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Chapter

Some Key Issues of Vacuum 
System Design in Accelerators  
and Colliders
Jie Wang and Sheng Wang

Abstract

As we all know, vacuum system is the essential part for the accelerators and 
colliders, which provide the vacuum environment to minimize beam-gas interac-
tions and maintain normal operation of the beams. With the proposals of future 
accelerators and colliders, such as Future Circular Collider (FCC), Super Proton-
Proton Collider (SPPC), and International Linear Collider (ILC), it is time to 
review and focus on the key technologies involved in the optimization designs of 
the vacuum system of various kinds of accelerators and colliders. High vacuum 
gradient and electron cloud are the key issues for the vacuum system design of 
high-energy accelerators and colliders. This chapter gives a brief overview of these 
two key issues of vacuum system design and operations in high-energy, high-
intensity, and high-luminosity accelerators and collider.

Keywords: vacuum system, beam-gas interaction, electron cloud, secondary electron 
yield, non-evaporable getters

1. Introduction

The high-energy accelerators and colliders, such as the Intersecting Storage 
Rings (ISR) [1, 2] at European Organization for Nuclear Research (CERN), the 
Super Proton Synchrotron (SPS) (CERN) [3, 4], the Tevatron proton-antiproton 
collider (United States) [5, 6], the abandoned Superconducting Super Collider 
(SSC) (United States) [7, 8], the Very Large Hadron Collider (VLHC) (United 
States) [9–11], the Large Hadron Collider (LHC) [12–14], the High-Luminosity 
Large Hadron Collider (HL-LHC) [15], and the High-Energy Large Hadron Collider 
(HE-LHC) [16, 17], have been proposed one after another for the discoveries and 
the establishing of standard model of particle physics.

Circular Electron Positron Collider (CEPC) (120 GeV) [18, 19] and the upgraded 
stage of Super Proton-Proton Collider (SPPC) (100 TeV) [20–22] based on lepton-
proton colliders were proposed in China to explore the Higgs physics and the new 
physics beyond standard model, respectively. Moreover, in order to precisely study 
the flavour physics, such as the top particles, Higgs, Z and W, a luminosity-frontier, 
low-emittance and highest-energy electron-positron collider (FCC-ee) was pro-
posed by the scientists from European Organization for Nuclear Research (CERN) 
[23, 24]. As the secondary stage, an energy-frontier hadron collider (FCC-hh) will 
be used to explore the possibility of existence of the dark matter candidates and get 
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the detailed information of Higgs self-coupling and the mechanism of electroweak 
symmetry breaking. FCC-ee [25, 26] and FCC-hh [27] are the two stages of Future 
Circular Collider (FCC) [28]. FCC has a center-of-mass energy of 100 TeV with 
proton-proton collisions finally. The key parameters of CEPC, FCC-hh, FCC-ee, 
HE-LHC, HL-LHC, and LHC are shown in Table 1.

Beam-related instabilities and electron cloud are the critical aspects for vacuum 
system of the high-energy, high-intensity, and high-luminosity accelerators, which 
could affect the machine performance and operation [33].

2. Electron cloud

Electron cloud (EC) issue is one of the important aspects for high-energy accelera-
tors and colliders. The primary electrons produced by the ionization of residual gases 
or by photoemission are accelerated by the beam and impact on the vacuum chambers 
and generate secondary electrons. Then, the secondary electrons can be reflected, 
accelerated, or absorbed in the vacuum chambers, even induce electron avalanche.

Secondary electron yield (SEY) is an important parameter to understand the 
formation and dissipation of the EC in accelerators [34]. The average of SEY over all 
electron-wall collisions for a certain time is the effective SEY (  δ  eff   ), which depends 
on the chamber and beam parameters. When   δ  eff    is less than 1, the net number of 
secondary electrons balances that of electrons absorbed by inner surfaces of vacuum 
chambers. When   δ  eff    is larger than 1, the secondary electrons grow exponentially 
and then the EC reaches a dynamical equilibrium with   δ  eff    value equating to 1.

