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Chapter

Higher-Order Kinematics in Dual
Lie Algebra
Daniel Condurache

Abstract

In this chapter, using the ring properties of dual number algebra, vector and
tensor calculus, a computing method for the higher-order acceleration vector field
properties in general rigid body motion is proposed. The higher-order acceleration
field of a rigid body in a general motion is uniquely determined by higher-order
time derivative of a dual twist. For the relative kinematics of rigid body motion,
equations that allow the determination of the higher-order acceleration vector field
are given, using an exponential Brockett-like formula in the dual Lie algebra.
In particular cases, the properties for velocity, acceleration, jerk, and jounce fields
are given. This approach uses the isomorphism between the Lie algebra of the rigid
displacements se(3), of the Special Euclidean group, S3, and the Lie algebra of dual
vectors. The results are coordinate free and in a closed form.

Keywords: higher-order kinematics, dual algebra, lie group

1. Introduction

The kinematic analysis of multibody systems has been traditionally considered
as the determination of the positions, velocities, accelerations, jerks and jounces of
their constitutive members. This is an old field with a long history, which has
attracted the attention of mathematicians and engineers. Michel Chasles discovered
(1834) that any rigid body displacement is equivalent to a screw displacement [1].
Screw theory is an efficient mathematical tool for the study of spatial kinematics.
The pioneering work of Ball [2], the treatises of Hunt [3], and Phillips [4] and the
multitude of contributions appearing in the literature are evidence of this. The
isomorphism between screw theory and the Lie algebra, se(3), of the Special
Euclidean group, S3, provide with a wealth of results and techniques from modern
differential geometry and Lie group theory [5–9].

A kinematic mapping relates the motion of a rigid body to the joint motions of a
kinematic chain. Its time derivatives yield the twist, acceleration, jerk and jounce
etc. of the body. Time derivatives of the twists of members in a kinematic chain and
derivatives of screws are essential operations in kinematics. Recognizing the Lie
group nature of rigid body motions, and correspondingly the Lie algebra nature of
screws, Karger [5], Rico et al. [6], Lerbet [7] and Müller [8, 9] derived closed form
expressions of higher-order time derivatives of twist.

In this chapter, using the tensor calculus and the dual numbers algebra, a new
computing method for studying the higher-order accelerations field properties is
proposed in the case of the general rigid body motion. For the spatial kinematic
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chains, equations that allow the determination of the nth order accelerations field

are given, using a Brockett-like formula. The crucial observation is that the nth order
time derivative of twist of the terminal body in a kinematic chain can be determined

by propagating the kth order time derivative of twists of the bodies in the chain, for
k ¼ �0, n. The results are coordinate-free and in a closed form.

2. Theoretical consideration on rigid body motion

The general framework of this chapter is a rigid body that moves with respect to

a fixed reference frame R
0

� �
. Consider another reference frame Rf g originated in

a point Q that moves together with the rigid body. Let ρQ denote the position vector

of point Q with respect to frame R
0

� �
, vQ its absolute velocity and aQ its absolute

acceleration.
Then the vector parametric equation of motion is:

ρ ¼ ρQ þ Rr (1)

where ρ represents the absolute position of a generic point P of the rigid body

with respect to R
0

� �
and R ¼ R tð Þ is an orthogonal proper tensorial function in

SO

3 . Vector r is constant and it represents the relative position vector of the
arbitrary point P with respect to Rf g.

The results of this section succinctly present the velocity and acceleration vector
field in rigid body motion. These results lead to the generalization presented in the
next section.

With the denotations that were introduced, the vector fields of velocities and
accelerations are described by:

v� vQ ¼ _RRT ρ� ρQ
� �

a� aQ ¼ €RRT ρ� ρQ
� �

8
<
: (2)

Tensors:

Φ1 ¼ _RRT

Φ2 ¼ €RRT

(
(3)

represent the velocity tensor respectively the acceleration tensor. Tensor
Φ1 ¼ ~ω∈ so

3 is the skew-symmetric tensor associated to the instantaneous angular

velocity ω∈V

3 . Tensor Φ2 ¼ ~ω2 þ ~ε, where ε ¼ _ω is the instantaneous angular
acceleration of the rigid body. One may remark that vectors:

a1 ¼ v�Φ1ρ ¼ vQ �Φ1ρQ

a2 ¼ a�Φ2ρ ¼ aQ �Φ2ρQ

(
(4)

do not depend on the choice of point P of the rigid body. They are called the
velocity invariant respectively the acceleration invariant (at a given moment of
time).

