulates the
problem as a binary classification where one class represents the current context’s
occurrence probability, whereas the other is all vocabulary terms’ occurrence in the
present context. In the latter probability calculation, a sampling approach is incor-
porated. As vocabulary terms are not distributed uniformly in contexts, sampling is
performed from a distribution where the order of the frequency of vocabulary
words in corpora is taken into consideration. SGNS incorporates this sampling idea
by replacing the Skip-gram’s objective function. The new objective function
(Eq. (3)) depends on maximizing P D ¼ 1jw, cð Þ, where w, c is the word-context
pair. This probability denotes the probability of w, cð Þ coming from the corpus data.
Additionally, P D ¼ 0jui, cð Þ should be maximized if ui, cð Þ pair is not included in the
corpus data. In this condition, ui, cð Þ pair is sampled, as the name suggests negative
sampled k times.

X

w, c

log σ w
!
� c
!

� �� �

þ
Xk

i¼1

log σ �ui
��! � c

!
� �� �

(3)

Both word2vec variants produced word embeddings that can capture multiple
degrees of similarity including both syntactic and semantic regularities.

A regular extension to word2vec model was doc2vec [14], where the main goal is
to create a representation for different document levels, e.g., sentence and

Figure 6.
CBOW architecture.
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paragraph. Their architecture is quite similar to the word2vec except for the exten-
sion with a document vector. They generate a vector for each document and word.
The system takes the document vector and its words’ vectors as an input. Thus, the
document vectors are adjusted with regard to all the words in this document. At the
end, the system provides both document and word vectors. They propose two
architectures that are known as distributed memory model of paragraph vectors
(DM) and distributed bag-of-words model of paragraph vectors (DBOW).

DM: In this architecture, inputs are the words in a context except for the last
word and document, and the output is the last word of the context. The word
vectors and document vector are concatenated while they are fed into the system.

DBOW: The input of the architecture is a document vector. The model predicts
the words randomly sampled from the document.

An important extension to word2vec and its variants is fastText [15], where they
considered to use characters together with words to learn better representations for
words. In fastText language model, the score between a context word and the
middle word is computed based on all character n-grams of the word as well as the
word itself. Here n-grams are contiguous sequences of n letters like unigram for a
single letter, bigram for two consecutive letters, trigram for three letters in succes-
sion, etc. In Eq. (4), vc represents a context vector, zg is a vector associated with
each n-gram, and Gw is the set of all character n-grams of the word w together with
itself.

s w, cð Þ ¼
X

g∈Gw

zTg vc
� �

(4)

The idea of using the smallest syntactic units in the representation of words
introduced an improvement in morphologically rich languages and is capable to
compute a representation for out-of-vocabulary words.

The recent development in representation learning is the introduction of contex-
tual representations. Early word embeddings have some problems. Although they can
learn syntactic and semantic regularities, they are not so good in capturing a mixture
of them. For example, they can capture the syntactic pattern look-looks-looked.

Figure 7.
Skip-gram architecture.
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In a similar way, the words hard, difficult, and tough are embedded into closer points
in the space. To address both syntactic and semantic features, Kim et al. [16] used
a mixture of character- and word-level features. In their model, at the lowest level
of hierarchy, character-level features are processed by a CNN; after transferring
these features over a highway network, high-level features are learned by the use
of a long short-term memory (LSTM). Thus, the resulting embeddings showed
good syntactic and semantic patterns. For instance, the closest words to the word
richard are returned as eduard, gerard, edward, and carl, where all of them are
person names and have syntactic similarity to the query word. Due to character-
aware processing, their models are able to produce good representations for
out-of-vocabulary words.

The idea of capturing syntactic features at a low level of hierarchy and the
semantic ones at higher levels was realized ultimately by the Embeddings from
Language Models (ELMo) [17]. ELMo proposes a deep bidirectional language model
to learn complex features. Once these features are learned, the pre-trained model is
used as an external knowledge source to the fine-tuned model that is trained using
task-specific data. Thus, in addition to static embeddings from the pre-trained
model, contextual embeddings can be taken from the fine-tuned one.

Another drawback of previous word embeddings is they unite all the senses of a
word into one representation. Thus, different contextual meanings cannot be
addressed. The brand new ELMo and Bidirectional Encoder Representations from
Transformers (BERT) [18] models resolve this issue by providing different repre-
sentations for every occurrence of a word. BERT uses bidirectional Transformer
language model integrated with a masked language model to provide a fine-tuned
language model that is able to provide different representations with respect to
different contexts.

