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Chapter

Structural Optimization of Wind
Turbine Blades for Improved
Dynamic Performance
Gerges Edwar Mehanny Beshay and Karam Yousef Maalawi

Abstract

The design of the main structure of a wind turbine blade is optimized aiming at
the improvement of the overall dynamic performance. Three optimization strate-
gies are developed and tested. The first fundamental one is based on minimizing the
total structural mass of the blade spar under frequency and strength constraints.
The second and third strategies are concerned with the reduction of the overall
vibration level by either minimizing a frequency-placement index or maximizing
the natural frequencies and placing them at their target values to avoid large
amplitudes and resonance occurrence. Design variables include cross-sectional
dimensions and material properties along the spanwise direction of the blade spar.
The optimization problem is formulated as a nonlinear constrained problem solved
by sequential quadratic programming (SQP) technique. Two specific layup config-
urations, namely, circumferentially asymmetric stiffness (CAS) and circumfer-
entially uniform stiffness (CUS), are analyzed. Exact analytical methods are applied
to calculate the natural modes of vibration of a composite, thin-walled, tapered
blade spar. The influence of coupling on the vibration modes is identified, and the
functional behavior of the frequencies with the lamination parameters is thoroughly
investigated and discussed. Finite element modeling using NX Nastran solver is
performed in order to validate the analytical results. As a case study, optimized
blade spar designs of a 750-kW horizontal axis wind turbine are given. The attained
solutions show that the approach used in this study enhances the dynamic
characteristics of the optimized spar structures as compared with a known baseline
design of the wind turbine blade.

Keywords: wind turbine blades, structural optimization, natural frequencies,
advanced composites, sequential quadratic programming, finite element method

1. Introduction

Among all renewable energies of different styles, wind energy is the most
popularized and potentially applicable type of green energy. Because larger wind
turbines have more power capture and economic advantages, the typical size of
utility-scale wind turbines, as shown in Figure 1, has grown dramatically over the
last three decades [1, 2]. Such large flexible configuration, operating in uncertain
environments, gives rise to significant vibration problems and assesses the
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importance of analyzing structural dynamics in the design of successful wind tur-
bine systems. The main supporting structures of the rotating blades are usually
fabricated from thin-walled composite beams with a variety of cross-sectional
types. These configurations are used extensively in the design of many aerodynamic
structures because of their light weight-to-stiffness ratio and long fatigue life. To
design these components, the dynamic characteristics, especially near-resonant
conditions, need to be well examined to assure a safe operation.

The objective of this investigation is to optimize the structural dynamics of a
thin-walled composite blade through the minimization of structural mass or reduc-
tion of the overall vibration level. The latter can be attained directly by maximizing
the natural frequencies of the main blade structure under strength and mass con-
straints. In general conditions, however, we need a material that is as light as
possible for a specified stiffness in order to satisfy the design criteria and to mini-
mize the weight-induced fatigue loads.

The main advantages of fiber composite materials [3] are their high strength and
stiffness combined with low density, their superior fatigue properties due to the
prevention of crack propagation, and their ability to tailor the layup for optimum
strength and stiffness. However, sharp transitions between component materials
may cause stress and strain discontinuities that facilitate failure [4]. A solution that
can be promising to enhance dynamics and aeroelastic stability of composite blades
is the use of functionally graded materials (FGMs), in which the mechanical and
physical properties vary spatially within the structure. The concept of functionally
graded materials was originated in Japan in 1984 during a space project, in the form
of proposed thermal barrier material capable of withstanding high-temperature
gradients [5]. FGMs may also be developed using fiber-reinforced layers with a
changing volume fraction of fibers, rather than constant, producing grading of the
material with favorable properties [6].

Considering, next, optimization of wind turbine blades, Maalawi and Negm [7]
presented an optimization model for the design of a typical blade structure of
horizontal axis wind turbines. The main blade spar was represented by thin-walled
tubular beam composed of uniform segments with the design variables chosen to be
the cross-sectional area, radius of gyration, and length of each segment. The optimal
design is pursued with respect to maximum frequency design criterion subject to
mass and aeroelastic constraints. The optimization problem was solved by
multidimensional search techniques, where the aeroelastic stability boundaries and
steady-state response were calculated using Floquet’s transition matrix theory.
Another work by Maalawi [8] developed an optimization model for placing the

Figure 1.
Size and power increase of commercial wind turbines.
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frequencies of a wind turbine tower/nacelle/rotor structure in free yawing motion.
The mathematical formulation considered a single pole tower configuration having
thin-walled circular cross section with constant taper along the tower height. The
nacelle/rotor combination was modeled as a rigid mass elastically supported at the
top of the tower by the torsional spring of the yawing mechanism. The resulting
governing differential equation of motion was solved analytically by transforming it
into a standard form of Bessel’s equation, which leads to the necessary exact solu-
tions for the frequencies and mode shapes. Useful design charts were developed for
placing the frequencies at their needed target values with no penalty of increasing
the total structural weight of the system.

In the context of using the concept of material grading, Librescu and Maalawi
[9] formulated an analytical approach for obtaining the optimal design of a class of
solid nonuniform composite wings with improved aeroelastic stability. The objec-
tive function was measured by maximizing the wing divergence speed while
maintaining the total structural mass at a value equal to that of a known baseline
design. Exact solutions were obtained for different categories of unidirectionally
reinforced composite wing structures: namely, the linear volume fraction (L-VF),
the parabolic volume fraction (PR-VF), and the piecewise volume fraction (PW-
VF) wing models. Results revealed that in general, the torsional stability of the wing
can be substantially improved by using nonuniform, functionally graded compos-
ites instead of the traditional ones having uniform volume fractions of the constit-
uent materials.

The optimization of large wind turbines was considered by Kun-Nan Chen and
Pin-Yung Chen [10], who applied a two-step procedure for finding the optimum
design of composite blades. The first step concerned the optimal aerodynamic
shape of the blade as described by the chord and twist angle distributions in the
spanwise direction. The second step yielded the optimal material distribution.
A 3-MWwind turbine with blades having cross sections of NREL S818, S825, and S826
airfoil types is demonstrated as a case study. A parameterized finite element model
of the aerodynamically optimized blade was created using the ANSYS software. The
optimization results showed that the initial blade model is an infeasible design due
to a high level of the maximum stress, exceeding the upper limit of the stress
constraint, but eventually the process converges to a feasible solution with the
expense of increased total mass of the blade. Another work by Maalawi and Badr
[11] considered the excessive wind turbine blade vibrations induced by continuous
pitching, which is necessary to limit the power output and protect the generator
from damages in severe wind conditions. They utilized analytical Bessel’s functions
of the first kind which yield to the exact solutions of the resulting governing
differential equation. The associated optimization problem was formulated by con-
sidering two forms of the objective function. The first one was represented by a
direct maximization of the fundamental frequency, while the second one consid-
ered minimization of the square of the difference between the fundamental fre-
quency and its target or desired value. In both strategies, an equality constraint is
imposed on the total structural mass in order not to violate other economic and
performance requirements. Design variables encompass the blade tapering ratio,
chord, and shear wall thickness distributions. Danny Sale et al. [12] developed a
numerical methodology for the structural analysis and optimization of composite
blades for wind and hydrokinetic turbines. They derived a structural mechanic
model which is based upon a combination of classical lamination theory with a
Euler-Bernoulli and shear flow theory applied to composite beams. The develop-
ment of this simplified structural model was motivated by the need for an accurate
and computationally efficient method that is suitable for parametric design and
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optimization studies of composite blades. An important characteristic of this struc-
tural model is its ability to handle complex geometric shapes and isotropic or
anisotropic composite layups. For a specified design load, the objective of the
structural optimization was to minimize the blade’s mass while satisfying con-
straints on maximum allowable stress, blade tip deflection, buckling, and placement
of blade natural frequencies. Adam Chehouri et al. [13] presented an improved
version of the preliminary optimization tool called CoBlade, which offers designers
and engineers an accelerated design phase by providing the capabilities to rapidly
evaluate alternative composite layups and study their effects on static failure and
fatigue of wind turbine blades. In this study, the optimization formulations
included nonlinear failure constraints, and a comparison between three formula-
tions was made to show the importance of choosing the blade mass as the main
objective function and the inclusion of failure constraints in the wind turbine blade
design.