2
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2.1 The velocity field in rigid body motion

It is described by:

v� vQ ¼ Φ1 ρ� ρQ
� �

(5)

The instantaneous angular velocity ω of the rigid body may be determined as
ω ¼ vectΦ1. The major property that may be highlighted from Eq. (4) is that the
velocity of a given point of the rigid may be computed when knowing the velocity
tensor Φ1 and the velocity invariant a1:

v ¼ a1 þΦ1ρ (6)

2.2 The acceleration field in rigid body motion

It is described by

a� aQ ¼ Φ2 ρ� ρQ
� �

(7)

The absolute acceleration of a given point of the rigid body may be computed
when knowing the acceleration tensor Φ2 and the acceleration invariant a2:

a ¼ a2 þΦ2ρ (8)

The instantaneous angular acceleration of the rigid body may be determined as:

ε ¼ vectΦ2 (9)

The determinant of tensor Φ2 is (see [10]): detΦ2 ¼ � ω� εð Þ2. It follows that if
ω� ε 6¼ 0, then tensor Φ2:

is invertible and its inverse is (see [10]):

Φ�1
2 ¼

1

ω� εð Þ2
ε⊗ εþ ω⊗ωð Þ2 �g~ω2ε
h i

(10)

It follows that if tensor Φ2 is non-singular, then for an arbitrary given accelera-
tion awe may find a point of the rigid that has this acceleration. Its absolute position
is given by (see also Eq. (8)):

ρ ¼ Φ�1
2 a� a2ð Þ (11)

Particularly, if Φ2 is non-singular, then there exists a point G of zero accelera-
tion, named the acceleration center. Its absolute position vector is given by:

ρG ¼ �Φ�1
2 a2 (12)

3. The vector field of the nth order accelerations

This section extends some of the previous considerations to the case of the nth

order accelerations. We define the nth order acceleration of a point as:

3
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a n½ �
ρ ≝

dn

dtn
ρ, n≥ 1 (13)

For n ¼ 1, it represents the velocity, and for n ¼ 2, the acceleration. By
derivation with respect to time successively in Eq. (2), it follows that:

a n½ �
ρ � a

n½ �
Q ¼ R nð ÞRT ρ� ρQ

� �
, where R nð Þ ≝

dn

dtn
R (14)

We define:

Φn ≝R nð ÞRT (15)

the nth order acceleration tensor in rigid body motion. A vector invariant is
immediately highlighted from Eq. (14) with the denotation (15). Vector:

an ¼ a n½ �
ρ �Φnρ ¼ a n½ �

Q �ΦnρQ (16)

does not depend on the choice of the point of the rigid body for which the

acceleration a n½ � is computed. Vector an is named the invariant vector of the nth

order accelerations. Then Eq. (7) may be generalized as it follows:

a n½ �
ρ � a n½ �

Q ¼ Φn ρ� ρQ
� �

(17)

The next Theorem gives the fundamental properties of the vector field of the nth

order accelerations.
Theorem 1. In the rigid body motion, at a moment of time t, there exist tensor Φn

defined by Eq. (15) and vector an such as:

a n½ �
ρ � a n½ �

Q ¼ Φn ρ� ρQ
� �

an ¼ a n½ �
ρ �Φnρ ¼ a n½ �

Q �ΦnρQ

(18)

for any point P of the rigid body with the absolute position defined by vector ρ.
Remark 1. Given the absolute position of a point of the rigid body and knowing Φn

and an, its acceleration is computed from:

a n½ �
ρ ¼ an þΦnρ (19)

Remark 2. TensorΦn and vector an generalize the notions of velocity/acceleration tensor
respectively velocity/acceleration invariant. They are fundamental in the study of the vector

field of the nth order accelerations. The recursive formulas for computingΦn and an are:

Φnþ1 ¼ _Φn þΦnΦ1

anþ1 ¼ _an þΦna1

(
, n≥ 1,where Φ1 ¼ ~ω, a1 ¼ vQ �Φ1ρQ (20)

Remark 3. One may remark that from Eq. (20) it follows by direct computation:

Φn ¼ Φn�1Φ1 þ
dn�1

dtn�1 Φ1

 !
þ
Xn�2

k¼1

dk

dtn�1 Φn�k�1Φ1ð Þ

" #

an ¼ Φn�1a1 þ
dn�1

dtn�1 a1

 !
þ
Xn�2

k¼1

dk

dtn�1 Φn�k�1a1ð Þ

" #

8
>>>>><
>>>>>:

, n≥ 3 (21)
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Remark 4. By defining the nth order instantaneous nth order angular acceleration of

the rigid body ε n½ � ≝ dn�1

dtn�1 ω, it follows from Eq. (21) that its associated skew-symmetric

tensor may be expressed as ~ε n½ � ¼ dn�1

dtn�1 Φ1 . The expression of the instantaneous nth order

angular acceleration is:

ε n½ � ¼ vect Φn �Φn�1Φ1 �
Xn�2

k¼1

dk

dtk
Φn�k�1Φ1ð Þ

" #( )
, n≥ 3 (22)