3.2 NLP with neural network solutions

In NLP, different neural network solutions have been used in various down-
stream tasks.

Language data are temporal in nature so recurrent neural networks (RNNs)
seem as a good fit to the task in general. RNNs have been used to learn long-range
dependencies. However, because of the dependency to the previous time steps in
computations, they have efficiency problems. Furthermore, when the length of
sequences gets longer, an information loss occurs due to the vanishing gradient
problem.

Long short-term memory architectures are proposed to tackle the problem of
information loss in the case of long sequences. Gated recurrent units (GRUs) are
another alternative to LSTMs. They use a gate mechanism to learn how much of the
past information to preserve at the next time step and how much to erase.

Convolutional neural networks have been used to capture short-ranging depen-
dencies like learning word representation over characters and sentence representa-
tion over its n-grams. Compared to RNNs, they are quite efficient due to
independent processing of features. Moreover, through the use of different convo-
lution filter sizes (overlapping localities) and then concatenation, their learning
regions can be extended.

Machine translation is a core NLP task that has witnessed innovative neural
network solutions that gained wide application afterwards. Neural machine trans-
lation aims to translate sequences from a source language into a target language
using neural network architectures. Theoretically, it is a conditional language model
where the next word is dependent on the previous set of words in the target
sequence and the source sentence at the same time. In traditional language
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modeling, the next word’s probability is computed based solely on the previous set
of words. Thus, in conditional language modeling, conditional means conditioned
on the source sequence’s representation. In machine translation, source sequence’s
processing is termed as encoder part of the model, whereas the next word predic-
tion task in the target language is called decoder. In probabilistic terms, machine
translation aims to maximize the probability of the target sequence y given the
source sequence x as follows.

arg max
y

P yjxð Þ (5)

This conditional probability calculation can be conducted by the product of
component conditional probabilities at each time step where there is an assumption
that the probabilities at each time step are independent from each other (Eq. (6)).

P yjxð Þ ¼ P y1jx
� �

P y2jy1, x
� �

P y3jy1, y2, x
� �

, … ,P ytj y1, … , yt�1, x
� �

¼
Yt

i¼1

P yijy1, … , yi�1, x
� � (6)

The first breakthrough neural machine translation model was an LSTM-based
encoder-decoder solution [19]. In this model, source sentence is represented by the
last hidden layer of encoder LSTM. In the decoder part, the next word prediction is
based on both the encoder’s source representation and the previous set of words in
the target sequence. The model introduced a significant performance boost at the
time of its release.

In neural machine translation, the problem of maximizing the probability of a
target sequence given the source sequence can be broken down into two compo-
nents by applying Bayes rule on Eq. (5): the probability of a source sequence given
the target and the target sequence’s probability (Eq. (7)).

arg max
y

P xj yð ÞP yð Þ (7)

In this alternative formulation, P xjyð Þ is termed as translation model and P yð Þ is
a language model. Translation model aims to learn correspondences between source
and target pairs using parallel training corpus. This learning objective is related to
the task of learning word-level correspondences between sentence pairs. This
alignment task is vital in that a correct translation requires to generate the counter-
part word(s) for the local set of words in the source sentence. For instance, the
French word group “tremblement de terre” must be translated into English as the
word “earthquake,” and these correspondences must be learned in the process.

Bandanau et al. [20] propose an attention mechanism to directly connect to each
word in the encoder part in predicting the next word in each decoder step. This
mechanism provides a solution to alignment in that every word in translation is
predicted by considering all words in the source sentence, and the predicted word’s
correspondences are learned by the weights in the attention layer (Figure 8).

Attention is a weighted sum of values with respect to a query. The learned
weights serve as the degree of query’s interaction with the values at hand. In the
case of translation, values are encoder hidden states, and query is decoder hidden
state at the current time step. Thus, weights are expected to show each translation
step’s grounding on the encoder hidden states.

Eq. (8) gives the formulae for an attention mechanism. Here hi represents each
hidden state in the encoder (VALUES in Figure 8), wi is the query vector coming
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from the current hidden state of the decoder (each QUERY in Figure 8), αi
(WEIGHTS in Figure 8) are attention weights, and K (OUTPUT in Figure 8) is the
attention output that is combined with the last hidden state of the decoder to make
the next word prediction in translation.

