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Abstract

The maladaptive nature of the systemic inflammatory response syndrome, 
which may be caused by sepsis, trauma, or ischemia-reperfusion injury, is char-
acterized by a shift towards the distant effects of pro- and anti-inflammatory 
mediators. Shock, blood loss, and metabolic disorders may cause the onset of 
multiple organ dysfunction syndrome. The final phase of critical illness is gener-
ally associated with induced immunosuppression and dysfunctions of neutrophils, 
monocytes and macrophages, dendritic cells, release of myeloid-derived suppressor 
cells, damage to glycocalyx and endothelium, and impaired metabolic conjugation. 
This review is aimed at providing novel evidences on the roles of various immune 
components, either innate or acquired, in the induction of immunosuppression 
from the standpoint of the rapid diagnosis of immune disorders in the intensive 
care unit using flow cytometry as a commonly accepted option.

Keywords: systemic inflammatory response syndrome, persistent multiple organ 
dysfunction, induced immunosuppression, flow cytometry

1. Introduction

Systemic inflammatory response syndrome (SIRS) refers to a critical illness, either 
infectious (sepsis) or secondary to tissue injury (tissue injury, cardiopulmonary 
bypass) that evolves into two phases. The first phase is an initial hyperinflammatory 
response, sometimes referred as a cytokine storm. Damage-associated molecular pat-
terns (DAMP), also known as alarmins, and pathogen-associated molecular patterns 
(PAMP) activate the innate immune system. The activation of innate immunity is 
accompanied by a significant release of pro-inflammatory mediators that increase the 
intensity of the immune response and trigger adaptive immunity responses [1].

Excessive activation of pro-inflammatory mechanisms in SIRS patients drives 
the development of compensatory mechanisms to prevent excessive inflammation 
and weaken its excessive activity [2]. Negative feedback mechanisms downregulate 
this response in the first hours but may lead to the dysregulation and pathological 
over time, resulting in persistent suppression of immune response and increasing 
the risk of recurrent infections [3]. Numerous clinical and experimental trials on 
SIRS and sepsis have reported significant changes in the immunological profile, 
suggesting the phase of immune suppression to be the predominant immunologi-
cal response in most patients after 7–14 days of persistent critical illness [4]. From 
the standpoint of critical care medicine, patients with sepsis cannot overcome the 
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primary bacterial infection even if they are actively treated, including antibacte-
rial therapy. Patients with SIRS- and sepsis-induced immunosuppression acquire 
nosocomial and opportunistic infections contributing to the onset of multiple organ 
dysfunction syndrome [5].

The development of MODS is propagated by the dysregulation of the immune 
system. However, the interplay of pathophysiological mechanisms underlying the 
dysregulation of immune inflammatory processes is complex and requires in-depth 
studies. These mechanisms and their role are changing during the progression of the 
disease implying a heterogeneous immunological status specific to each patient. To 
date, researchers have focused on understanding the main changes in the innate and 
adaptive cellular immunity in critically ill patients, which may aid in the develop-
ment of early and accurate individualized therapy protocols. Therefore, flow cytom-
etry may be considered as a promising tool, enabling collecting highly accurate 
data at the preanalytical stage within a relatively short period of time. This review 
summarizes and discusses the most informative indicators of innate and adaptive 
cellular immunity in diagnosing and monitoring SIRS-induced immunosuppression.

2. Neutrophils

Circulating numbers of neutrophils in blood are commonly increased by the 
rapid egress from the bone marrow and recruitment from the marginal pool to the 
circulating one.

Most studied have reported inconsistent alterations in the function of neutro-
phils in patients with sepsis at the early phase (impaired bacterial phagocytosis 
(activated or decreased, incomplete phagocytosis), increased synthesis of reactive 
oxygen species (ROS), decreased chemotaxis) [6]. Existing neutrophil dysfunction 
may be furtherly aggravated or reversed. Therefore, impaired neutrophil function 
preludes insufficient bacterial clearance and neutrophil dysfunction and increases 
the susceptibility to infection [7]. It is worth noting that patients with severe neutro-
phil dysfunction are more prone to nosocomial and secondary infections [8]. Flow 
cytometry allows evaluating cell functional properties, but the interaction of external 
and internal factors (disease staging, blood sampling technique, sample storage, and 
preparation) should be taken into account before interpreting the obtained results.