3.1 Homogenous matrix approach to the field of nth order accelerations

The set of affine maps, g : V3 ! V3, g uð Þ ¼ Ruþw, where R is an orthogonal
proper tensor and w a vector in V3 is a group under composition and it is called the
group of direct affine isometries or rigid motions and it is denoted S3. Any rigid finite
motion may be described by such a map. Tensor R models the rotation of the
considered rigid body and vector w its translation. An affine map from S3 may be
represented with a 4� 4 square matrix:

g ¼
R w

0 1

� �
(23)

One may remark that the following relations hold true:

R1 w1

0 1

" #
R2 w2

0 1

" #
¼

R1R2 R1w2 þw1

0 1

" #

R w

0 1

" #�1

¼
RT �RTw

0 1

" #

8
>>>>>><
>>>>>>:

(24)

We may extend now S3 to S

3 , the set of the functions with the domain ℝ

and the range S3. The parametric vector equation of the rigid body motion (1)

may be rewritten with the help of a homogenous matrix function in S

3 like it
follows:

ρ

1

� �
¼

R ρQ

0 1

� �
r

1

� �
(25)

From Eq. (25), it follows that:

_ρ

0

� �
¼

_R _ρQ

0 0

" #
r

1

� �
¼

_R _ρQ

0 0

" #
RT �RTρQ

0 1

" #
ρ

1

� �
(26)

and by making the computations and taking into account Eqs. (3) and (4) it
follows that:

_ρ

0

� �
¼

Φ1 a1

0 0

� �
ρ

1

� �
(27)

By using the previous considerations, it follows that Eq. (25) may be extended
like:

5
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a
n½ �
ρ

0

" #
¼

Φn an

0 0

� �
ρ

1

� �
(28)

Eq. (28) represents a unified form of describing the vector field of the nth order
accelerations in rigid body motion. The matrix:

Ψn ¼
Φn an

0 0

� �
(29)

contains both the nth order acceleration tensor Φn and the vector invariant an.
Eqs. (20) may be put in a compact form:

Ψnþ1 ¼ _Ψn þΨnΨ1, n≥ 1 (30)

If follows that Ψn may be written as:

Ψn ¼ Ψn�1Ψ1 þ
dn�1

dtn�1 Ψ1

 !
þ
Xn�2

k¼1

dk

dtk
ΨnΨ1ð Þ

" #
, n≥ 3 (31)

4. Symbolic calculus of higher-order kinematics invariants

We will present a method for the symbolic calculation of higher-order kinemat-
ics invariants for rigid motion.

Let be an andΦn, n∈ vector invariant, respectively, tensor invariant for the nth

order accelerations fields. We denote by

Ψn ¼
Φn an

0 0

� �
(32)

and we have the following relationship of recurrence:

Ψnþ1 ¼ _Ψn þΨnΨ1, n∈

Ψ1 ¼
~ω v

0 0

" #
(33)

The pair of vectors ω,vð Þ is also known as the spatial twist of rigid body.
Let be A the matrix ring

A ¼ A∈M3�3 ð Þ A ¼
Φ a

0 0

� �
;Φ∈L V3,V3ð Þ, a∈V3

����
	 


(34)

and A X½ � the set of polynomials with coefficients in the non-commutative ring
A. A generic element of A X½ � has the form

P Xð Þ ¼ A0X
m þA1X

m�1 þ … þAm�1XþAm,Ak ∈A, k ¼ 0,m (35)

Theorem 2. There is a unique polynomial Pn ∈A X½ � such that Ψn will be written as

Ψn ¼ Pn Dð ÞΨ1, n∈ (36)

6
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where D ¼ d
dt is the operator of time derivative.

Proof: Taking into account Eqs. (36) and (33) we will have the following rela-
tionship of recurrence for Pn Dð Þ:

Pnþ1 ¼ DPn þ Pn Ψ1ð Þ

P0 ¼ I

(
(37)

Since Ψ1 ¼
~ω v

0 0

� �
it follows the next outcome.

Theorem 3. There is a unique polynomial with the coefficients in the non-
commutative ring L V3,V3ð Þ such that the vector respectively the tensor invariants of the

nth order accelerations will be written as

an ¼ Pnv

Φn ¼ Pn ~ω
, n∈

∗ (38)

where Pn fulfills the relationship of recurrence

Pnþ1 ¼ DPn þ Pn ~ωð Þ, n∈
∗

P1 ¼ I

(
(39)

It follows

P2 ¼ Dþ ~ω

P3 ¼ D2 þ ~ωDþ 2 _~ωþ ~ω2

P4 ¼ D3 þ ~ωD2 þ 3 _~ωþ ~ω2
� �

Dþ €3~ωþ 3 _~ω~ωþ 2~ω _~ωþ ~ω3

(40)

Thus, it follows:

• the velocity field invariants

a1 ¼ v

Φ1 ¼ ~ω

(
(41)

• the acceleration field invariants

a2 ¼ _vþ ~ωv

Φ2 ¼ _~ωþ ~ω2

(
(42)

• jerk field invariants

a3 ¼ €vþ ~ωvþ 2 _~ωvþ ~ω2v

Φ3 ¼ €~ωþ ~ω _~ωþ 2 _~ω~ωþ ~ω3

8
<
: (43)

• hyper-jerk (jounce) field invariants

7
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a4 ¼ €vþ ~ω€vþ 3 _~ωþ ~ω2
� �

_vþ 3€~ωvþ 3 _~ω~ωvþ 2~ω _~ωvþ ~ω3v

Φ4 ¼ €~ωþ ~ω€~ωþ 3 _~ωþ ~ω2
� �

_~ωþ 3€~ω~ωþ 3 _~ω~ω2 þ 2~ω _~ω~ωþ ~ω4

8
><
>:

(44)

Remark 5. The higher-order time derivative of spatial twist solve completely the

problem of determining the field of the nth order acceleration of rigid motion.

4.1 Higher-order acceleration center and vector invariants of rigid body motion

Equation (16) may be written as

a n½ �
ρ

� ϕnρ ¼ a
n½ �
Q �ΦnρQ , n∈

∗
: (45)

This shows us that the vector function

In ¼ a n½ �
ρ �Φnρ, n∈

∗ (46)

has the same value in every point of the rigid body under the general spatial
motion, at a given moment of time t. It represents a vector invariant of the n-th
order acceleration field.

The invariant value of vector In is obtained for ρ ¼ 0 and it is the n-th order
acceleration of the point of the rigid body that passes the origin of the fixed

reference frame at a given moment of time: In ¼ a n½ �
0 ≝ an. Eq. (46) becomes:

a n½ �
ρ ¼ an þ ϕnρ: (47)

Let be Φ∗

n be the adjugate tensor of Φn uniquely defined by:ΦnΦ
∗

n ¼ detΦnð ÞI:
From Eq. (46), results another invariant

Jn ¼ Φ ∗
n a

n½ �
ρ � detΦnð Þρ, n∈

∗
: (48)

The value of this invariant is Jn ¼ Φ∗

n an:

In the specific case when tensor Φn is non-singular (detΦn 6¼ 0), from (47)
results the position vector having an imposed n-th order acceleration a∗:

ρ ∗ ¼ Φ�1
n a ∗ � anð Þ, n∈

∗
: (49)

In a particular case of the n-th order acceleration center Gn (i.e. the point that
have a∗ ¼ 0) on obtain:

ρGn
¼ �Φ�1

n an (50)

Assuming that the tensorΦn is non-singular, the previous relations lead to a new
vector invariant that characterize the accelerations of n-th and m-th order
(n,m∈

∗):

Km,n ¼ a m½ �
ρ �ΦmΦ

�1
n a n½ �

ρ ,m, n∈
∗
: (51)

The value of this invariant is Km,n ¼ am �ΦmΦ
�1
n an.

The problem of the determination the adjugate tensor of the n-th acceleration
tensor and the conditions in which these tensors are inversable is, as the author

8
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knows, still an open problem in theoretical kinematics field. We will propose a
method based on the tensors algebra that will give a closed form, coordinate- free
solution, dependent to the time derivative of spatial twist.

The vector field of the higher-order acceleration is a non-stationary vector field.
Differential operator div and curl is expressed, taking into account Eq. (47), through
the linear invariants of the tensor Φn, as below:

div a n½ �
ϱ

¼ trace Φn

curl a n½ �
ϱ

¼ 2vect Φn (52)

Let Φ∈L V3,V3ð Þ a tensor and we note t ¼ vectΦ and S ¼ symΦ. The below
theorem takes place.

Theorem 4. The adjugate tensor and determinant of the tensor Φ is:

Φ ∗ ¼ S ∗ � ~Stþ t⊗ t

detΦ ¼ detSþ tSt
(53)

Let Φn the n-th order acceleration tensor, Φn ¼ ~tn þ Sn:

The vectors tn and the symmetric tensors Sn, n∈
∗ can be obtained with the

below recurrence relation:

tnþ1 ¼ _tn þ
1

2
traceΦnð ÞI�ΦT

n

 �
ω

t1 ¼ ω

8
><
>:

(54)

Snþ1 ¼ _Sn þ sym Φn ~ωð Þ

S1 ¼ 0

(
(55)

It follows that:

• Velocity field: Φ1 ¼ ~ω, t1 ¼ ω, S1 ¼ 0

Φ ∗
1 ¼ ω⊗ω

detΦ1 ¼ 0
(56)