The electron accumulation can induce beam losses, beam instabilities, the emit-
tance growth, the heating of the vacuum chambers, vacuum instabilities, and the 
decrease of detection precision [33], as shown in Figure 1. The detrimental effects of 
EC on beam quality have been observed and studied in many accelerators. The esti-
mation and simulation of EC formation process and the exploration of EC inhibition 
methods are critical for the understanding of EC build-up and related effects.

2.1 Numerical simulations of electron cloud

High-energy beam-induced synchrotron radiation can result in the increase 
of vacuum pressure and the primary photoelectrons. These can finally contribute 
to the EC formation. Many parameters can affect the EC formation, such as beam 
energy [35], bunch spacing [36], bunch size, bunch intensity, vacuum pressure, 
the geometry of the vacuum pipes [37], the properties of inner surface of vacuum 
chamber [38], the secondary electron energy spectrum [34], etc.

Parameter CEPC FCC-hh FCC-ee HE-LHC HL-LHC LHC (pp)

Ebeam [GeV] 120 50,000 45.5–175 12,500 7000 7000

Luminosity per IP 

[1034cm−2s−1]

1.8 5–30 1.55–230 28 5 1

Circumference C [km] 54 97.8 97.75 26.7 26.7 26.7

Beam current [mA] 16.6 500 5.4–1390 1120 1120 584

SR power per beam [kW] 50 2400 50 100 3.6 0.0036

Table 1. 
Key parameters for CEPC [29], FCC-hh [30], FCC-ee [26, 31], HE-LHC [30, 32], HL-LHC [30], and 
LHC(pp) [29].
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There are three kinds of EC simulation codes: build-up simulation codes, 
instability simulation codes, and self-consistent simulation codes. The EC density 
distribution as the function of time and energy and the details of the interaction 
between electrons and walls can be obtained based on the EC build-up simulation 
codes with 2D and 3D versions. For the study of EC in isolated regions like field-free 
regions, 2D codes are preferable. For the study of EC in magnetic regions like fringe 
fields regions, 3D codes are usually adopted. EC build-up simulation codes cannot 
get the information on the interaction between the EC and the beam [39], while 
instability simulation codes can get the details on the interaction between dynami-
cal beam particles and the prescribed EC. For instability simulation codes, the inter-
action between electrons and the walls is simplified or negligible. Self-consistent 
simulation codes are more computational than the above two simulation codes, to 
better understand the dynamic effects between the electrons and the beams, such as 
WARP-POSINST codes [40].

Guillermo et al. studied the details of the build-up of electron cloud and the 
effect of synchrotron radiation on EC formation based on the code of Synrad3D and 
the 2D macro-particle code of PyECLOUD [37]. The results demonstrated that the 
different surface conditions could influence the heat load and average electron line 
density. The smoother the surfaces, the higher the average linear density for all SEY 
values selected. For smooth surface, the heat load is the highest. Moreover, the heat 
load on the inverted sawtooth vacuum surface was slightly smaller than that on the 
oriented sawtooth surfaces.

The EC build-up and the effect of EC on the proton beam in the SPS accelera-
tor were simulated by Vay et al. [40], based on the WARP-POSINST codes. The 
analysis results indicated that the interaction between EC and the proton bunches 
can induce the increase of emittance, vertical bunch size, leading to the increase of 
electron density.

The Fortran code ECLOUD was developed to understand the EC effect depend-
ing on the specified secondary emission model [41, 42]. The true secondary electrons 
and reflected electrons and their energy distribution are included in this code, which 
contribute to the secondary emission. Various shapes such as round pipes, ellipti-
cal pipes, and rectangular pipes can be simulated in this code. The detector effect 

Figure 1. 
Electron cloud-induced related effects.
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and the scrubbing effect can be simulated to better compare with the experimental 
results. The general layout of the ECLOUD code (first version in 1997 at CERN by 
Zimmermann) [43], the PEI code (in 1995 at KEK by Ohmi) [44], and the POSINST 
code (in 1996 at LBNL by Furman and Lambertson) [45] is basically similar.