αi ¼
exp hi � wið Þ

P

j exp h j � w j

� �

oi ¼ αihi

K ¼
X

i

oi

(8)

The success of attention in addressing alignment in machine translation gave rise
to the idea of a sole attention-based architecture called Transformer [21]. The
Transformer architecture produced even better results in neural machine transla-
tion. More importantly, it has become state-of-the-art solution in language model-
ing and started to be used as a pre-trained language model. The use of it as a pre-
trained language model and the transfer of this model’s knowledge to other models
introduced performance boost in a wide variety of NLP tasks.

The contribution of attention is not limited to the performance boost introduced
but is also related to supporting explainability in deep learning. The visualization of
attention provides a clue to the implicit features learned for the task at hand.

4. Computer vision and CNNs

To observe the performance of the developed methods on computer vision
problems, several competitions are arranged all around the world. One of them is
Large Scale Visual Recognition Challenge [22]. This event contains several tasks
which are image classification, object detection, and object localization. In image
classification task, the aim is to predict the class of images in the test set given a set
of discrete labels, such as dog, cat, truck, plane, etc. This is not a trivial task since

Figure 8.
Sequence-to-sequence attention.
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different images of the same class have quite different instances and varying view-
points, illumination, deformation, occlusion, etc.

All competitors in ILSVRC train their model on ImageNet [22] dataset.
ImageNet 2012 dataset contains 1.2 million images and 1000 classes. Classification
performances of proposed methods were compared according to two different
evaluation criteria which are top 1 and top 5 score. In top 5 criterion, for each image
top 5 guesses of the algorithm are considered. If actual image category is one of
these five labels, then the image is counted as correctly classified. Total number of
incorrect answers in this sense is called top 5 error.

An outstanding performance was observed by a CNN (convolutional neural
network) in 2012. AlexNet [23] got the first place in classification task achieving
16.4% error rate. There was a huge difference between the first (16.4%) and second
place (26.1%). In ILSVRC 2014, GoogleNet [24] took the first place achieving 6.67%
error rate. Positive effect of network depth was observed. One year later, ResNet
took the first place achieving 3.6% error rate [25] with a CNN of 152 layers. In the
following years, even lower error rates were achieved with several modifications.
Please note that the human performance on the image classification task was
reported to be 5.1% error [22].

4.1 Architecture of a typical CNN

CNNs are the fundamental structures while working on images and videos.
A typical CNN is actually composed of several layers interleaved with each other.

4.1.1 Convolutional layer

Convolutional layer is the core building block of a CNN. It contains plenty of
learnable filters (or kernels). Each filter is convolved across width and height of
input images. At the end of training process, filters of network are able to identify
specific types of appearances (or patterns). A mathematical example is given to
illustrate how convolutional layers work (Figure 9). In this example, a 5 � 5 RGB
image is given to the network. Since images are represented as 3D arrays of num-
bers, input consists of three matrices. It is convolved with a filter of size 3 � 3 � 3
(height, weight, and depth). In this example, convolution is applied by moving the
filter one pixel at a time, i.e., stride size = 1. First convolution operation can be seen
at Figure 9a. After moving the kernel one pixel to the right, second convolution
operation can be seen at Figure 9b. Element-wise multiplication ⊙ is applied in
each convolution phase. Thus the operation in Figure 9a is shown below Eq. (9).

1 1 0

1 1 2

2 1 1

2

6
6
4

3

7
7
5
⊙

1 1 0

0 0 1

�1 1 1

2

6
6
4

3

7
7
5
þ

1 2 1

1 0 0

2 2 0

2

6
6
4

3

7
7
5
⊙

0 0 1

1 1 0

0 �1 �1

2

6
6
4

3

7
7
5

þ

2 2 0

0 1 2

0 1 1

2

6
6
4

3

7
7
5
⊙

1 1 0

1 1 0

0 �1 �1

2

6
6
4

3

7
7
5
þ 1 ¼ 8

(9)

Convolution depicted in Figure 9 is performed with one filter which results in
one matrix (called activation map) in the convolution layer. Using n filters for the
input in Figure 9 produces a convolution layer of depth n (Figure 10).
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4.1.2 Pooling layer

Pooling layer is commonly used between convolutional layers to reduce the
number of parameters in the upcoming layers. It makes the representations smaller
and the algorithm much faster. With max pooling, filter takes the largest number in
the region covered by the matrix on which it is applied. Example input, on which
2 � 2 max pooling is applied, is shown in Figure 11. If the input size is w� h� n,
then the output size is w=2ð Þ � h=2ð Þ � n. Techniques such as min pooling and
average pooling can also be used.