Neutrophils are well-known highly informative predictors of adverse complica-
tions in patients with sepsis. Immature neutrophils with decreased expression of 
CD10 and CD16 (CD10-/CD16low) have exhibited an immunosuppression pattern 
implying the presence of the link with increased early mortality in patients with 
sepsis [9]. A unique CD10-/CD16low immature neutrophil subpopulation has been 
studied in cardiac patients. An increase in their concentration has been recorded 
even in the perioperative period. Thus, CD10-/CD16low neutrophils represent a 
significant portion of the circulating pool after cardiac surgery (over 40% of circu-
lating neutrophils), emerge a left shift, and influence the phenotype and functional 
activity of circulating neutrophils [10].

3. Monocytes and macrophages

Monocytes and macrophages play a pivotal role in triggering and regulating the 
immune responses [11]. Monocytes and macrophages are key players in the forma-
tion of the cytokine storm in the hyperactive phase of SIRS and sepsis. They are an 
important link with the onset and maintenance immunosuppression. Endotoxin 
tolerance is a well-known functional defect in monocytes and macrophages [12], 
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displaying a decrease in the release of pro-inflammatory cytokines in response to 
endotoxin (LPS) and other types of TLR stimuli [12]. Endotoxin tolerance may be 
induced in circulating monocytes as well as reticular spleen monocytes (spleno-
cytes). It is directly related to immunosuppression, since a decrease in cytokine 
production blocks further expansion of the immune responses and limits the 
involvement of the cells of the adaptive immune system.

There are two in vitro assays evaluating the ability of monocytes to respond to 
the provocation of the immune system and detecting induced immunosuppres-
sion. The first includes the measurement of cytokines in cell culture supernatant in 
response to stimulation [13], whereas the second one assesses intracellular synthesis 
of cytokines. Fumeaux et al. have measured the level of production of intracellular 
cytokines and reported that monocytes in septic patients possess predominant 
anti-inflammatory phenotype with an increase in the intracellular ratio of IL10/
TNF [14].

Main mechanisms implicated in the induction of monocyte and macro-
phage endotoxin tolerance in septic and sterile SIRS are considered as universal. 
Hyporeactivity has been repeatedly reported in septic patients, whereas endotoxin 
tolerance exhibited by monocytes has been first described in patients undergoing 
aortic surgery or those suffering from thermal trauma, hepatic/renal ischemia-
reperfusion injury, coronary occlusion, and hemorrhagic shock [15]. However, the 
protective mechanisms of immunosuppression at the initial phase of hyperactiva-
tion of the immune response in patients with SIRS and sepsis may aggravate and 
lead to adverse events. In addition to endotoxin tolerance, anergy of monocytes 
and macrophages may be induced [16], capable to transit the last to an immuno-
suppressive state with the impaired antigen-presenting ability [17] and increased 
risk of nosocomial infections and adverse complications. The immunosuppressive 
phenotype of monocytes in SIRS and sepsis is characterized by a decrease in the 
expression of key MHC II genes and co-stimulating molecules (CD86, CD40, and 
HLA-DR), mediating a violation of antigen-presenting ability.

In addition, patients with sepsis-induced immunosuppression, as well as after 
cardioplegia during cardiac surgery, have demonstrated a significant decrease in 
the expression of the chemokine receptor CX3CR1 (receptor for fractalkine). Since 
the CX3CR1/CX3CL1 interaction mediates chemotaxis, adhesion, and migration of 
pro-inflammatory cells to the damaged area or infection, leading to tissue infiltra-
tion [18], its decreased expression on monocytes may prevent their migration with 
further phagocytosis and lesion sanitation.