Φ1 is singular for any ω. In this case,

div a
1½ �
ϱ ¼ 0

curl a 1½ �
ϱ ¼ 2ω

(57)

• Acceleration field: Φ2 ¼ ~ω2 þ _~ω, t2 ¼ _ω, S2 ¼ ~ω2

Φ ∗
2 ¼ ω⊗ωð Þ2 � g

~ω2
_ωþ _ω⊗ _ω

detΦ2 ¼ � ω� _ωð Þ2
(58)

Φ2 is nonsingular if and only if ω� _ω 6¼ 0. In this case

Φ�1
2 ¼

g
~ω2

_ω� ω⊗ωð Þ2 � _ω⊗ _ω

ω� _ωð Þ2
(59)

9
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div a 2½ �
ϱ ¼ �2ω2

curl a 2½ �
ϱ ¼ 2 _ω: (60)

• Jerk field: Φ3 ¼ €~ωþ 2 _~ω~ωþ ~ω _~ωþ ~ω3, t3 ¼ €ωþ 1
2
_ω� ω� ω2ω, S3 ¼

3
2

~ω _~ωþ _~ω~ω
h i

,

Φ ∗
3 ¼

9

4
ω⊗ _ωð Þ2 þ _ω⊗ωð Þ2 þ ω� _ωð Þ⊗ _ω� ωð Þ

h i
� gS3t3 þ t3 ⊗ t3

detΦ3 ¼
12 t3 � _ωð Þ ω� t3ð Þ þ 27ω � _ω ω� _ωð Þ2

4
: (61)

Φ3 is nonsingular if and only if 4 _ω� t3ð Þ ω� t3ð Þ 6¼ 9ω � _ω ω� _ωð Þ2. In this case

Φ�1
3 ¼¼

9 ω⊗ _ωð Þ2 þ _ω⊗ωð Þ2 þ ω� _ωð Þ⊗ _ω� ωð Þ
h i

� 4gS3t3 þ 4t3 ⊗ t3

12 t3 � _ωð Þ ω� t3ð Þ þ 27ω � _ω ω� _ωð Þ2

div a 3½ �
ϱ ¼ �6 ω � _ω

curl a 3½ �
ϱ ¼ 2€ωþ _ω� ω� 2ω2ω: (62)

• Jounce field:

Φ4 ¼~ω
:::

þ~ω€~ωþ 3 _~ωþ ~ω2
� �

_~ωþ €3~ω~ωþ 3 _~ω~ω2 þ 2~ω _~ω~ωþ ~ω4

t4 ¼ω
:::

þ€ω� ω� 2ω2
_ω� 4 ω � _ωð Þω

S4 ¼ 2sym 2€~ω~ωþ _~ω~ω2
� �

þ 3 _~ω
2
þ ~ω4 (63)

S ∗
4 ¼ 2sym 3 _~ω ω⊗wð Þ _~ω� αω⊗w

h i
� ~ω w⊗wð Þ~ω� 3α _ω⊗ _ωþ αω4I (64)

Φ ∗
4 ¼ S ∗

4 � gS4t4 þ t4 ⊗ t4 (65)

detΦ4 ¼ α 6 ω� _ωð Þ � w� _ωð Þ � ω�wð Þ2 þ 2αω �wþ 3α _ω2 þ α2
h i

� 3 _ω,ω,wð Þ2

(66)

In Eqs. (65) and (66), the following notation has been used:

w ¼ €ω� ω� _ω� ω2ω

α ¼ ω4 � 2 _ω2 � 2ω � _ω
(67)

If

3 _ω,ω,wð Þ2 6¼ α 6 ω� _ωð Þ � w� _ωð Þ � ω�wð Þ2 þ 2αω �wþ 2α _ω2 þ α2
h i

(68)

then Φ4 is inversible and

Φ4
�1 ¼

Φ ∗
4

detΦ4
(69)

10
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In the hypothesis (68), there is jounce center, determined by

ρG4
¼ �Φ�1

4 a4

div a 4½ �
ϱ ¼ �2 4ω � €ωþ 3 _ω2 þ ω4

� �
(70)

curl a 4½ �
ϱ ¼ 2€ωþ 2€ω� ω� 4ω2

_ω� 8 ω � _ωð Þω

5. Dual algebra in rigid body kinematics

In this section, we will present some algebraic properties for dual numbers, dual
vectors and dual tensors. More details can be found in [10–25].

5.1 Dual numbers

Let the set of real dual numbers to be denoted by

 ¼ aþ εa0 a, a0 ∈, ε2 ¼ 0, ε 6¼ 0
��� �

(71)

where a ¼ Re að Þ is the real part of a and a0 ¼ Du að Þ the dual part. The sum and
product between dual numbers generate a ring with zero divisors structure for .