The POSINST code was employed by Crittenden et al., to study the EC build-up 
in the arc dipole region of positron damping ring of International Linear Collider 
(ILC) [46]. The secondary electron emission (SEE) parameters of a TiN surface 
tested at Cornell Electron Storage Ring Test Accelerator (CESRTA) were used in 
the SEY model during the POSINST simulations. The distribution of photons and 
photon transport in the arc region were calculated by SYNRAD3D code. For the 
estimations of EC densities in quadrupoles, sextupoles, and field-free regions, 
the ECLOUD code [41, 47] was used. The simulation results demonstrated that 
the beam emittance growth during 300 turns and 18,550 turns were 0.16 and 10% 
because of ECs. When the averaged electron cloud density was 3.5 × 1010 m−3, the 
beam emittance increased about 0.2% as the chromaticity values increased from 0 
to 6 [46].

The 3D code CLOUDLAND was adopted by Wang et al., to study the EC evolu-
tion in the quadrupole and sextupole regions of the ILC/CESRTA with and without 
ante-chamber [48]. The simulation results indicated that the average EC density 
in the quadrupole magnet of the ILC can be reduced by 98% under the presence of 
ante-chamber when the SEY was less than 1.1. When the SEY was larger than 1.1, 
the effect of ante-chambers on EC densities was not notable. Larger SEY can induce 
higher EC average densities. The strong space charge can reduce the EC density 
and change the EC distribution dramatically. Therefore, the reduction of SEYs in 
quadrupole and sextupole regions is important for the decrease of the photon flux.

2.2 Single and coupled bunch instabilities

When the head of the bunch is diverged from the beam axis and interacts with 
the EC, it will induce the single bunch head-tail instability [49]. The following 
bunches will be affected by the new EC distributions and the tails can be deflected 
finally. The property of EC here is similar to the short-range wake field. The elec-
tron distribution, the energy spectrum of electrons, and the evolution of the EC can 
be simulated and compared with the experimental results. Then, the EC densities 
were obtained and used for the input parameters to analyze the impact of EC on the 
bunches.

The bunch instability caused by EC in a linac can induce the beam break-up  
in the case without synchrotron radiation. And in the case of synchrotron radiation, 
the instability caused by EC is analogous to the transverse mode coupling instability 
(TMCI) [50]. The impacts of space charge, magnetic field, the chromaticity, the 
amplitude detuning, and the broad-band resonator are also considered in the study 
of the bunch instability caused by EC [50–53].

The single and coupled bunch instabilities are mainly related to the frequency 
of the EC, the synchrotron tune, the machine circumference, the beam sizes, 
the bunch length, the chromaticity, and the relativistic factor [54], as shown in 
Figure 2.

Various single bunch instability codes such as MICROMAP (developed at GSI) 
[55, 56], PEHTS (developed at KEK) [35, 57–60], CMAD [61, 62], and HEADTAIL 
(developed at CERN) [52, 63] were developed to study the related effects.

The CMAD code, the HEADTAIL code, and the WARP code were used by Li 
et al. [62] to study the effects of various wideband feedbacks on the EC instabili-
ties in CERN SPS, which provided valuable information for HL-LHC. The results 
showed that a bandwidth of 500 MHz was needed to mitigate the EC when the EC 
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densities were above 1 × 1012 m−3. When the EC densities were above 1.4 × 1012 m−3, 
a bandwidth of 1 GHz may be required.

The single bunch instability caused by EC with different densities in LHC and 
SPS was investigated by E. Benedetto et al. [52] based on the HEADTAIL simulation 
code [53, 63]. The EC effect on transverse single bunch instabilities in the bending 
region was simulated and compared with observations in the SPS. And for the LHC, 
the simulation results indicated that the chromaticity is a key factor for the head-tail 
instability, but may not for a short- and long-term emittance growth [52].

Based on the HEADTAIL code and ECLOUD program, the simulation results dem-
onstrated that the instability growth process and the chromaticity beneficial effect were 
consistent with the observed results, which were reported by G. Rumolo et al. [42].