Decreased cell surface expression of major histocompatibility complex class II 
(MHC II) is a key marker of suppressive functional rearrangement of monocytes. 
Indeed, low HLA-DR expression on monocytes has reported the correlation with 
lower synthesis of TNF-a and IL-1 in response to stimulation [19], decreased 
antigen-presenting ability [20], and expression level of the CD86 co-stimulatory 
molecule [21]. This biomarker is commonly used to monitor immunosuppression 
in various critical conditions. Clinical studies have reported that the magnitude 
and overtime persistence of HLA-DR reduction on monocytes correlates with an 
increase in mortality and the incidence of infections [22] associated with medi-
cal care provision in ICU patients [23]. It is worth noting that the monitoring of 
HLA-DR expression on monocytes during the first days after surgery does not allow 
predicting an increased risk of postoperative SIRS or sepsis or infectious complica-
tions in patients undergoing cardiac surgery.

Functional tests have confirmed the presence of the suppressor phenotypic tran-
sit in monocytes and have demonstrated lower proliferation of T-lymphocytes in 
the LPS-stimulated mixed culture of lymphocytes and monocytes in septic patients 
than healthy donor monocytes.
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4. Myeloid-derived suppressor cells (MDSC)

MDSCs are a heterogeneous population of immature myeloid cells with potent 
immunosuppressive activity against various types of cells, mainly T-lymphocytes. 
MDSCs have been first described in cancer patients as the cells capable to suppress 
the immune response, while orchestrating angiogenesis, invasion, and metastasis 
of tumors to the distant sites [24]. Certain difficulties have been experienced in 
comparing and interpreting data obtained in various research laboratories, caused 
mainly by the gap in the gating strategies and the description of the MDSC pheno-
type. In 2016, Bronte et al. published the recommendations for myeloid-derived 
suppressor cell nomenclature and characterization standards in 2016 and proposed 
to distinguish three main populations of MDSC: polymorphonuclear (PMN) or 
granulocytic MDSC (PMN-MDSC), monocytic MDSC (M-MDSC), and early-stage 
MDSC (eMDSC) [25].

The minimum set of the phenotypic criteria (but sufficient) to distinguish 
MDSC in humans is as follows:

M-MDSC: CD11b+CD14+HLA-DRlow/-CD15-
PMN-MDSC: – CD14-CD11b+CD15+ or CD11b+CD14−CD66b+
eMDSC: Lin− (including CD3, CD14, CD15, CD19, CD56) HLA-DR−CD33+

M-MDSCs suppress both antigen-specific and non-specific T-cell responses 
associated with the production of NO and cytokines. PMN-MDSCs are capable of 
suppressing antigen-specific immune responses. The secretion of reactive oxygen 
species (ROS) by M-MDSC and PMN-MDSC is an important mechanism associated 
with the induction of the antigen-specific immune T-cell tolerance [26].

An early increase in MDSCs is associated with early mortality, while their persis-
tent expansion with the prolonged length of stay in the ICU. Multivariate analysis has 
proved that a persistent increase in PMN-MDSCs appeared to be a strong independent 
predictor of nosocomial infections and poor prognosis [27], indicating the transition 
of the septic process to the induced immunosuppression. However, this transition 
is defined not only for sepsis, but also for other systemic inflammatory responses. 
Elevated levels of PMN-MDSC in patients at admission to the ICU is a strong predic-
tor of mortality in the first 7 days. An increase in arginase in these patients directly 
correlates with the level of PMN-MDSC [28]. Various studies have shown a decrease in 
plasma concentrations of arginine in critical patients [29] with immunosuppression.

5. Dendritic cells

Dendritic cells (DCs) are short-lived immune cells. Dendritic cell precursors 
originated from the bone marrow enter the bloodstream (circulating DCs) and 
then migrate to the tissues (tissue DCs), with most of the DCs being present in the 
tissues. DCs are antigen-presenting cells that induce T-cell immune responses, and 
the cytokines synthesized by DC activate innate and adaptive immunity [30].