Any differentiable function f : S⊂ ! , f ¼ f að Þ can be completely defined on
S⊂ such that:

f : S⊂ ! ; f að Þ ¼ f að Þ þ εa0f
0 að Þ (72)

Based on the previous property, two of the most important functions have the
following expressions: cos a ¼ cosa� εa0sina; sin a ¼ sinaþ εa0cosa;

5.2 Dual vectors

In the Euclidean space, the linear space of free vectors with dimension 3 will be
denoted by V3. The ensemble of dual vectors is defined as:

V3 ¼ aþ εa0; a, a0 ∈V3, ε
2 ¼ 0, ε 6¼ 0

� �
(73)

where a ¼ Re að Þ is the real part of a and a0 ¼ Du að Þ the dual part. For any
three dual vectors a,b, c, the following notations will be used for the basic products:
a � b—scalar product, a� b—cross product and a,b, ch i ¼ a � b� cð Þ—triple scalar
product. Regarding algebraic structure, V3, þ , �ð Þ is a free -module [13, 14].

The magnitude of aj j, denoted by aj j, is the dual number computed from

a ¼
ak k þ ε

a0 � a

ak k
, Re að Þ 6¼ 0

ε a0k k, Re að Þ ¼ 0

8
><
>:

(74)

where :k k is the Euclidean norm. For any dual vector a∈V3, if aj j ¼ 1 then a is
called unit dual vector.

5.3 Dual tensors

An -linear application of V3 into V3 is called an Euclidean dual tensor:

11
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T λ1v1 þ λ2v2ð Þ ¼ λ1T v1ð Þ þ λ2T v2ð Þ,∀λ1, λ2 ∈, ∀v1,v2 ∈V3 (75)

Let L V3,V3ð Þ be the set of dual tensors, then any dual tensor T∈L V3,V3ð Þ can
be decomposed as T ¼ Tþ εT0, where T,T0 ∈L V3,V3ð Þ are real tensors. Also, the

dual transposed tensor, denoted by TT, is defined by

v1 � Tv1ð Þ ¼ v2 � TTv1

� �
,∀v1,v2 ∈V3 (76)

while ∀v1,v2,v3 ∈V3, Re v1,v2,v3

� �
6¼ 0 the determinant is

Tv1,Tv2,Tv3

� �
¼ detT v1,v2,v3

� �
: (77)

Orthogonal dual tensor maps are a powerful instrument in the study of the rigid
motion with respect to an inertial and non-inertial reference frames.

Let the orthogonal dual tensor set be denoted by:

S3 ¼ R∈L V3,V3ð Þ RRT ¼ I, detR ¼ 1
��� �

(78)

where S3 is the set of special orthogonal dual tensors and I is the unit orthog-

onal dual tensor.
Theorem 5 (Structure Theorem). For any R∈ S3 a unique decomposition is

viable

R ¼ Iþ ε~ρð ÞR (79)

where R∈ S3 and ρ∈V3 are called structural invariants.
Taking into account the Lie group structure of S3 and the result presented in

previous theorem, it can be concluded that any orthogonal dual tensor R∈ S3 can
be used globally parameterize displacements of rigid bodies.

Theorem 6 (Representation Theorem). For any orthogonal dual tensor R defined
as in Eq. (79), a dual number α ¼ αþ εd and a dual unit vector u ¼ uþ εu0 can be
computed to have the following equation, [13–15]:

R α,uð Þ ¼ Iþ sin α~uþ 1� cos αð Þ~u2 ¼ exp α~uð Þ (80)

The parameters α and u are called the natural invariants of R. The unit dual
vector u gives the Plücker representation of the Mozzi-Chasles axis [13, 14], while
the dual angle α ¼ αþ εd contains the rotation angle α and the translated distance d.

The Lie algebra of the Lie group S3 is the skew-symmetric dual tensor set

denoted by s3 ¼ ~α∈L V3,V3ð Þ ~α ¼ �~αT
��� �

, where the internal mapping is

~α1, ~α2h i ¼ ~~α1α2.
The link between the Lie algebra s3, the Lie group S3, and the exponential

map is given by the following.
Theorem 7. The mapping

exp: s3 ! S3, exp ~αð Þ ¼ e~α ¼
X∞

k¼0

~α
k

k!
(81)

is well defined and onto.

log: S3 ! s3, logR ¼ ~ψ∈ s3 exp ~ψ
� �

¼ R
���

n o
(82)

and is the inverse of Eq. (81).
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Based on Theorems 6 and 7, for any orthogonal dual tensor R, a dual vector
ψ ¼ αu ¼ ψþ εψ0 can be computed and represents the screw dual vector, which

embeds the screw axis and screw parameters.
The form of ψ implies that ~ψ∈ logR. The types of rigid displacements that can

be parameterized by ψ are:

• roto-translation if ψ 6¼ 0,ψ0 6¼ 0 and ψ �ψ0 6¼ 0 ⟺ if ψ

���
���∈ and ψ

���
��� ∉ εf g;

• pure translation if if ψ ¼ 0 and ψ0 6¼ 0 ⟺ if ψ

���
���∈ ε;

• pure rotation if ψ 6¼ 0 and ψ �ψ0 ¼ 0 ⟺ if ψ

���
���∈.