Ohmi studied the interaction between the EC and the single bunch via PIC 
method (PEHTS) in High Energy Accelerator Research Organization B-factory Low 
Energy Ring (KEKB LER) [57]. The simulation results showed that the strong head-
tail instability in KEKB-LER was related to the coherent instability caused by the EC.

In Beijing Electron Positron Collider (BEPC), the single and coupled bunch 
instabilities caused by EC were studied systematically by Wang et al. [51]. The 
effects of ante-chamber, TiN films, and clearing electrodes on electron cloud 
instability (ECI) were explored by simulations and experiments. The simula-
tion and experimental results manifested that the single bunch instability can be 
reduced below the threshold and the coupled bunch instability can be restricted by 
the feedback systems.

2.3 Electron cloud mitigation methods

Various methods, such as the electrode cleaning, the solenoid, the beam 
scrubbing, the film coatings, and geometrical modification (like laser processed 
surfaces), have been developed for EC mitigation in accelerators and colliders, 
as shown in Figure 3 [64–67]. The test results in Relativistic Heavy Ion Collider 
(RHIC) showed that the solenoids with the magnetic field of 0.5 mT were effective 
for the EC suppression [64].

Figure 2. 
Key parameters for the single and coupled bunch instability induced by electron cloud.
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With the advantage of no additional parts introduced, film coatings (like TiN 
coatings, diamond-like carbon film, highly oriented pyrolytic graphite, and the 
amorphous carbon film) [66] and geometrical modification methods were stud-
ied widely.

Compared to other films, TiN coatings were applied in accelerators and colliders 
extensively. Therefore, the related properties and the application of TiN film will be 
introduced emphatically.

Recently, laser ablation method was proposed as a novel and potential way for 
reducing the SEY [65, 68] with several advantages, such as low cost, no requirement 
of vacuum, etc. The impedance issue, desorption properties, and the compatibility 
with cryogenic vacuum should be evaluated and studied carefully in the future 
accelerators and colliders.

2.3.1 TiN film

In order to mitigate EC in accelerators, TiN film coatings were employed in the 
inner surface of vacuum chambers [69–75]. The experimental results indicate that 
TiN film coating is an effective way for EC mitigation. The effects of substrate 
materials, the stoichiometry, film thicknesses, ion/electron bombardments, and 
deposition parameters on the SEY and related properties of TiN have been investi-
gated systematically [70, 72, 74, 76–83].

TiN film coatings were deposited on the inner surfaces of copper beam ducts in 
KEK by Shibata et al. [74, 75]. As an example, a pipe length of 3.6 m was coated and 
installed in the KEK B-factory positron ring using a titanium rod of 4.2 m long. The 
maximum SEY (  δ  max   ) of the TiN film coatings varied between 0.70 and 1.58 with 
the electron doses ranging between 10−1 and 10−5 C mm−2. The coated chambers 
were tested in LER. The test results manifested that the EC density in the coated 
chambers decreased about ~33% comparing to that of the uncoated ones at the 
beam current of 800 mA.

In Laboratory of the Linear Accelerator-Orsay (LAL-Orsay), TiN film coating 
was used as the EC inhibition method in the RF ceramic windows [73]. The planar 

Figure 3. 
Electron cloud mitigation methods.
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and cylindrical alumina ceramics were the substrates with the properties of high 
mechanical strength, high stability, and low outgassing rate. The SEY of the alu-
mina ceramic was decreased by depositing the TiN film on its surfaces, which will 
benefit for the avoiding of electron multipactor.