Most of the studies are focused on the quantitative and qualitative assessment of 
DCs in patients with sepsis-induced immunosuppression, but few of them exam-
ines these processes in noninfectious SIRS. A decrease in the number of circulating 
DCs has been reported in patients with sepsis [31] and septic shock [32]. A signifi-
cant decrease in the number of DC in spleens of septic patients who died has been 
found compared to trauma patients [33].

In systemic inflammatory response syndrome, DCs are well-known to be 
vulnerable to apoptosis. In addition, the induction of mDC and pDC apoptosis 
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promotes prolonged immunosuppression and persistence of infection [34]. The 
change of phenotype is closely associated with a decrease in the number of DCs. 
Thus, SIRS- and sepsis-induced immunosuppression are accompanied by a decrease 
in the antigen-presenting ability of DCs leading to reduced expression of HLA-DR, 
co-stimulatory molecules CD80/86, and transcription factor IRF4. It is worth noting 
that anti-inflammatory properties are activated in DCs, including increased synthe-
sis of IL-10 and TGFβ [6]. Thus, the number of circulating DCs and the expression 
of HLA-DR may be a promising biomarker of SIRS- and sepsis-induced immuno-
suppression that requires further studies, including the use of flow cytometry.

6. Lymphopenia

Lymphopenia results in decreased resistance to pathogenic microorganisms 
and is considered as a non-specific yet commonly used marker of immunosup-
pression in critically ill patients [35]. If the adaptive immune system is weakened, 
the body has difficulties properly coordinating the fight against the pathogen 
leading to persistent primary or secondary infections. Depletion of each subpopu-
lation of lymphocytes occurs (with the exception of regulatory T cells, see below) 
in the immunosuppressive phase of the disease. The degree of lymphopenia 
correlates with the development of health-associated infections and/or mortality 
within 28 days [36]. It is important to note that protracted lymphopenia in ICU 
patients is associated with the presence of infectious complications [37], and this 
indicator is a better predictor of bacteremia than C-reactive protein and white 
blood cell count.

7.  NK cells, 𝛄δ-lymphocytes, mucosal-associated invariant 
T-lymphocytes

Flow cytometry have reported a significant decrease in the number of circulat-
ing NK cells in patients with severe trauma and sepsis. A long-term decrease in NK 
cells correlates with an increase in mortality [38]. In addition, a decrease in cyto-
toxicity and antibody-dependent cytotoxicity of NK cells during sepsis have been 
previously reported [39].

Septic patients also have a decrease in circulating mucosal-associated invariant 
T-lymphocytes (MAIT) [40], while a persistent decrease in MAIT correlates with 
the subsequent development of health-associated infections.

A significant decrease in the relative content of 𝛄δ-lymphocytes has been 
found in patients with sepsis with prevailing non-proliferating 𝛄δ-lymphocyte 
population [41].

8. T-lymphocytes

8.1 Quantitative changes in T-lymphocytes

Quantitative and functional changes in T-lymphocytes occur in patients with 
induced immunosuppression. They include activation of apoptosis, anergy, and 
depletion, an increase in the percentage of Treg cells. Each of these changes will be 
considered separately.

One of the causes of lymphopenia in immunosuppression is associated with 
the death of T and B lymphocytes through apoptosis. There are a lot of evidences 
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confirming a decrease in the number of circulating and deep depletion of tissue 
resident CD4 + and CD8 + T-lymphocytes during sepsis [42].

8.2 Programmed cell death receptor 1 (PD-1) and its ligand (PD-L1)

An important mechanism for enhancing apoptotic cell death is associated 
with increased expression of the programmed cell death receptor 1 (PD-1) and its 
ligand (PD-L1). PD-1 is a negative co-inhibitory molecule expressed by lympho-
cytes, myeloid cells, and DC. Under physiological conditions, PD-1 is associated 
with negative regulation of the immune system by preventing the activation of 
T-lymphocytes, which reduces autoimmunity and increases self-tolerance. The 
inhibitory effect of PD-1 is through stimulation of apoptosis of antigen-specific 
T-lymphocytes in the lymph nodes and a decrease in apoptosis of regulatory 
T-lymphocytes (Treg). The main PD-1 ligand (PD-L1) expresses epithelial cells, 
endothelial cells, and antigen-presenting cells (APCs) [43]. Flow cytometry 
reported that the expression of PD-1 on T-lymphocytes and PD-L1 on monocytes 
drastically increased in patients with septic shock and led to accelerated apoptosis 
of all major lymphocyte subpopulations compared to healthy volunteers [44]. 
Macrophages also express higher PD-1 levels during sepsis, which is associated with 
dysfunction of these cells and a decrease in microbial clearance [45].