Theorem 8. The natural invariants α ¼ αþ εd,u ¼ uþ εu0 can be used to directly
recover the structural invariants R and ρ from Eq. (79):

R ¼ Iþ sinα~uþ 1� cosαð Þ~u2

ρ ¼ duþ sinαu0 þ 1� cosαð Þu� u0

(83)

Theorem 9 (isomorphism theorem). The special Euclidean group S3, �ð Þ and
S3, �ð Þ are connected via the isomorphism of the Lie groups

Φ : S3 ! S3

Φ gð Þ ¼ Iþ ε~ρð ÞR (84)

where g ¼
R ρ

0 1

� �
, R∈ S3, ρ∈V3.

Remark 6. The inverse of Φ is

Φ�1
: S3 $ S3;Φ

�1 Rð Þ ¼
R ρ

0 1

� �
(85)

where R ¼ Re Rð Þ, ρ ¼ vect Du Rð Þ � RT
� �

.

6. Higher-order kinematics in dual Lie algebra

Being the rigid body motion given by the following parametric equation in a
given reference frame:

ρ ¼ ρ tð Þ∈V3

R ¼ R tð Þ∈ S3

(
(86)

with t∈ I⊆ is time variable.
The dual orthogonal tensor that describes the rigid body motion is [13, 24]:

R ¼ Iþ ε~ρð ÞR (87)

In relation (87), the skew symmetric tensor associated to the vector ρ is denoted
by ~ρ.
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It can be easily demonstrated [14, 15], that:

RRT ¼ I

detR ¼ 1

a � b ¼ Rað Þ � Rbð Þ, ∀a,b∈V3

R a� bð Þ ¼ R að Þ � R ðbÞ, ∀a,b∈V3 (88)

The tensor R transports the dual vectors from the body frame in the space frame
with the conservation of the dual angles and the relative orientation of lines that
corresponds to the dual vectors a and b.

The dual angular velocity for the rigid body motion (86) is given by (87):

ω ¼ vect _RRT (89)

It can be demonstrated that:

ω ¼ ωþ εv (90)

where

ω ¼ vect _RRT (91)

is the instantaneous angular velocity of the rigid body and

v ¼ _ρ� ω� ρ (92)

is the linear velocity of a point of the rigid body that coincides with the origin of
the reference frame at that given moment.

The dual angular velocity ω completely characterizes the distribution of the
velocity field of the rigid body. The pair (ω,v) is called “the twist of the rigid body
motion” [13, 14].

Being:

Vρ ¼ ωþ εvρ (93)

the dual velocity for a point localized in the reference frame by the position
vector ρ.

In (93), ω is the instantaneous angular velocity of the rigid body and vρ is the
linear velocity of the point. Using the next equation,

eε~ρ ¼ Iþ ε~ρ (94)

from (90), (92)–(94), results:

eε~ρVρ ¼ ω (95)

Consequently, eε~rVr is an invariant having the same value for any r.
Writing this invariant in two different points of the rigid body (noted with P

and Q ), results that:

eε~rPVP ¼ eε~rQVQ (96)
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From (97), results:

VP ¼ eε
~PQVQ (97)

with PQ ¼ ρQ � ρP.

Relation (97) is true for any P and Q.
Analogue with Eq. (95), the following invariants take place:

eε~ρAρ ¼ _ω, ∀ρ∈V3

eε~ρJ
ρ
¼ €ω,∀ρ∈V3

eε~ρHρ ¼ €ω, ∀ρ∈V3

(98)

where we denoted

Aρ ¼ _ωþ εAρ

J
ρ
¼ €ωþ εJρ

Hρ ¼ €ωþ εHρ

(99)

with Aρ, Jρ,Hρ the reduced acceleration, reduced jerk, respectively the reduced

hyper-jerk (jounce), in a point given by the position vector ρ:

Aρ ¼ aρ � ω� vρ

Jρ ¼ j
ρ
� ω� aρ � 2 _ω� vρ

Hρ ¼ hρ � ω� j
ρ
� 3 _ω� aρ � 3€ω� vρ

(100)

In (100), aρ, jρ and hρ are, respectively, the acceleration, the jerk, and the hyper-

jerk (jounce), in a point given by the position vector ρ:

Analogue with Eq. (97) the following equations take place:

AP ¼ eε
ePQAQ

J
P
¼ eε

ePQ J
Q

HP ¼ eε
ePQHQ

, (101)