The effects of H2 gas, ion, and electron conditioning on the SEY of TiN coat-
ing for EC suppression in storage rings were investigated by F. Le Pimpec et al. in 
Stanford Linear Accelerator Center (SLAC) [78] and Lawrence Berkeley National 
Laboratory (LBNL) [70, 72, 84]. The   δ  max    of TiN coating was reduced from 1.50 to 
1.10 after N2+ ion bombardment. During N2+ ion bombardment, the contaminants, 
such as hydrocarbons, water, and oxide with high SEY, were removed, which 
contributed to the SEY decrease of TiN coating. Ion bombardment could induce the 
interstitial N, while the vacancies may be filled by the nitrogen from the beam pipe 
[85]. The   δ  max    of TiN coating with Al substrates ranged from 1.52 to 1.99. The thick-
est TiN coatings with Al or stainless steel substrates had the lowest SEY here. As the 
electron conditioning doses increased, the maximum energy (Emax) corresponding 
to the   δ  max    shifted to lower energy and the SEY curves bend disappeared. This SEY 
evolution may be related to the removal or dissociation (from TiO2 into defective 
suboxide) of the surface contaminants. When the TiN coatings were baked out 
in vacuum at 150°C for 2 h, the   δ  max    decreased from 1.70 to 1.60 [70]. For the TiN 
coating deposited on the grooved Al surface, the   δ  max    of TiN coatings decreased to 
1.30 from 2.30.

The vacuum pipes of different sizes in Spallation Neutron Source (SNS) were 
coated with TiN films by reactive DC magnetron sputtering in Brookhaven National 
Laboratory (BNL) [64, 71]. The arc regions, straight sections, injection kicker 
ceramic chambers, and extraction kicker modules were deposited with TiN, with 
the lengths of 0.5–5 m and the diameters of 20–36 cm.

The TiN films were coated on the racetrack-type ceramic pipe for the EC sup-
pression in National Synchrotron Radiation Laboratory by Wang et al. [86, 87]. 
CST PARTICLE STUDIO software was used to optimize the TiN film thickness in 
magnetron sputtering system. Moreover, two kinds of Ti cathodes (Ti rods and Ti 
plates) were adopted and compared to improve the TiN film deposition rate.

In order to reduce the electron multipactor effects and improve power transmis-
sion in the TESLA couplers at DESY, TiN films were applied on the inner surface of 
the wave guides and the RF windows [88]. The performance of low SEY remained 
steady even after 24 h air exposure. In addition, the RF conditioning time reduced 
from ~3 days to 4–6 h due to the TiN films.

Above all, the thicknesses, SEYs, and substrates of the TiN films were summa-
rized in Table 2. The film thicknesses of TiN films were usually ranging from 7 to 
200 nm. Aluminum alloy, stainless steel, copper, and ceramic are generally chosen 
as the substrates.

2.3.2 Other films

Besides TiN coatings, other low SEY film coatings, like the carbon film [66], 
highly oriented pyrolytic graphite (HOPG) [66], the diamond-like carbon film 
(DLC) [89], and the amorphous carbon coatings (a-C) [90] will be introduced in 
this section.

Ceramic pipes were used in the rapid-cycling synchrotron (RCS) of the Japan 
Proton Accelerator Research Complex (J-PARC) to avoid the eddy current effect 
[89]. In order to reduce the electron emission from the internal surfaces of the 
ceramic pipes, the DLC coating was applied as a possible alternative method. The 
experimental results indicated that the SEYs of DLC coating exposing to the water/
oxygen/electron beam were 1.15–1.20 and less than that of TiN coatings (1.50–1.70).
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Amorphous carbon films with the   δ  max    of 0.92–1.33 have been used on the 
vacuum pipes for the EC elimination in SPS with LHC-type beam [90–92]. The 
test results demonstrated that the EC can be suppressed in the liners even after 
air exposure for 3 months. Moreover, the properties of a-C films were stable after 
3 years beam operations.

Carbon films [93] were prepared with the   δ  max    of ~0.97, which was lower than 
that of HOPG (~1.23) [66]. The SEY difference between carbon films and HOPG 
can be ascribed to that the density of carbon films was smaller and the larger pen-
etration range and the SEs scattering to defects/pores than that of HOPG. The XPS 
results showed that the SEY values were related to the C 1 s high binding energy. 
When the concentration of oxygen was below 16 at%, it would not affect the SEY of 
carbon films.