Standard CNNs generally have several convolution layers, followed by pooling
layers and at the end a few fully connected layers (Figure 12). CNNs are similar to
standard neural networks, but instead of connecting weights to all units of the
previous layer, a convolution operation is applied on the units (voxels) of the
previous layer. It enables us scale weights in an efficient way since a filter has a
fixed number of weights and it is independent of the number of the voxels in the
previous layer.

Figure 9.
Convolution process. (a) First convolution operation applied with filter W1. Computation gives us the
top-left member of an activation map in the next layer. (b) Second convolution operation, again applied
with filter W1.

Figure 10.
Formation of a convolution layer by applying n number of learnable filters on the previous layer. Each
activation map is formed by convolving a different filter on the whole input. In this example input to the
convolution is the RGB image itself (depth = 3). For every further layer, input is its previous layer. After
convolution, width and height of the next layer may or may not decrease.
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4.1.3 Classification layer

What we have in the last fully connected layer of a classification network is the
output scores for each class. It may seem trivial to select the class with the highest
score to make a decision; however we need to define a loss to be able to train the
network. Loss is defined according to the scores obtained for the classes. A common
practice is to use softmax function, which first converts the class scores into nor-
malized probabilities (Eq. (10)):

p j ¼
eoj

P

ke
ok

(10)

where k is the number of classes, oj are the output neurons (scores), and pj are

the normalized probabilities. Softmax loss is equal to the log of the normalized
probability of the correct class. An example calculation of softmax loss with three
classes is given in Figure 13.

4.2 Generalization capability of CNNs

The ability of a model to make correct predictions for new samples after trained
on the training set is defined as generalization. Thus, we would like to train a CNN

Figure 11.
Max pooling.

Figure 12.
A typical CNN for image classification task.

Figure 13.
An example of softmax classification loss calculation. Computed loss, Li, is only for the ith sample in the dataset.
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with a high generalization capacity. Its high accuracy should not be only for training
samples. In general, we should increase the size and variety of the training data, and
we should avoid training an excessively complex model (simply called overfitting).
Since it is not always easy to obtain more training data and to pick the best com-
plexity for our model, let’s discuss a few popular techniques to increase the gener-
alization capacity.

4.2.1 Regularization loss

This is a term, R Wð Þ, added to the data loss with a coefficient (λ) called
regularization strength (Eq. (10)). Regularization loss can be a sum of L1 or L2
norm of weights. The interpretation of R Wð Þ is that we want smaller weights to be
able to achieve smoother models for better generalization. It means that no input
dimension can have a very large influence on the scores all by itself.

L ¼
1

N

XN

i¼1

Li þ λ � R Wð Þ (11)

4.2.2 Dropout

Another way to prevent overfitting is a technique called dropout, which corre-
sponds to removing some units in the network [26]. The neurons which are
“dropped out” in this way do not contribute to the forward pass (computation of
loss for a given input) and do not participate in backpropagation (Figure 14). In
each forward pass, a random set of neurons are dropped (with a hyperparameter of
dropping probability, usually 0.5).

4.2.3 Data augmentation

The more training samples for a model, the more successful the model will be.
However, it is rarely possible to obtain large-size datasets either because it is hard to
collect more samples or it is expensive to annotate large number of samples. There-
fore, to increase the size of existing raw data, producing synthetic data is sometimes
preferred. For visual data, data size can be increased by rotating the picture at
different angles, random translations, rotations, crops, flips, or altering brightness
and contrast [27].

4.3 Transfer learning

Short after people realized that CNNs are very powerful nonlinear models for
computer vision problems, they started to seek an insight of why these models

Figure 14.
Applying dropout in a neural net.
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perform so well. To this aim, researchers proposed visualization techniques that
provide an understanding of what features are learned in different layers of a CNN
[28]. It turns out that first convolutional layers are responsible for learning
low-level features (edges, lines, etc.), whereas as we go further in the convolutional
layers, specific shapes and even distinctive patterns can be learned (Figure 15).

In early days of observing the great performance of CNNs, it was believed that
one needs a very large dataset in order to use CNNs. Later, it was discovered that,
since the pre-trained models already learned to distinguish some patterns, they
provide great benefits for new problems and new datasets from varying domains.
Transfer learning is the name of training a new model with transferring weights
from a related model that had already been trained.