A recent work by Maalawi [14] introduced a mathematical model for optimiz-
ing dynamic performance of thin-walled functionally graded box beams with
closed cross sections. The objective function was measured by maximizing the
natural frequencies and places them at their target values to avoid the occurrence
of large amplitudes of vibration. Variables include fiber volume fraction, fiber
orientation angle, and ply thickness distributions. Various power law expressions
describing the distribution of the fiber volume fraction have been implemented,
where the power exponent was taken as a main optimization variable. The mass of
the structure is kept at a value equal to that of a known reference beam. Side
constraints were also imposed on the design variables in order to avoid having
unacceptable optimal solutions. A case study, including optimization of a
cantilevered, a single-cell spar beam made of carbon/epoxy composite was
considered. Conspicuous design charts were developed, showing the optimum
design trends for the mathematical models implemented in the study. It was
shown that the developed mathematical models are adequately satisfying the
required global optimization of typical composite, functionally graded, thin-walled
beam structures.

This chapter focuses on the optimization of the main structure of a wind turbine
blade by either minimizing structural mass under frequency and strength con-
straints or maximizing the natural frequencies under mass, strength, and side con-
straints. This model is applied to tapered, anisotropic spar beam with thin-walled
closed cross section made of laminated fibrous composites with variable thickness
and stiffness. The study is focused on the spar structure that represents the main
load-carrying component of the wind turbine blade. Material grading concept is
utilized by changing the fiber content throughout the blade structure. Design vari-
ables include the volume fraction distribution of the constituent materials of con-
struction and geometric and cross-sectional parameters of the blade spar. The blade
is assumed to have a large span-to-chord ratio, which enabled us to model the main
spar as an equivalent straight beam, positioned along the elastic axis. Structural
analyses are performed using simplified mathematical expressions by implementing
the conventional beam and classical lamination theories. The governing differential
equations of motion are derived and solved by the transfer-matrix method for the
coupled extensional-torsional and flexural-torsional modes of vibration. A case
study is given considering thin-walled blade spar of a 750-KW horizontal axis wind
turbine. Numerical results are presented and discussed showing the success of the
developed mathematical model in producing efficient blade designs with improved
dynamic performance. Finally, the relevant concluding remarks and recommenda-
tions for future studies are given and discussed.
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2. Governing differential equations of motion

Among the dynamic characteristics of the blade main structures, determination
of the natural frequencies and the associated mode shapes is of fundamental
importance. An analytical model for the free vibration of anisotropic thin-walled
beams with closed cross sections was developed by Armanios and Badir [15] using a
variational asymptotic approach and Hamilton’s principles. This model was applied
to arbitrary closed cross sections made of laminated fibrous composites with vari-
able thickness and stiffness. The analysis was applied to two kinds of laminated
composites: circumferentially uniform stiffness (CUS) and circumferentially asym-
metric stiffness (CAS). The model was also implemented in Refs. [16, 17] to inves-
tigate the influence of coupling on the free vibration of thin-walled composite
beams. Shadmehri et al. [18] studied the static and dynamic characteristics of
composite thin-walled beams that are constructed from a single-cell cross section.
The structural model considered incorporated a number of nonclassical effects,
such as material anisotropy, transverse shear, warping inhibition, nonuniform tor-
sion, and rotary inertia. The governing equations were derived using extended
Hamilton’s principle and solved using extended Galerkin’s method. Phuong and Lee
[19] presented a flexural-torsional analysis of thin-walled composite box beams. A
general analytical model applicable to thin-walled composite box beams subjected
to vertical and torsional loads was developed. Analytical solutions for the free
vibration analysis of tapered thin-walled laminated composite beams with closed
cross sections are given in Ref. [20]. The exact values of frequencies were obtained
by means of power series schemes. A parametric analysis was performed for differ-
ent taper ratios, stacking sequences, and materials.

Considering functionally graded constructions, Kargarnovin and Hashemi [21]
investigated the free vibration of a fiber composite cylinder, in which the volume
fraction of fibers varies longitudinally, using a semi-analytical method. The distri-
bution of volume fraction of fiber in base matrix was based on power law model.
Another study by Liu and Shu [22] developed an analytical solution to study the free
vibration of exponential functionally graded beams with a single delamination.
They showed that the natural frequencies increase as Young’s modulus ratio of the
constituent materials becomes bigger.

Figure 2 shows the structural model of the blade spar, which is represented by a
thin-walled cantilever beam which consists of Ns uniform segments. Each segment
has different dimensions and material properties that satisfy the geometrical taper-
ing and material grading distribution. Any segment k with length Lk has a rectan-
gular cross section with dimensions, width bk, depth ak, and wall thicknessHk. Each
segment is a uniform laminated fibrous composite beam which consists ofNr layers,
each of which has thickness hj, fiber volume fraction Vfj, and fiber orientation angle
θj(j = 1,2,… ., Nr).

The constitutive relationships in terms of stress resultants and kinematic
variables are [15, 16]:
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(1)

where T is the tensile force, Mx is the torsional moment, and My and Mz are
the bending moments about the y and z axes, respectively. Cmn are called the
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beam cross-sectional stiffness coefficients, and U1, U2, and U3 are the average
cross-sectional displacements along x, y, and z coordinates, respectively, and φ xð Þ
is the elastic twist about the x axis. The prime denotes differentiation with
respect to x. Applying Hamilton’s principle, the equations of undamped free
vibration are [15]:

C11U
00
1 þ C12φ

00 þ C13U
000
3 þ C14U

000
2 �mÚ1 ¼ 0

C12U
00
1 þ C22φ

00 þ C23U
000
3 þ C24U

000
2 � Iφ́� SzÚ3 þ SyÚ2 ¼ 0

C13U
000
1 þ C23φ

000 þ C33U
0000
3 þ C34U

0000
2 þ Szφ́þmÚ3 ¼ 0

C14U
000
1 þ C24φ

000 þ C34U
0000
3 þ C44U

0000
2 � Syφ́þmÚ2 ¼ 0

(2)

where m, I, and Sz and Sy are the mass, polar, and first moments of inertia per
unit length of the beam, respectively. The dot superscript denotes differentiation
with respect to time.

A closed-form solution for the most general case of the equations of motion
(Eq. 2) is not available. Two particular cases of fiber layup are considered in which
some of the stiffness coefficients vanish. The first case is called circumferentially
uniform stiffness (CUS) and the second circumferentially asymmetric stiffness
(CAS). Figure 3 shows a rectangular cross-sectional beam segment with both CUS
and CAS layup configurations. CUS layup configuration is manufactured by
warping the composite layup using filament winding technique, θ �zð Þ ¼ θ zð Þ,
while CAS layup configuration is manufactured such that the beam cross section is
symmetric about the OXY plane. θ �zð Þ ¼ �θ zð Þ.

Figure 2.
Blade spar structural model.
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2.1 CUS layup configuration

For any segment k within the blade structure, a local coordinate system with

X́-axis is introduced such that (see Figure 2).

0≤ x́ ¼ X � Xk ≤Lk (3)

In the special case of CUS layup, the equations of motion reduce to (for the kth

segment):

Ck
11U

00
1 þ Ck

12φ
00 �mkÚ1 ¼ 0

Ck
12U

00
1 þ Ck

22φ
00 � Ikφ́ ¼ 0

Ck
33U

0000
3 þmkÚ3 ¼ 0

Ck
44U

0000
2 þmkÚ2 ¼ 0

(4)

The first two equations express a coupled extension-twist vibration (ETV)
mode, while the third and fourth equations express vertical bending vibration
(VBV) and horizontal bending vibration (HBV) modes, respectively.

Figure 3.
Spar segment with (a) CUS and (b) CAS layup configurations.
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Applying the integral formulas given in Ref. [15], the stiffness coefficients can
be determined from:

Ck
11 ¼ 2Kk

A bk þ ak � 2Hkð Þ

Ck
12 ¼ Kk

B bk �Hkð Þ ak �Hkð Þ

Ck
22 ¼ Kk

C

bk �Hkð Þ ak �Hkð Þð Þ2

2 bk þ ak � 2Hkð Þ

Ck
33 ¼ Kk

A �
Kk

B

2

Kk
C

 !

ak �Hkð Þ3

6

 !

1þ
3 bk �Hkð Þ

ak �Hkð Þ

� �

Ck
44 ¼ Kk

A �
Kk

B

2

Kk
C

 !

bk �Hkð Þ3

6

 !