3. High vacuum gradient

The rough pumps, the turbo molecular pumps, and the ion pumps are usually 
adopted between the ends of vacuum pipes in accelerators and colliders. These 
pumps can reduce the pressure efficiently near it, while the pressure in the middle 
of the vacuum pipes is higher than the ones near the pumps. In other words, the 
application of traditional pumps can induce the high vacuum gradient. In order 
to reduce the vacuum gradient in the long vacuum pipes, non-evaporable getter 
(NEG) coatings were proposed to solve this issue [94–99].

3.1 NEG

Generally, NEGs are the alloys Fe, Al, Zr, etc., with the property of absorbing 
residual gases, like H2, CO, and CH4, after high-temperature activation in vacuum 
systems. NEGs are widely used in accelerators and colliders for the achievement of 
ultra-high vacuum (UHV) and provide distributed pumping [97, 100, 101]. The H2 
outgassing rate for aluminum alloys or stainless steel is about 10−13 Torr l s−1 cm−2, 
which is the main obstacle for UHV achieving. In order to reduce the outgassing 
rate and achieve the required ultimate pressure, NEG alloys were applied in vacuum 
systems.

Institutions Substrates Thickness/nm   δ  max   

KEK [74, 75] Copper (beam ducts) 100–200 1.05–1.60

LAL [73] Ceramic (RF windows) 7–15 1.50

SLAC & LBNL [72, 78, 84] 6063 aluminum alloy/

stainless steel

100–204 1.01–1.99 (ion and 

electron conditioning)

BNL [64, 71] Ceramic/stainless steel 

(chambers)

~100 Less than 1.80

DESY [88] Ceramic/aluminum/

copper

(coupler windows, 

couplers)

4–40 /

NSRL [86, 87] Ceramic 45–3200 /

Table 2. 
The SEYs, thicknesses, substrates of TiN film coatings prepared by various research institutions. Here,   δ  

max
    is the 

maximum SEY within the primary electron energy considered.
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3.1.1 NEG binary NEG alloy

Binary NEG alloy Zr-Al (St101) [102] was prepared on both sides of strips of 
getter pumps with the activation temperature of ~700°C and applied in the vacuum 
pipes of Large Electron Positron (LEP) Collider at CERN.

Zr-Fe (St198) NEG alloy has been applied in various scenarios, such as the 
N2-filled devices, the integrated electronic circuit for N2 purifier, the conversion 
of tritiated water, hydrogen storage devices, and the hydrogen isotopes absorption 
and desorption [103]. The XPS results indicated the surface chemical state changes 
during thermal activation. At higher activation temperatures, the concentration of 
metallic Zr improved in the surfaces. The concentration of carbon increased gradu-
ally under the case of activation temperature of less than 400°C and then decreased.

The ESD, pumping speed, and ultimate pressure of Ti-Hf, Hf-Zr, and Ti-Zr 
binary [98] NEG were studied and compared by C. Benvenuti et al. Thereinto, the 
Ti-Zr NEG alloy has the lowest activation temperature of ~200°C. The ultimate 
pressure of ~10−11 Pa can be obtained using the binary coatings, which can provide 
the pumping speed for H2 of ~0.5 l s−1 cm−2.

3.1.2 Ternary NEG alloy

Ternary NEG alloys, like Ti-Zr-V and Zr-V-Fe (St707, St737) NEG films  
[96, 104–107], have been applied in the vacuum system of accelerators and colliders. 
Ti-Zr-V NEG coatings have the activation temperature of less than 200°C [108]. The 
absorption and desorption mechanisms during thermal activation and pumping 
properties of ternary NEG alloy coatings have been investigated extensively.

The research results showed that the concentrations of Ti and Zr were enriched 
on the surface of activated Ti-Zr-V NEG films [108, 109]. The oxygen detected on 
the activated surface was mainly in the form of Zirconium suboxides and titanium 
suboxides.

For the sake of reducing the activation temperature of ternary NEG alloys, 
different compositions of Ti, Zr, and V elements were produced on stainless steel 
surfaces. The surface chemical state and crystal structure variations of Ti, Zr, and 
V elements were analyzed by Auger electron spectroscopy (AES) and X-ray dif-
fraction (XRD) during thermal activation [94]. The getters with a nanocrystalline 
structures could be activated more easily as the activation behavior is related to the 
solubility and the diffusion of oxygen.