If the dataset in our new task is small but similar to the one that was used in pre-
trained model, then it would work to change the classification layer (according to
our classes) and train this last layer. However, if our dataset is also big enough, we
can include a few more layers (starting from the fully connected layers at the end)
to our retraining scheme, which is also called fine-tuning. For instance, if a face
recognition model trained with a large database is available and you would like to
use that model with the faces in your company, that would constitute an ideal case
of transferring the weights from the pre-trained model and fine-tune one or two
layers with your local database. On the other hand, if the dataset in our new task is
not similar to the one used in pre-trained model, then we would need a larger
dataset and need to retrain a larger number of layers. An example of this case is
learning to classify CT (computer tomography) images using a CNN pre-trained on
ImageNet dataset. In this situation, the complex patterns (cf. Figure 15c and d) that
were learned within the pre-trained model are not much useful for your new task.
If both the new dataset is small and images are much different from those of a
trained model, then users should not expect any benefit from transferring weights.
In such cases users should find a way to enlarge the dataset and train a CNN from
scratch using the newly collected training data. The cases that a practitioner may
encounter from the transfer learning point of view are summarized in Table 1.

Figure 15.
Image patches corresponding to the highest activations in a random subset of feature maps. First layer’s high
activations occur at patches of distinct low-level features such as edges (a) and lines (b); further layers’ neurons
learn to fire at more complex structures such as geometric shapes (c) or patterns on an animal (d). Since
activations in the first layer correspond to small areas on images, resolution of patches in (a) and (b) is low.

Very similar dataset Very different dataset

Very little data Replace the classification layer Not recommended

A lot of data Fine-tune a few layers Fine-tune a larger number of layers

Table 1.
Strategies of transfer learning according to the size of the new dataset and its similarity to the one used in pre-
trained model.
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To emphasize the importance of transfer learning, let us present a small exper-
iment where the same model is trained with and without transfer learning. Our task
is the classification of animals (four classes) from their images. Classes are zebra,
leopard, elephant, and bear where each class has 350 images collected from the
Internet (Figure 16). Transfer learning is performed using an AlexNet [23] pre-
trained on ImageNet dataset. We have replaced the classification layer with a four-
neuron layer (one for each class) which was originally 1000 (number of classes in
ImageNet). In training conducted with transfer learning, we reached a 98.81%
accuracy on the validation set after five epochs (means after seeing the dataset five
times during training). Readers can observe that accuracy is quite satisfactory even
after one epoch (Figure 17a). On the other hand, in training without transfer
learning, we could reach only 76.90% accuracy even after 40 epochs (Figure 17b).
Trying different hyperparameters (regularization strength, learning rate, etc.)
could have a chance to increase accuracy a little bit more, but this does not alleviate
the importance of applying transfer learning.

Figure 16.
Example images for each class used in the experiment of transfer learning for animal classification.

Figure 17.
Training and validation set accuracies obtained (a) with transfer learning and (b) without transfer learning.
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5. Conclusions

Deep learning has become the dominant machine learning approach due to the
availability of vast amounts of data and improved computational resources. The
main transformation was observed in text and image analysis.

In NLP, change can be described in two major lines. The first line is learning
better representations through ever-improving neural language models. Currently,
self-attention-based Transformer language model is state-of-the-art, and learned
representations are capable to capture a mix of syntactic and semantic features and
are context-dependent. The second line is related to neural network solutions in
different NLP tasks. Although LSTMs proved useful in capturing long-term depen-
dencies in the nature of temporal data, the recent trend has been to transfer the pre-
trained language models’ knowledge into fine-tuned task-specific models. Self-
attention neural network mechanism has become the dominant scheme in pre-
trained language models. This transfer learning solution outperformed existing
approaches in a significant way.

In the field of computer vision, CNNs are the best performing solutions. There
are very deep CNN architectures that are fine-tuned, thanks to huge amounts of
training data. The use of pre-trained models in different vision tasks is a common
methodology as well.

One common disadvantage of deep learning solutions is the lack of insights due
to learning implicitly. Thus, attention mechanism together with visualization seems
promising in both NLP and vision tasks. The fields are in the quest of more
explainable solutions.

One final remark is on the rise of multimodal solutions. Till now question
answering has been an intersection point. Future work are expected to be devoted
to multimodal solutions.
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