1þ
3 ak �Hkð Þ

bk �Hkð Þ

� �

(5)

where KA, KB, and KC are the reduced axial, coupled axial-shear, and shear
stiffness coefficients, respectively, given by the expressions:

KA ¼ A11 �
A12ð Þ2

A22

KB ¼ 2 A16 �
A12A26

A22

� �

KC ¼ 4 A66 �
A26ð Þ2

A22

" #

(6)

where Amn are called the membrane in-plane stiffnesses, which depend on the
fiber orientation angle θ, volume fractions, and mechanical properties of the fiber
and matrix materials [4].

The Young’s moduli in the longitudinal and lateral directions of the lamina E11

and E22, the shear modulus G12, and the major Poisson’s ratio v12 are calculated
using the semiempirical methods by Halpin and Tsai [23]:

E11 ¼ Em 1� V f

� �

þ E fV f

E22 ¼ Em 1þ ηEV f

� �

= 1� ηEV f

� �

G12 ¼ Gm 1þ ηGV f

� �

= 1� ηGV f

� �

ν12 ¼ νm 1� V f

� �

þ ν fV f

ηE ¼ E f � Em

� �

= E f þ Em

� �

ηG ¼ G f �Gm

� �

= G f þ Gm

� �

(7)

Subscripts “m” and “f” refer to the properties of matrix and fiber materials,
respectively, and Vƒ is the volume fraction of fibers within each lamina. Consider-
ing the equations of coupled extension-twist vibration, the assumed solution is [24]:

U1 x, tð Þ ¼ Ć1e
λxþiωt

φ x, tð Þ ¼ Ć2e
λxþiωt

(8)

where ω is the circular natural frequency of free vibration. Substituting from
Eq. (8) into Eq. (4), the associated characteristic equation can be shown to be:
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aλ4 þ bω2λ2 þ cω4 ¼ 0

a ¼ Ck
11C

k
22 � Ck

12

2

b ¼ Ck
11Ik þ Ck

22mk

c ¼ mkIk

(9)

The solution can be expressed as:

λ1,2 ¼ �iα1

λ3,4 ¼ �iα2

α1,2 ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a

s

(10)

If Ck
11Ik >Ck

22mk, then the minus sign in Eq. (10) will generate natural frequen-
cies with axial-mode dominated vibration, while the plus sign will generate natural

frequencies with torsion-mode dominated vibration. If Ck
11Ik <Ck

22mk, the domina-
tion is reversed. The general solution of the coupled extension-twist vibration
problem (Eq. 4) can be expressed as:

U1 x, tð Þ ¼ c1 sin α1xþ c2 cos α1xþ c3 sin α2xþ c4 cos α2xð Þeiωt

φ x, tð Þ ¼ c5 sin α1xþ c6 cos α1xþ c7 sin α2xþ c8 cos α2xð Þeiωt
(11)

In order to satisfy both the coupled equations of motion, there are specific
relations between the constants such that:

c5 ¼ q1c1, c6 ¼ q1c2, c7 ¼ q2c3, c8 ¼ q2c4

q1,2 ¼
2mka

Ck
12 b∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

	 
�
Ck
11

Ck
12

(12)

2.2 CAS layup configuration

In this case, the equations of motion, applied to segment k, reduced to:

Ck
11U

00
1 �mkÚ1 ¼ 0

Ck
22φ

00 þ Ck
23U

000
3 � Ikφ́ ¼ 0

Ck
23φ

000 þ Ck
33U

0000
3 þmkÚ3 ¼ 0

Ck
44U

0000
2 þmkÚ2 ¼ 0

(13)

The second and third equations of motion express a coupled bending-twist
vibration (BTV) mode, while the first and fourth equations of motion express
extension vibration (EV) and horizontal bending vibration (HBV) modes, respec-
tively. The non-zero stiffness coefficients are given by:
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Ck
11 ¼ 2Kk

A bk þ ak � 2Hkð Þ � 2
Kk

B

2

Kk
C

bk �Hkð Þ

Ck
22 ¼ Kk

C

bk �Hkð Þ ak �Hkð Þð Þ2

2

Ck
23 ¼ Kk

B

bk �Hkð Þ ak �Hkð Þð Þ2

2

Ck
33 ¼ Kk

A

ak �Hkð Þ3

6
1þ

3 bk �Hkð Þ

ak �Hkð Þ

� �

�
Kk

B

2

2Kk
C

Ck
44 ¼

bk �Hkð Þ3

6
1þ

3 ak �Hkð Þ

bk �Hkð Þ

� �

Kk
A �

Kk
B

2

Kk
C

" #

(14)

Assuming harmonic solution similar to that given in Eq. (8), the characteristic
equation is obtained by differentiating Eq. (13) to get:

aλ6 þ bω2λ4 � cω2λ2 � dω4 ¼ 0

a ¼ Ck
22C

k
33 � Ck

23

2

b ¼ Ck
33Ik

c ¼ Ck
22mk

d ¼ mkIk

(15)

which has the solution:

λ1,2 ¼ �iγ1, λ3,4 ¼ �iγ2, λ5,6 ¼ �γ3 (16)

The general solution takes the form:

U3 x, tð Þ ¼ c1 sin γ1xþ c2 cos γ1xþ c3 sin γ2xþ c4 cos γ2xþ c5 sinh γ3xþ c6 cosh γ3xð Þeiωt

φ x, tð Þ ¼ c7 sin γ1xþ c8 cos γ1xþ c9 sin γ2xþ c10 cos γ2xþ c11 sinh γ3xþ c12 cosh γ3xð Þeiωt

(17)

The relations between the constants are given by:

c7 ¼ k1c2, c9 ¼ k2c4, c11 ¼ k3c6

c8 ¼ �k1c1, c10 ¼ �k2c3, c12 ¼ k3c5

k1 ¼
Ck
23γ

3
1

Ck
22γ

2
1 � Ikω2

k2 ¼
Ck
23γ

3
2

Ck
22γ

2
2 � Ikω2

k3 ¼
�Ck

23γ
3
3

Ck
22γ

2
3 þ Ikω2

(18)

3. Natural frequencies and mode shapes

Applying the transfer-matrix method [25], the relation between the state vectors
at one end of a segment Zf gk and that at the other end Zf gkþ1 is given by:
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Zf gkþ1 ¼ T½ �k Zf gk (19)

where T½ �k is called the elementary transfer matrix associated with the kth

segment. For a spar built up of Ns uniform segments, Eq. (19) can be applied at
successive stations to obtain:

Zf gNsþ1 ¼ T½ �o Zf g1
T½ �o ¼ T½ �Ns T½ �Ns�1 … … … T½ �k … … … T½ �2 T½ �1

(20)

where the matrix T½ �o is known as the overall transfer matrix, which relates the
state vectors at the spar fixed end to the free end at which the boundary conditions
are specified. Therefore, applying the boundary conditions at both ends and con-
sidering only the nontrivial solutions, the frequency equations can be readily
obtained. Derivations of the elementary transfer matrices for different vibration
modes are discussed in the following section.

3.1 CUS layup

In this case the elements of the state vector at both ends of the kth segment are
related by the elementary transfer matrix for the coupled extension-twist vibration
as follows:

U1 Lkð Þ

φ Lkð Þ

C11U
0
1 Lkð Þ þ C12φ

0 Lkð Þ

C22φ
0 Lkð Þ þ C12U

0
1 Lkð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

k

U1 0ð Þ

φ 0ð Þ

C11U
0
1 0ð Þ þ C12φ

0 0ð Þ

C22φ
0 0ð Þ þ C12U

0
1 0ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(21)

Imposing the cantilevered boundary conditions on the overall transfer matrix,
the overall frequency equation for coupled extension-twist vibration of the blade
spar is given by:

To
33T

o
44 � To

34T
o
43 ¼ 0 (22)

3.2 CAS layup

Here the transfer matrix equation for the segment k is:

�U3 Lkð Þ

φ Lkð Þ

U0
3 Lkð Þ

Ck
22φ

0 Lkð Þ þ Ck
23U

00
3 Lkð Þ

Ck
23φ

0 Lkð Þ þ Ck
33U

00
3 Lkð Þ

Ck
33U

000
3 Lkð Þ

2

6

6
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6
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3

7
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7
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7
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Imposing the cantilevered boundary conditions on the overall transfer matrix,
the frequency determinant is given by:

T44 T45 T46

T54 T55 T56

T64 T65 T66

�

�

�

�

�

�

�

�

�

�

�

�

�

�

o

¼ 0 (24)

The natural frequencies for coupled bending-twist vibration can be obtained
numerically by solving the characteristic determinant of Eq. (24) for γ.