3.1.3 Quaternary NEG alloy

Quaternary Ti-Zr-Hf-V NEG films were proposed by Malyshev with the advan-
tage of lowest activation temperature of ~150°C [110–112]. Comparing to the ESD 
yields for all desorbed species (H2, CO, and CO2) of Ti-Zr-V NEG films, those of 
Ti-Zr-Hf-V NEG films were lower. Two kinds of Ti-Zr-Hf-V NEG films, the dense 
one and the columnar one, were prepared. The experimental results demonstrated 
that the columnar one has lower initial ESD yields, the higher pumping speeds, and 
capacities for all desorbed species than that of the dense one. In addition, a dual-
layer NEG coating was prepared with the bottom dense layer and the top columnar 
layer. Here, hydrogen diffusion can be barred by the bottom layer. The ESD of 
hydrogen can be improved and the pumping properties can be enhanced by the top 
layer.

To understand the effect of the coatings on the wakefield impedance, the surface 
resistance of Ti-Zr-Hf-V NEG films was tested and analyzed at 7.8 GHz [110]. Based 
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on the analytical model, the conductivities of dense and columnar NEG coatings 
were 8 × 105 S/m and 1.4 × 104 S/m. The surface resistance of copper increased 
slightly after NEG coating depositions.

3.2 Photons-/electrons-/ions-stimulated desorption

The photons-/electrons-/ions-induced gas desorption may result in pressure 
instability and then lead to the beam loss. The ionization of residual gases is pro-
portional to the beam current. Therefore, the materials, the geometry, and the 
pumping speed of the vacuum systems should be considered carefully [113–120]. In 
order to reach the base pressures of ~10−9 Pa and reduce the pressure instability, low 
photon-stimulated gas desorption (PSD) yield, electron-stimulated gas desorption 
(ESD) yield, and ion-stimulated gas desorption (ISD) yield materials are preferable 
in vacuum systems.

The ESD and ISD yield of the commonly used materials like the OFHC, the 
stainless steel in accelerators and colliders, were measured and analyzed during the 
bake out at 150–600°C [114]. The test results indicated that the surfaces of metallic 
oxide may have the porous structures, which can trap the residual gases such as H2 
and CH4.

The ion-induced pressure instability, firstly observed at CERN, can limit 
the beam current in accelerators and colliders and has been studied intensively 
[121–123]. The effects of the ion dose, the mass, and the energy on the ISD yields of 
copper and aluminum were investigated [119]. The desorption yields of the copper 
and the aluminum decreased by two times after the bake out. NEG coatings are the 
mostly used solution for reducing the ion-induced vacuum stability [121].

It was found that the application of beam screen can effectively reduce the 
vacuum instability caused by ISD, ESD, and PSD at room temperature and cryo-
genic regions in LHC [118]. For example, the average H2 density caused by PSD 
could be reduced by over 50 times by incorporating the beam screen in the vacuum 
pipes [124]. Moreover, glow discharge and baking are also useful methods for the 
reduction of ion-induced pressure instability [125, 126].

4. Final remarks

This chapter introduces the two key issues: electron clouds and high vacuum 
gradient. Electron cloud issue may influence the beam quality and stability in 
accelerators and colliders. Various methods, such as the DLC film, the a-C film and 
laser processed surfaces, have been proposed for the EC mitigation in the warm and 
cryogenic regions. As for the high vacuum gradient issue, the preparation and prop-
erties of binary/ternary/quaternary NEG alloy films have been studied to decrease 
the activation temperature and beam-gas interactions and also to improve the 
pumping properties, PSD, ESD, and ISD yields at room temperature and cryogenic 
temperature. For the design of UHV vacuum system of accelerators and colliders, 
the quality, the conformity, and the engineering aspects should be investigated and 
analyzed carefully. In regard to vacuum operations, the safety, reliability, and the 
machine performance limitations should be considered and tested carefully.
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