Excess expression of PD-1 and PD-L1 on immune cells leads to their deactivation 
and acceleration of apoptotic death, resulting in the formation and development 
of sepsis- and SIRS-induced immunosuppression [46]. Day et al. have found an 
increase in the expression of PD-1 and PD-L1 on CD4 + T-lymphocytes within the 
first 5 days of hospitalization in patients with sepsis and severe trauma compared 
with healthy donors. The expression level of PD-1 and PD-L1 correlated with a 
decrease in stimulated proliferative lymphocyte activity and an increase in the 
concentration of IL-10 (anti-inflammatory cytokine) in the blood [47].

In addition to the direct apoptotic effects of PD-1 and PD-L1 molecules on 
T-lymphocytes, they indirectly affect the number of antigen-presenting DCs. 
Antigen-presenting cells (APC) activate CD4+ T-lymphocytes, which quickly pro-
liferate (clonal expansion is a feature common to all adaptive immune responses) 
and differentiate into different effector lines, namely, Th1, Th2, and Th17. The 
decrease in the number of DCs suppresses clonal expansion along with the direct 
apoptotic effects of PD-1/PD-L1, which may lead to a pronounced decrease in the 
number of B- and T-lymphocytes [33].

Experimental and clinical trials have proved the pivotal role of PD-1 and 
PD-L1 in the pathogenesis of induced immunosuppression. The correlation of the 
expression of these molecules on the surfaces of immune cells with the development 
of infectious complications and an unfavorable outcome has been determined. 
Thus, a high level of PD-L1 expression on neutrophils correlates with an increase 
in the blood levels of pro- and anti-inflammatory cytokines and an unfavorable 
outcome in septic patients [48]. A relationship between the increased expression 
of PD-1 on monocytes in patients with septic shock and mortality and the risk of 
secondary nosocomial infections has been recently reported. Similarly, an increase 
in PD-1 and PD-L1 by Th also correlates with an increase in the number of second-
ary nosocomial infections and mortality after septic shock and severe trauma [49].

8.3 Qualitative changes in T-lymphocytes

In addition to a quantitative decrease in CD4 + T-lymphocytes, there is a simul-
taneous decrease in cytokine production and a decrease in the main transcription 
factors in the Th1 and Th2 populations (T-bet for Th1 cells, GATA3 for Th2 cells) in 
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patients with sepsis [50]. These processes are associated with anergy and depletion 
of T-lymphocytes. The concept of depletion was introduced by Zajac to describe the 
impaired effector function of T cells [51]. Dysregulation of T-cell functions has been 
previously reported in patients with neonatal and pediatric sepsis and ICU patients 
with hemorrhagic shock and severe tissue damage followed by induced immuno-
suppression [52].

8.4 An increase in the relative number of Treg

T-lymphocyte dysfunction, if immunosuppression has induced, is associated 
with an increase in the relative number of circulating Treg lymphocytes subsets 
(T-cells with regulatory properties). Originally, this phenomenon was described 
in patients with septic shock [53]. Treg functions mainly at the site of inflamma-
tion, modulating the immune response via three main mechanisms: direct killing 
of cytotoxic cells, inhibition of cytokine production by cytotoxic cells, and direct 
secretion of immunomodulating anti-inflammatory cytokines, such as TGF-β and 
IL-10 [54]. An increase in Treg levels has been previously observed immediately 
after the shock but has persisted only in patients with unfavorable outcomes. One of 
the mechanisms includes Treg cells resistance to sepsis-induced apoptosis com-
pared to other T-cell populations. Blood levels of Treg cells in ICU patients can be 
considered as a prognostic marker for the development of septic complications and 
adverse outcomes [55].