4. Optimization model formulation

4.1 Selection of design variables and pre-assigned parameters

In order to formulate a practical and inexpensive optimization model, the large
number of design variables of a wind turbine blade has to be reduced to a reasonable
number that can be easily dealt with. The design variables which are not subject to
change in the optimization process are called the pre-assigned parameters. They are
selected to be:

a. Type of materials of construction

b. Total blade length

c. Chord distribution along the blade axis

d. Twist angle distribution along the blade axis

e. Airfoil type and dimensions

f. Dimensions and spacing of the internal supporting ribs

g. Covering skin thickness

h. Blade-to-hub attachment, which is chosen to be of hingeless type

i. Shape of the spar cross section, which is chosen to be rectangular

On the other hand, the design variables, which are subject to change during the
optimization process, are chosen to be the fiber orientation angle θj,k, fiber volume
fraction Vfj,k, thickness of each lamina hj,k, cross-sectional dimensions (ak, bk, Hk),
and length Lk of each segment composing the blade spar (refer to Figure 2). The
cross-sectional aspect ratio (ak/bk) can be prescribed according to the airfoil cross-
sectional dimensions, and only the variable ak is taken as a design variable. In
addition, to formulate a normalized optimization model with scaled variables, it is
necessary to start with a known reference beam to which all the design variables,
constraints, and objective function are referred. It is chosen to be made of unidi-
rectional laminated composites with fiber volume fraction Vfo and fiber orientation
angle θo, and its cross-sectional dimensions are denoted by bo for width, ao for
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depth, Ho for wall thickness, and Lo for length. Therefore, the normalized variables
are defined as follows:

L̂k ¼ Lk=Lo

b̂k ¼ bk=bo
âk ¼ ak=ao

Ĥk ¼ Hk=Ho ¼
P

Nr

j¼1
ĥ j

ĥ j ¼ h j=Ho

(25)

For a spar beam composed of Ns segments, the design variables are defined by
the following matrix equation:

X½ � ¼

L̂1 L̂2 L̂k L̂Ns

â1θ j,1 â2θ j,2 âkθ j,k âNsθ j,Ns

V f j,1
V f j,2

V f j,k
V f j,Ns

ĥ j,1 ĥ j,2 ĥ j,k ĥ j,Ns

⋮ ⋮ ⋯⋯⋯ ⋮ ⋯⋯⋯ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

θNr,1 θNr,2 θNr,k θNr,Ns

V f Nr,1
V f Nr,2

V f Nr,k
V f Nr,Ns

ĥNr,1 ĥNr,2 ĥNr,k ĥNr,Ns
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(26)

The total number of design variables in this case is equal to (3 Nr + 2)*Ns, which
is a relatively large number of optimization variables.

4.2 Different optimization strategies

Several criteria are used in the dynamic optimization of wind turbine blades;
some important ones are the minimal mass design, maximum frequency design, and
frequency-placement criteria. In the first strategy, the mass of the blade is mini-
mized while imposing constraints on the blade natural frequencies and strength. In
the maximum frequency criterion, the reduction of vibration level is attained by
maximizing the natural frequencies of the blade without regard to the complicated
stiffness/mass ratio and the exciting frequencies constraints. Higher natural fre-
quencies are favorable for reducing both of the steady-state and transient responses
of any structure being excited. The last category of the objective functions to be
considered is the placement of the blade natural frequencies, where the main goal is
to separate the natural frequencies of the blade from the exciting frequencies to
avoid large amplitudes from occurring near the resonant conditions.

4.2.1 Minimal mass design

The minimal mass design optimization problem can be stated as follows:
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Find X½ �

Which minimizes f Xð Þ ¼ m̂

Subject to :

Strength constraint

Resonance avoidance

Side constraints

αT � 1≤0

1� ∆nð Þ≤
ω̂n

ω̂n
≤ 1þ ∆nð Þ, n ¼ 1, 2, …

XL½ �≤ X½ �≤ XU½ �

(27)

where m̂ ¼ m=mo and ω̂n ¼ ωn=ωno are the dimensionless mass and frequency
and mo and ωno are the mass and frequency of the reference beam, respectively.
XL½ �∧ XU½ � are the lower and upper bounds imposed on the design variables.

Structural mass : m ¼ 2
X

ns

k¼1

X

nr

j¼1

ρ jh j

 !

bk þ ak � 2Hkð ÞLk

" #

mo ¼ 2ρoHo bo þ ao � 2Hoð ÞLo

(28)

The mass densities ρo and ρ j are calculated according to the volume fractions Vfo

and Vfj, respectively. The symbolαT is called the Tsai-Hill rupture coefficient [26],
which depends on the ratios between the principle and rupture stresses (more
details are given in appendix A). ω̂n, n = 1,2,… are called the target (or desired)
frequencies of a known baseline design adjusted to be well separated from the
exciting frequencies, and the increments ∆nare the associated allowable tolerance of
each frequency (e.g., ∆n= 1%).

4.2.2 Maximum frequency optimization

Minimization of the overall vibration level is one of the most cost-effective
solutions for a successful wind turbine design. It enhances other important design
goals such as long fatigue life, high stability, and low noise level. Reduction of the
overall vibration level can be attained by maximizing the stiffness-to-weight ratio
of the wind turbine blade spar. It is well-known that natural frequency is a good
indicator of structural stiffness-to-mass ratio. Thus, the optimization problem
considered in this investigation will seek maximization of natural frequencies of
the blade spar for different modes of vibrations while maintaining its total struc-
tural mass lower than or equal to that of a baseline design. Constraints are imposed
on the optimization problem such that the blade spar has to be enclosed by the outer
blade skin and has the sufficient strength to carry the applied loads without mass
penalty.

The maximum frequency criterion, taking into considerations the different
modes of vibration, may be cast in the following form:

Find X½ �

Which minimizes f Xð Þ ¼ �
X

n

Wnω̂n, n ¼ 1, 2, …

Subject to :

Strength constraint

Mass constraint

Side constraints

αT � 1≤0

m̂� 1≤0

XL½ �≤ X½ �≤ XU½ �

(29)
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The function f(X) represents a weighted sum of the nondimensional natural
frequencies of successive modes of vibration withWnthe weighting factor of the nth

frequency ω̂n.

4.2.3 Frequency placement

A good design philosophy for vibration reduction is to separate the natural
frequencies of the structure from the harmonics of other excitation sources. Thus,
natural frequencies of the blade spar should be placed near a target value. Mathe-
matically, the frequency-placement criterion may be expressed by minimizing an
objective function constructed from a weighted sum of the squares of the differ-
ences between each important frequency ω̂n and its target value ω̂n as follows:

Find X½ �

Which minimizes f Xð Þ ¼
X

n

Wn ω̂n � ω̂nð Þ2

Subject to :

Strength constraint

Mass constraint

Side constraints

αT � 1≤0

m̂� 1≤0

XL½ �≤ X½ �≤ XU½ �

(30)

4.3 Side constraints

Side constraints are imposed on the design variables in order to verify various
geometric, manufacturing, or logical reasons. In the present optimization model,
these constraints are defined in the following.

4.3.1 Length of blade spar

The total length of the blade is kept equal to that of a known baseline design:

X

Ns

k¼1

L̂k

 !

� 1 ¼ 0

L̂k ≥0

(31)

4.3.2 Spar cross-sectional dimensions

Since the blade spar is limited by a tapered configuration with a certain type of
airfoil cross sections, the height of any segment k having its end at a specific
position xk+1 (refer to Figure 2) must not exceed the outermost height (aU) at this
position. Figure 4 shows the outermost dimensions of a wind turbine blade spar of
length L, where ar and at represent the spar heights at the root and tip locations,
respectively. The dimensionless upper limiting height âU is defined by the relation:

âU ¼ âr 1� 1�
at
ar

� �

x̂kþ1

� �

x̂kþ1 ¼ L̂1 þ L̂2 þ … þ L̂k

(32)

Lower bounds are also imposed on the height of the kth segment as a reasonable
percentage of the airfoil height near the tip (âL ¼ 0:5ât). Thus, the inequality
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constraints imposed on the dimensionless height of each segment of the blade spar
are expressed as:

âL ≤ âk ≤ âU, k ¼ 1, 2, … :Ns (33)

Upper bounds on the segment height represent the main obstacle in blade spar
optimization since it restricts the spanwise variation in spar height. Note that the
width of each segment (bk) depends on the height of that segment (ak) according to
the pre-assigned aspect ratio of the cross section.

In addition, the inequality constraints imposed on the walls thickness of each
segment are:

ĤL ≤ Ĥk ≤ ĤU, k ¼ 1, 2, … :Ns (34)

4.3.3 Fiber volume fraction and orientation angle within any segment (k)

0:2,�π=2ð Þ≤ Vfj, θ j

� �

≤ 0:8, π=2ð Þ, j ¼ 1, 2, …Nr (35)

The optimization models described by Eqs. (27–35) belong to the constrained
nonlinear mathematical programming models since the objective functions and
most of the constraints contain nonlinear algebraic expressions. Such problems can
be solved by a variety of mathematical programming techniques [27, 28]. The
sequential quadratic programming (SQP) is one of the most powerful developed
and perhaps one of the best methods of optimization. The method has a theoretical
basis that is related to the solution of a set of nonlinear equations using Newton’s
method and the derivation of simultaneous nonlinear equations using Karush-
Kuhn-Tucker (KKT) conditions to the Lagrangian of the constrained optimization
problem [29, 30]. More details are given in Appendix B.

5. Behavior of the objective function

Focusing on CUS layup configurations, extensive studies have been carried out,
using MATLAB, on the objective functions in order to be able to visualize the
unconstrained behavior of natural frequencies and mass of specific thin-walled
composite beams. Studies are performed in a two-dimensional design space such
that only two design variables are allowed to change while the others are assigned to
specific values. All variables are normalized with respect to a known reference beam
parameters, as given in Eq. (25).

Figure 4.
Outermost dimensions of a wind turbine blade spar.
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5.1 Case of two-segment cantilever beam

For a two-segment beam with each segment constructed only from one layer,
the matrix of variables (Eq. 26) can be reduced to take the form:

X½ � ¼

L̂1

â1
θ1,1

V f 1,1

ĥ1,1

L̂2

â2

θ1,2

V f 1,2

ĥ1,2

2
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6

6
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6

6

6
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7

7

7

7

7

7

7

7

5

(36)

Note that in this case Ĥk ¼ ĥ j. The effects of changing two corresponding vari-
ables simultaneously in the two segments are studied in the following.

5.1.1 Effect of changing fiber orientation angles within the two segments (θ1, θ2)

Consider a two-segment beam with a height of the outboard segment half that of
the inboard segment but with equal length. Fiber volume fraction and wall thick-
ness of the two segments are the same as that of the reference beam. The following
matrix of pre-assigned variables describes this case:

X½ � ¼

0:5

1:5

θ1

0:5

1

0:5

0:75

θ2

0:5

1

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(37)

Figure 5 shows the developed contours of the normalized fundamental
bending frequency in the (θ1, θ2)-design space. It is noticed that the maximum
bending natural frequencies occurs at the point θ1, θ2ð Þ ¼ 0, 0ð Þ, which is an
expected natural solution. Figure 6 shows the level curves of the normalized twist-
dominated natural frequency. It indicates that the maximum occurs near the
design point θ1, θ2ð Þ ¼ 45, 45ð Þ. On the other hand, the design points (θ1, θ2) =
(0, 0), (90, 90), (0, 90), and (90, 0) give the same values of the frequency
representing a local minima solution, as shown in Figure 6. The angle sequence in
this case affects the frequency level curves due to the change in heights of the two
segments.

5.1.2 Effect of changing length and height of the outboard segments (L̂2, â2)

Consider a two-segment beam with the following matrix of pre-assigned vari-
ables. The height and thickness of the inboard segment are equal to those of the
reference beam, while thickness of the outboard segment is half that of the refer-

ence beam. Nondimensional length of the inboard segment is 1� L̂2 in order to keep
the total length equal to that of the reference beam:
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X½ � ¼

1� L̂2

1

0

0:5

1

L̂2

â2

0

0:5

0:5

2
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6

6

6

6

6

6
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6
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7

7

7

7

7

7

7

5

(38)

Figure 5.
Effect of fiber orientation angles on the normalized fundamental bending frequency (a two-segment cantilevered
beam).

Figure 6.
Effect of fiber orientation angles on normalized twist-dominated natural frequency (a two-segment cantilevered
beam).
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Figure 7 shows the developed contours of the fundamental bending frequency

in the (L̂2, â2)-design space. It is seen that the frequency domain is divided into
three regions bonded by the reference frequency value. The extreme left and right
regions contain two local minima. The central region contains the global maximum.

The maximum bending natural frequencies occur near the point (L̂2, â2) ≈ (0.35,
0.3). This point corresponds to a total structural mass of about 70% of the reference
beam, which represents a significant gain from the optimization process. This
configuration of beam dimensions gives a tapered beam with a decreasing height
and length. The same value of maximum natural frequency is also repeated in the

design space at the uppermost right region at (L̂2, â2) ≈ (1, 2), but the total mass
becomes higher and equal to that of the reference beam.

From the previous investigations, it is observed that the frequency functions,
even though implicit in the design variables, are well behaved and continuous in the
selected design spaces. A weighted sum of successive natural frequencies is a good
representative for the objective function of the optimization model. Another
important observation is that the length and the height of the individual segments
are so effective variables in the whole optimization process.

6. Case study

As a case study, the main spar of a medium scale composite blade of a 750-kW
horizontal axis wind turbine is optimized. Full description and technical data can
be found in Ref. [31]. The blades cross section having NACA 63-218 airfoil is made
of E-glass/epoxy composites with properties given in Table 1. The effective length
of the spar is 18.33 m extending from 20–98% of the blade length. The spar

Figure 7.
Effect of length and height of the outboard segment on normalized fundamental bending frequency
(a two-segment cantilevered beam).
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cross-sectional dimensions at root are 340 mm height and 680 mm width and at the
tip 100 mm and 200 mm. The wall thickness at the root and tips are 15 mm and
5 mm, respectively. The chordwise location of the spar cross-sectional center coin-
cides with the blade pitch axis.

6.1 Baseline design

An initial baseline design of the wind turbine blade spar with total
mass = 580.55 kg is selected to be composed of 10 segments of equal length. Fiber
orientation angle and volume fraction within each segment are pre-assigned to be 0°
and 50%, respectively. Structural and dynamic properties of the spar baseline
design are given in Tables 2 and 3, respectively.

Property Epoxy matrix E-glass fibers

Modulus of elasticity (GPa) Em = 4.5 E11f = E22f = 74

Modulus of rigidity (GPa) Gm = 1.6 G12f = 30

Poisson’s ratio νm = 0.4 ν12f = 0.25

Density (kg/m3) ρm = 1200 ρf = 2600

Tensile strength (MPa) σmr = 90 σ11r,σ22r (Eq. A-2)

Shear strength (MPa) τmr = 52

Table 1.
Material properties of the spar structure [4, 31].

Segment no. Length (mm) Height (mm) Width (mm) Thickness (mm)

1 1833 316 632 14.4

2 292 584 13.3

3 268 536 12.2

4 244 488 11.1

5 220 440 10

6 196 392 8.9

7 172 344 7.8

8 148 296 6.7

9 124 248 5.6

10 100 200 4.5

Table 2.
Dimensions of the baseline design.

Vibration mode (dominated) Natural frequencies (Hz)

First mode Second mode Third mode

Twist 36.73 64.88 95.18

Extension 94.9 203.5 319.8

Flap bending 1.55 4.90 11.15

Table 3.
Natural frequencies of the baseline design.
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The calculated normal and tangential distributed forces (Pz, Py) and the
corresponding bending moments (Mz,My) applying to the wind turbine blade are
shown in Figures 8 and 9, respectively (refer to Appendix C). The wind speed of 60m/
s (survival loading condition) is taken in calculating the applied loads, while the blades
were considered in the stationary horizontal position. These forces and moments are
implemented in the strength constraints of the present optimization model.

6.2 Definition of the reference beam

The reference beam, to which all the design variables and frequencies are nor-
malized, is selected to be a uniform, thin-walled cantilevered spar with rectangular

Figure 8.
Shear forces applied to the blade at 60-m/s wind speed.

Figure 9.
Flapwise and chordwise bending moments applied to the blade at 60-m/s wind speed.
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cross section constructed from single unidirectional E-glass/epoxy composite layer
(θo = 0) and fiber volume fraction of Vfo = 50%. This fiber layup configuration gives
maximum natural frequencies for bending and extension modes of vibration while
maintaining moderate structural mass (mo = 580.5 kg) and strength. The dimensions
of the reference beam are selected according to the mean cross-sectional dimensions
of the spar baseline design (see Table 4).