Thus, the relative number of Treg cells and the level of expression of CD39 on 
Treg cells require further detailed study that may provide novel insights into the 
diagnosis of SIRS- and sepsis-induced immunosuppression. However, accurate 
results of any multicenter study require standardization of Treg phenotyping 
approaches, since various staining protocols and gating strategies are used (CD4 + 
CD25 +, CD4 + CD25 + CD127-, CD4 + FOXP3 +, etc.).

8.5  B- and T-lymphocyte attenuator (BTLA) and cytotoxic T-lymphocyte 
antigen-4 (CTCTLA-4)

T-lymphocyte dysfunction can contribute to the induction of immunosuppres-
sion and subsequent mortality. BTLA and its ligand express a wide variety of cells, 
including T and B lymphocytes. BTLA is a co-inhibiting receptor that inhibits CD4 
+ T-cell and B-cell functions and also suppresses signaling in CD4 + T cells aimed 
at their survival. The relative number of BTLA +/CD4 + lymphocytes was signifi-
cantly higher in septic patients than in non-septic ICU patients and was associated 
with the subsequent onset of secondary infections. CTLA-4, if interacting with 
CD80 or CD86, may be regarded as other inhibitory regulator in the early stages 
of T-cell activation and proliferation. CTLA-4 is an important inhibitor of the 
functional activity of immune cells, and its expression is increased in patients with 
sepsis [56].

9. Conclusion

The review proves that there are similar mechanisms underlying the induction 
of immunosuppression in septic and sterile systemic inflammatory processes and 
justifying the use of the term “injury-induced immunosuppression.” Immunological 
monitoring will allow distinguishing between the rapidly changing phases of pro-
gressive inflammation and severe immunosuppression to optimize early diagnosis 
and treatment (Table 1).



Immunosuppression

8

Marker Status Diagnostic significance or 

the underlying mechanism 

triggering immunosuppression

Prognostic value

% CD10-/CD16low 

out of the total 

concentration of 

neutrophils

↑ Immunosuppression Sepsis-associated mortality

% CD62L dim 

out of the total 

concentration of 

neutrophils

↑ Immunosuppression −

CD86 expression on 

monocytes

↓ Decrease in antigen-presenting 

function

Long-term decrease 

combined with a decrease in 

HLA-DR. Increased mortality 

and healthcare-associated 

infections

HLA-DR expression 

on monocytes or 

levels of M-MDSC

↓

↑

Decrease in antigen-presenting 

function

Increased mortality and 

healthcare-associated 

infections

CX3CR1 expression 

on monocytes

↓ Reduction in monocyte 

chemotaxis

Increased mortality

PMN-MDSC ↑ T-cell-mediated suppression Increased mortality and 

healthcare-associated 

infections

Blood levels of DCs ↓ Immunosuppression Increased mortality and 

healthcare-associated 

infections

HLA-DR expression 

on DCs

↓ Decrease in antigen-presenting 

function

Increased mortality and 

healthcare-associated 

infections

Lymphopenia ↓ Immunosuppression Increased mortality and 

healthcare-associated 

infections

PD1 expression on 

T-lymphocytes

↑ Enhanced apoptosis of 

T-lymphocytes

Increased mortality and 

healthcare-associated 

infections

PD-L1 expression on 

monocytes

↑ Enhanced apoptosis of all 

lymphocyte subpopulations

Increased mortality and 

healthcare-associated 

infections

Relative blood levels 

of Treg cells

↑ Immunosuppression Increased mortality and 

healthcare-associated 

infections

CD39+ expression on 

Treg cells

↑ Immunosuppression Differential diagnosis of 

sepsis and SIRS and increased 

mortality

BTLA and CTLA-4 

expression on 

lymphocytes

↑ Suppression of lymphocyte 

activation and proliferation

−

Table 1. 
Diagnostic and/or prognostic values of the main immunological parameters of flow cytometry associated with 
injury-induced immunosuppression in ICU patients.
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