6.3 Optimization results

The blade spar described in Section 6.1 is optimized according to the three
different optimization models under the specified constrains as given in Section 4.2.
The method of sequential quadratic programming with MATLAB optimization
toolbox is applied to obtain the needed optimal solutions (refer to Appendix B). The
starting, lower, and upper bounds for each design variable are given in Table 5.
Determination of these values affects the optimization results; thus, several trials
were performed in order to select the appropriate values.

6.3.1 Minimum mass design

In this formulation the target frequencies are set equal to the first three flapping
frequencies of the baseline design, which are well separated from resonant fre-
quencies. The attained optimal solutions are given in Table 6 with the spar cross
sections constructed from balanced and symmetric laminates. The achieved mass
saving reached about 25%, where the natural frequencies are found to be too close
to those of the baseline design, as given in Table 7. Considerable mass reduction can
be observed with much savings for the inboard segments as compared to that for
the outboard segments.

Dimensions (mm) Natural frequencies: ωno=2 (Hz)

Mode First Second Third

Width bo = 440

Height ao = 220 Twist 17.59 52.76 87.93

Length Lo = 18,330 Extension 61.99 185.97 309.95

Thickness Ho = 10 Bending 0.65 4.07 11.39

Table 4.
Dimensions and natural frequencies of the reference beam.

Design variable Lower boundary Upper boundary Starting value

Dimensionless length of each segment L̂k 0.0 1 1/Ns

Dimensionless height of each segment âk 0.2 2 1

Fiber orientation angle θj,k �π/2 π/2 0

Fiber volume fraction Vf j,k 0.2 0.8 0.5

Dimensionless thickness of each layer ĥ j,k
0.01 0.2 0.1

Table 5.
Lower, upper, and starting boundaries of design variables for multiple-segment spar.
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6.3.2 Maximum frequency design

In order to obtain a blade spar with higher natural frequencies, the maximum
frequency optimization model given in Eq. 29 is applied under inequality mass

Segment

no.

Segment

length (mm)

Segment cross

section (mm)

Fiber volume

fraction

No. of

layers

Layup

Height Thickness

1 280.5 323.8 9.9 0.31 18 (�45/03/�45/03/�45)s

2 183.3 316.7 9.9 0.33 18 (�45/03/�45/03/�45)s

3 200.8 313.8 8.9 0.32 16 (�45/03/�45/02/�45)s

4 534.1 301.4 8.9 0.33 16 (�45/02/�45/03/�45)s

5 851.0 286.3 8.9 0.32 16 (�45/03/�45/02/�45)s

6 1031.7 263.8 7.9 0.32 14 (�45/02/�45/02/�45)s

7 1112.0 235.2 7.8 0.33 14 (�45/02/�45/02/�45)s

8 1272.3 207.4 7.8 0.34 14 (�45/05/�45)s

9 1482.5 188.9 6.8 0.33 12 (�45/05)s

10 1589.4 170.4 6.5 0.33 12 (�45/05)s

11 1273.1 154.0 6.5 0.33 12 (�45/05)s

12 1132.9 138.6 6.4 0.32 12 (�45/05)s

13 1100.9 120.9 5.7 0.33 10 (�45/04)s

14 1051.8 106.3 5.6 0.33 10 (�45/04)s

15 1177.6 94.1 5.2 0.33 8 (�45/03)s

16 880.5 82.4 4.8 0.33 8 (�45/03)s

17 693.2 70.7 4.6 0.33 8 (�45/03)s

18 540.0 59.0 4.5 0.34 8 (�45/03)s

19 456.8 48.0 4.0 0.33 6 (�45/02)s

20 1485.7 44.0 3.6 0.20 6 (�45/02)s

Table 6.
Minimum mass design optimization.

Vibration mode (dominated) Design Natural frequencies (Hz) P

3

n¼1
Wnωn

First mode Second mode Third mode

Twist Baseline 36.73 64.88 94.90 50.49

Min. mass 36.16 65.62 89.13 49.52

Extension Baseline 94.90 203.50 319.80 148.00

Min. mass 89.13 194.88 299.66 139.77

Flapping Baseline 1.55 4.90 11.15 2.48

Min. mass 1.53 4.88 11.17 2.45

Mass (kg) Baseline 580.55

Min. mass 437.76

Table 7.
Comparison of natural frequencies and mass between baseline and the minimum mass designs.

23

Structural Optimization of Wind Turbine Blades for Improved Dynamic Performance
DOI: http://dx.doi.org/10.5772/intechopen.91643



Segment

no.

Segment

length (mm)

Segment cross

section (mm)

Fiber volume

fraction

No. of

layers

Layup

Height Thickness

1 842 329 18.7 0.8 34 (�45/07/�45/07/�45)s

2 873 318 16.3 0.8 30 (�45/06/�45/06/�45)s

3 903 306 14.4 0.8 26 (�45/05/�45/05/�45)s

4 919 294 12.3 0.8 22 (�45/04/�45/04/�45)s

5 932 281 11 0.8 20 (�45/03/�45/04/�45)s

6 937 269 8.8 0.8 16 (�45/03/�45/02/�45)s

7 930 257 7.7 0.8 14 (�45/02/�45/02/�45)s

8 908 245 6.6 0.8 12 (�45/04/�45)s

9 882 234 5.5 0.8 10 (�45/04)s

10 861 222 5.5 0.8 10 (�45/04)s

11 875 211 5.5 0.8 10 (�45/04)s

12 936 199 5.5 0.8 10 (�45/04)s

13 1035 185 5.5 0.8 10 (�45/04)s

14 1128 170 5.5 0.78 10 (�45/04)s

15 1094 156 5.5 0.65 10 (�45/04)s

16 1031 142 4 0.51 8 (�45/03)s

17 956 130 4 0.33 8 (�45/03)s

18 709 91 3 0.33 6 (�45/02)s

19 543 61 3 0.33 6 (�45/02)s

20 1037 44 2 0.2 4 (�45/0)s

Table 8.
Maximum frequency design with discrete spanwise material grading.

Figure 10.
Maximum frequency optimization gains.
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Figure 11.
Campbell diagram for baseline and maximum frequency designs. (–––––––Baseline, --- max.

P

n).

Figure 12.
Campbell diagram for baseline and frequency-placement designs. (–––––– baseline, ---- target).
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constraint. Table 8 presents the attained optimal solutions for the blade spar with
discrete grading model.

Figure 10 shows the optimization gains for the different natural frequencies of
the blade spar with maximum frequency designs. It is noticed that gains of 48%,
23%, and 34% have been achieved in fundamental natural frequencies for twist,
extension, and flapping modes of vibration, respectively.

It can be concluded that a good blade design with maximum natural frequencies
should have smaller wall thickness in the outboard portion of the blade spar. The
maximum frequency optimization process recommends the segments located
inboard to have higher wall thickness and higher fiber content. The spanwise
variation in the height of each segment of the blade spar is always restricted by the
airfoil envelope, which is the major obstacle in the optimization process.

When the wind turbine is operating, the rotating blades are the main source of
vibration. The forcing frequencies are integer multiples of the rotational speed. A
common way to represent natural frequencies and search for possible resonances is
to plot the Campbell diagram as shown in Figure 11. The intersection of one of the
radial lines with one of the system natural frequencies indicates a potential for
resonance at the rotor speed corresponding to that point of intersection. The wind
turbine considered in this investigation has two rotational speeds; they are 15 and
22 rpm. It is shown that for the baseline and maximum frequency designs, no
resonance can occur at these operating speeds.

Segment

no.

Segment length

(mm)

Segment cross

section (mm)

Fiber volume

fraction

No. of

layers

Layup

Height Thickness

1 753 330 14.5 0.80 26 (�45/05/�45/05/�45)s

2 948 318 12.9 0.80 24 (�45/04/�45/05/�45)s

3 754 308 12.1 0.80 22 (�45/04/�45/04/�45)s

4 787 298 12.3 0.80 22 (�45/04/�45/04/�45)s

5 1008 284 11.9 0.80 22 (�45/04/�45/04/�45)s

6 540 275 11.1 0.79 20 (�45/03/�45/04/�45)s

7 460 271 10.8 0.79 20 (�45/03/�45/04/�45)s

8 256 257 9.9 0.78 18 (�45/07/�45)s

9 216 251 9.9 0.78 18 (�45/08)s

10 186 241 10.9 0.71 20 (�45/09)s

11 1431 244 7.8 0.74 14 (�45/06)s

12 2563 210 6.4 0.80 12 (�45/05)s

13 1930 185 6.5 0.80 12 (�45/05)s

14 1536 165 6.4 0.80 12 (�45/05)s

15 1374 147 5.6 0.80 10 (�45/04)s

16 1310 125 6.4 0.43 12 (�45/05)s

17 585 77 5.3 0.77 10 (�45/04)s

18 185 51 10.9 0.72 20 (�45/09)s

19 431 71 5.5 0.36 10 (�45/04)s

20 1077 44 5.5 0.63 10 (�45/04)s

Table 9.
Frequency-placement design with discrete spanwise material grading.
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6.3.3 Frequency-placement design

In the minimal mass design, the natural frequencies of the optimized blade spar
are constrained to be equal to those of the baseline design, while in maximum
frequency optimization, the natural frequencies are entirely maximized with con-
straints imposed on its structural mass. If it is desired to have a blade spar with
specific target frequencies, the frequency-placement optimization model has to be
applied. The desired target frequencies used in the present analysis are selected to
be 1.9, 6.4, and 12.65 Hz for the first three modes of flapping vibration, respectively.
These frequencies are placed away from resonant frequencies at the operating
speeds according to the Campbell diagram shown in Figure 12. The attained opti-
mal solutions of the blade spar are given in Table 9, with the flapping frequencies
placed at their prescribed target frequencies.

7. Finite element analysis

The finite element method (FEM) has been demonstrated as a powerful
approach which can handle dynamic analysis of laminated composite structures.
Nowadays, current commercial finite element software is capable of simulating
nonlinearity of many engineering problems. Commercial software also come with
advanced preprocessing and post-processing abilities [32] The preprocessing is just
a way used for the data input, since the finite element method requires a large
amount of data, while the post-processing is another way for presenting the results
in the form of deformed shapes and contour maps. The core of the analysis is what
occurs in between the two processes. In selecting a finite element analysis software,
it is essential to regard the pre- and post-processor, which can directly affect the
analysis speed and accuracy. One of the most appropriate finite element analysis
software is Femap (finite element modeling and post-processing). Femap is an
engineering analysis program developed by Siemens PLM Software that is used to
build finite element models of complex engineering problems and view solution
results [33]. Femap uses NX Nastran solver to analyze and solve finite element
problems.

Femap is an advanced engineering simulation application for creating, editing,
and importing/reusing mesh-centric finite element analysis models of complex
products or systems. Femap provides powerful data-driven and graphical result
visualization and evaluation.

The attained optimum design of the blade spar is modeled using FEM as a
tapered beam with rectangular cross section. The root and tip cross sections are
drawn using Femap, and then each line in the root is ruled to the corresponding line
in the tip in order to generate the required surfaces as shown in Figure 13. The
geometric model is divided into 20 segments with lengths according to the maxi-
mum frequency design given in Table 8.

Analysis Natural frequencies (Hz)

1VBV 2VBV 3VBV

Analytical 2.09 6.87 13.30

FEM 2.17 7.04 14.49

Diff. % 4.7 2.4 8.2

Table 10.
Comparison between analytical and FEM modeling for the maximum frequency design.
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Material properties, element type, and thickness of each segment are to be
defined. According to Table 8, a number of six different orthotropic materials with
different fiber volume fractions and properties of E11, E22, G12, ν12, and ρ are to be
defined and input to Femap. A total of 20 different layups are to be defined due to
the change in fiber orientation angles and thickness of each segment within the spar
design. Furthermore, 20 element types are to be defined according to the
corresponding material and layup properties.

Figure 13.
Finite element model of a 20-segment cantilevered spar meshed with 10,000 elements.

Figure 14.
Mode shapes and natural frequencies for vertical bending vibration of the blade spar with maximum frequency
design.
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The normal mode eigenvalues analysis using Lanczos modal analysis is used by
Femap in order to define the different mode shapes and the associated natural
frequencies of the optimized blade spar design. Figure 14 shows the mode shapes
with the associated natural frequencies for bending vibration of the optimized blade
spar. Table 10 shows a comparison between analytical and Femap natural frequen-
cies of the optimized blade spar design.

8. Conclusions and recommendations

This chapter presents an optimization model for enhancing the dynamic perfor-
mance of the spar beam of a wind turbine blade. Design variables include the cross-
sectional dimensions and material properties variation along the spanwise direction.
Three optimization strategies are developed and tested, including the minimal mass
design, maximum frequency design, and frequency-placement design, by placing
the frequencies at their target values to avoid large amplitudes and resonance
occurrence. Side constraints are imposed on the design variables in order to avoid
abnormal-shaped optimized configurations. Based on the fact that an exact dynamic
analysis of uniform thin-walled beam segment is available and well established, the
dynamic analysis of tapered blade spar has been obtained by applying the transfer
matrix method to calculate the natural mode of vibrations. The proposed model
deals with dimensionless quantities in order to be applicable to thin-walled beams
with arbitrary dimensions. Results indicated that the optimization process leads to
significant increase of natural frequencies of the optimized spar when compared to
the reference or baseline design without mass penalty. Finite element model
showed a good agreement with the analytical model developed in this study with a
variation of up to 10%. The main conclusions that can be revealed from the present
work are:

1.Tapered multiple-segment spar with spanwise material grading gives natural
frequencies higher than that of the reference design. However, it is proved that
maximization of the fundamental frequency alone does not guarantee
maximization of the other higher frequencies. Higher frequencies have been
found to have many local minima and maxima in the defined design space.

2.There are optimum design variables of each segment such as the length,
height, wall thickness, and fiber content at which the structural dynamic
performance can be enhanced. Good designs favor minimum wall thickness
and higher fiber volume fraction.

Finally, the analytical model formulated in this chapter can be extended and
applied to study the forced dynamic response of a wind turbine blade. Other cross-
sectional types of the blade spar, such as D-shape spar, can be considered, and the
effects of blade twist, shear deformation, and rotary inertia are to be considered in
future studies.

Appendix

A. Failure criteria of fibrous composite materials

The fracture processes induced in fibrous composite materials depend upon the
nature of constituents, the architecture of the laminate, and the type of mechanical
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loading imposed to the laminate. The rupture of fibrous composite materials is the
result of one or combined effect of fiber fracture, transverse fracture in matrix,
longitudinal fracture in matrix, fracture of fiber-matrix interface, and delamina-
tions [34] (refer to Figure A.1).

Failure theories for composites have been proposed by extending and adapting
isotropic failure theories to account for the anisotropy in stiffness and strength of
the composites. One of the first fracture criteria applied to an anisotropic materials
was introduced by Tsai-Hill theory [26], which is applied to unidirectional lamina
under principal axis in-plane loading condition as shown in Figure A.2 (a). The
theory states that no fracture will occur in the lamina if αT ≤ 1 such that:

αT ¼
σ11

σ11r

� �2

þ
σ22

σ22r

� �2

�
σ11σ22

σ211r
þ

τ12

τ12r

� �2

(A.1)

where the subscript r refers to rupture strength of the material.
Rupture strengths for fibrous composite materials are given by the following

approximate relations [34]:

σ11r ¼ σ11fr V f þ VmEm=E11f

� �

σ22r ¼ σmr 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4V f=π
q	 


τ12r ¼ τmr

(A.2)

Figure A.1.
Schematic of the fracture of a unidirectional fibrous composite at critical values of (a) axial, (b) transverse,
and (c) shear stresses.

Figure A.2.
Lamina under loading condition of (a) principal axes and (b) general axes.
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Subscripts f and m refer to fiber and matrix materials, respectively.
For a lamina under general loading condition as shown in Figure A.2 (b), the

principal stresses are given by the following equation [4, 34]:

σ11

σ22

τ12
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c ¼ cosθs ¼ sinθ

(A.3)

The Tsai-Hill failure theory is expressed in terms of a single criterion instead of
the multiple subcriteria required in the maximum stress and maximum strain theo-
ries. The theory allows for considerable interaction among the stress components.
One disadvantage, however, is that it does not distinguish directly between tensile
and compressive strengths. The strength must be specified and used according to
the given state of stress.

B. Sequential quadratic programming

Sequential quadratic programming (SQP) is one of the mainly developed and
perhaps one of the best techniques of optimization [29]. The method has a theoret-
ical base that is related to the solution of a group of nonlinear equations using
Newton’s method and the derivation of concurrent nonlinear equations using
Karush-Kuhn-Tucker (KKT) conditions to the Lagrangian of the constrained opti-
mization problem. The fundamental idea of SQP is to model the optimization
problem at the present iterate xk by a quadratic programming subproblem and to
employ the minimizer of this subproblem to identify a new iterate xk + 1 [30]. The
challenge is to design the quadratic subproblem so that it yields a good step for the
constrained optimization problem and so that the overall SQP algorithm has good
convergence properties and good practical performance. Possibly the simplest der-
ivation of SQP methods views them as an application of Newton’s method to the
KKT optimality conditions for the optimization problem. If the problem is a so-
called convex programming problem, that is, f(X) and Gi(X), i = 1,… ,m, are
convex functions, then the KKT equations are both necessary and sufficient for a
global solution point. The Kuhn-Tucker equations can be stated as:

∇f xð Þ þ
X

m

i¼1

λi:∇Gi xð Þ ¼ 0

λi:Gi xð Þ ¼ 0, i ¼ 1, … :,me

λi ≥0, i ¼ me þ 1, … ,m

(B.1)

The first equation describes a canceling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to be
canceled, Lagrange multipliers (λi, i = 1,… ,m) are necessary to balance the devia-
tions in magnitude of the objective function and constraint gradients. Because only
active constraints are included in this canceling operation, constraints that are not
active must not be included in this operation and so are given Lagrange multipliers
equal to 0. This is stated implicitly in the last two Kuhn-Tucker equations.

B.1 Optimization using MATLAB

MATLAB is popular software that is used for the solution of a variety of scien-
tific and engineering problems. The specific toolbox of interest for solving
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optimization problems is called the optimization toolbox [35]. MATLAB optimiza-
tion toolbox contains a library of programs or m-files, which can be used for the
solution of different optimization problems. A commonly implemented function
denoted by fmincon is applied to most constrained objective functions. It is the most
suitable function to the optimization problem of this investigation, since it uses
sequential quadratic programming (SQP) method.

fmincon starts at “x0” and attempts to find a minimizer “x” of the objective
function described in the m-file named “fun” subject to the linear inequalities
“A� x≤ b” and the linear equalities “Aeq� x ¼ beq.” If there are no linear equali-
ties or inequalities, A, b, Aeq, and beq are replaced with “[].” fmincon can define
lower and upper bounds on the design variables in “x” so that the solution is always
in the range “lb ≤ x ≤ ub.” fmincon can subject the minimization process to the
nonlinear inequalities “c(x)” or equalities “ceq(x)” defined in the m-file constraint
function named “nonlcon.” fmincon optimizes such that “c(x) ≤ 0” and “ceq(x) =
0.” fmincon minimizes with the optimization options involved in the structure
“options.” Table B.1 defines all input and output arguments related to fmincon
optimization function.

C. Applied loads and stress analysis

The distributed load vectors are expressed in the undeformed coordinates (see
Figure C.1), as follows:

Distributed forces : P ¼ PA þ PI þ PG þ PD (C.1)

Distributed moments : q ¼ q
A
þ q

I
þ q

G
þ q

D
(C.2)

where the subscripts A, I, G, and D refer to the aerodynamic, inertial, gravita-
tional, and damping contributions, respectively. The aerodynamic forces PA and
moments qA can be obtained using the quasi-steady blade-element strip
theory [1, 2].

Argument Description

fun The function to be minimized

x0, lb., and

ub

Starting, lower, and upper boundaries of design variables

nonlcon The function that computes the nonlinear inequality constraints “c(x) ≤ 0” and the

nonlinear equality constraints “ceq(x) = 0”

fval Value of the function “fun” at x

exitflag Integer identifying the reasons causing the algorithm terminated

grad Gradient at x

hessian Hessian at x

lambda Structure containing the Lagrangian multipliers at the solution x

output Structure containing information about the optimization process such as number of

function evaluations and iterations taken and the used optimization technique

Table B.1.
Arguments related to fmincon function [35].
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Figure C.2 shows the velocity triangle and the coordinate system used for
computing aerodynamic loads. Vyr and Vzr are the tangential and axial velocity
components, respectively. The resultant velocity Vr can be calculated from:

Vr ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
yr þ V2

zr

q

¼ �Vyr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
Vzr

Vyr

� �2
s

(C.3)

The distributed lift and drag force vectors on an arbitrary airfoil section are
given by the aerodynamic formulas (see Figure C-2):

Lift L ¼
1

2
ρaV

2
r C CL sin φi ĵ

0
þ cos φik̂

0
	 


Drag D ¼
1

2
ρaV

2
r C CD � cos φi ĵ

0
þ sin φik̂

0
	 


(C.4)

where ρa = air density; C = local chord at spanwise location r; CL = CL (α) = CLαα,
lift coefficient; CD = CD (α), drag coefficient; CLα= lift – curve slope; α = angle of
attack; φi ¼ inflow angle ¼ θB þ α.

Figure C.1.
Deformed and undeformed configurations of a blade segment.
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Expressed in the undeformed system, the aerodynamic force vector per unit
length of the blade is therefore given as:

PA ¼ LþD ¼ PxA îþ PyA ĵþ PzAk̂ (C.5)

The distributed inertia loads per unit blade span are obtained by applying
D’Alembert’s principle as follows:

Inertial force vector : PIB ¼ �

ð ð

ρB€rB dy dz

Inertial moment vector : q
IB
¼ �

ð ð

ρB r0B � r0E:C
� �

� €rB
� 


dy dz

(C.6)

where ρB is the blade material mass density, €rBis the acceleration vector, and r0B
and r0E:C are the position vectors of an arbitrary point and the elastic center of the
blade cross section, respectively.

Next, considering the equilibrium of a differential element of the deformed
blade, the equilibrium equations expressed in the rotating (xyz) axes are:

Force equilibrium :
∂F

∂x
þ P ¼ 0

Moment equilibrium :
∂M

∂x
þ î

0
� F þ q ¼ 0

(C.7)

Internal force vector : F ¼ Fx îþ Fy ĵþ Fzk̂

Internal moment vector : M ¼ Mx îþMy ĵþMzk̂
(C.8)

A wind turbine blade cross section is composed of thin-walled, closed, single or
multicellular composite beams. The periphery of each beam cross section is
assumed to be constructed of flat composite laminates as shown in Figure C.5. The
stress-strain relations of the composite laminates which discretize each cross section
are computed using the classical laminate theory CLT. Although each laminate is

Figure C.2.
Velocity triangle of an arbitrary airfoil section in the deformed state.
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actually an assembly of multiple layers with different constitutive properties, CLT
is used to calculate a set of effective stiffness coefficients that allows a composite
laminate to be treated as a single structural element [12]. Therefore the blade cross
section may be considered to be composed of discrete sections of homogenous
materials.

Generally, for a heterogeneous composite section shown in Figure C.3 and C.4,
the modulus-weighted cross-sectional properties are defined as [12]:

Figure C.4.
Cross section for a heterogeneous composite beam.

Figure C.5.
Resultant loads and moments applying to a composite laminate.

Figure C.3.
Blade cross section with discretized composite laminated plates.
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Ac ¼
1

Eref

X

n

i¼1

EiAi

yc ¼
1

ErefAc

X

n

i¼1

EiAiyi

zc ¼
1

ErefAc

X

n

i¼1

EiAizi

Iy ¼
1

Eref

X

n

i¼1

Ei Ivo,i þ Aiz
2
i

� �

Iz ¼
1

Eref

X

n

i¼1

Ei Iwo,i þ Aiy
2
i

� �

Iyz ¼
1

Eref

X

n

i¼1

Ei Ivwo,i þ Aiyizi
� �

(C.9)

where Eref is a reference modulus of elasticity, (yi,zi) denotes the geometric

centroid of each discrete element of the cross section, and (vo,i, wo,i) denotes the
principal axes of each discrete element.

The parallel axes theorem can be applied to compute the second moments of
area about the cross-sectional principal axes as follows:

Iv ¼ Iy � Ac zcð Þ2

Iw ¼ Iz � Ac yc
� �2

Ivw ¼ Iyz � Acyczc

(C.10)

Once the global cross-sectional properties are computed using the method of
modulus-weighted properties, the effective axial stress applied to the blade cross
section can be given by:

σx y, zð Þ ¼
Fx

Ac
�
MzIv þMyIvw

IvIw � Ivw
2 y� yc
� �

þ
MyIw þMzIvw

IvIw � Ivw
2 z� zcð Þ (C.11)

Finally, by converting the distribution of the effective beam stresses into equiv-
alent in-plane distributed loads on the flat laminates composing the cross section, as
shown in Figure C.5, the lamina-level strains and stresses can be computed using
the CLT.
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