The lines corresponding to the dual vectors _ω, €ω, ω
:::

represent the loci, where the
vectors Aρ, Jρ,Hρ have the minimum module value. Supplementary,

min

ρ∈V3
Aρ

�� �� ¼ Du _ωj jj j

min

ρ∈V3
Jρ
�� �� ¼ Du €ωj jj j

min

ρ∈V3
Hρ

�� �� ¼ Du ω
:::

�� ���� ��

(102)

Interesting is the fact that for the plane motion min Aρ

�� �� ¼ min Jρ
�� �� ¼

min Hρ

�� �� ¼ 0 because Du _ωj j ¼ Du €ωj j ¼ Du ω
:::

�� �� ¼ 0

All properties are extended for higher-order accelerations. The vector ω nð Þ ¼
dnω
dtn , n∈ describes completely the helicoidally field of the n order reduced acceler-

ations, for n∈:
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eε~ρA n½ �
ρ ¼ ω nð Þ (103)

In Eq. (103) A n½ �
ρ denote the nth order of the dual reduced acceleration in a given

point by the position vector ρ.

It follows that the dual part of the nth order differentiation of ω nð Þ

ω nð Þ ¼ ω nð Þ þ εv nð Þ (104)

is the nth order reduced acceleration of that point of the rigid body that at the
given time pass by the origin of the reference frame.

From equation

v ¼ _ρ� ω� ρ (105)

it follows that

v nð Þ ¼ ρ nþ1ð Þ �
Xn

k¼0

Ck
nω

kð Þ � ρ n�kð Þ, n∈ (106)

with the following notations

a n½ �
ρ ≜ρ nþ1ð Þ, n∈ (107)

for the n∈ order acceleration of the point given by the position vector ρ and

A n½ �
ρ ≜a n½ �

ρ �
Xn�1

k¼0

Ck
nω

n�kð Þa k½ �
ρ (108)

for the nth order reduced acceleration of the same point the equation:

A n½ �
ρ ¼ v nð Þ þ ω nð Þ � ρ (109)

which proves the character of the helicoidally field of the nth order reduced
accelerations field.

For ρ ¼ 0, the relations between the nth order reduced acceleration and the n
order acceleration from point O, the origin of the reference frame, are written

A n½ �
0 ¼ v nð Þ ¼ an �

Xn�1

k¼1

Ck
nω

n�kð Þak, n∈ (110)

The invert of previous equation is written:

an ¼ Pn vð Þ, n∈ (111)

where Pn is the polynomial with the coefficients in the ring of the second order
Euclidean tensors and the polynomials Pn D½ � follow the recurrence equation:

Pnþ1 ¼ DPn þ Pn ~ωð Þ

P0 ¼ I

(
(112)
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it follows successively

P1 ¼ ~ω

P2 ¼ Dþ ~ω

P3 ¼ D2 þ ~ωDþ 2 _~ωþ ~ω2

P4 ¼ D3 þ ~ωD2 þ 3 _~ωþ ~ω2
� �

Dþ 3€~ωþ 2~ω _~ωþ 3 _~ω~ωþ ~ω3

(113)

If we denote T ¼ v, ~ωð Þ and by Ψn ¼ an,Φnð Þ, n∈
∗ , for the case of the

velocities, accelerations, jerks and jounces, on obtain (Figure 1):

T
_T
€T

€T

2
6664

3
7775 ¼

I 0 0 0

�~ω I 0 0

�2 _~ω �~ω I 0

�3€~ω �3 _~ω �~ω I

2
6664

3
7775

Ψ1

Ψ2

Ψ3

Ψ4

2
6664

3
7775 (114)

Ψ1

Ψ2

Ψ3

Ψ4

2
6664

3
7775 ¼

I 0 0 0

~ω I 0 0

2 _~ωþ ~ω2
~ω I 0

3€~ωþ 2~ω _~ωþ 3 _~ω~ωþ ~ω3 3 _~ωþ ~ω2
~ω I

2
6664

3
7775

T
_T
€T

T
:::

2
6664

3
7775 (115)

T n�1ð Þ ¼ Ψn �
Xn�1

k¼1

Ck
n�1 ~ω

n�1�kð ÞΨk

Ψn ¼ PnT, n∈
∗ (116)

Theorem 10. The nth order accelerations field of a rigid body in a general motion is

uniquely determined by the kth order time derivative of a dual twist ω, k ¼ 0, n� 1.

Figure 1.
Higher-order time derivative of dual twist.
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7. Higher-order kinematics of spatial chain using dual Lie algebra

Consider a spatial kinematic chain of the bodies Ck, k ¼ 0,m where the relative
motion of the rigid body Ck with respect to Ck�1 is given by the proper orthogonal

tensor k�1Rk ∈SO

3 . The relative motion properties of the body Cm with respect to
C0 are described by the orthogonal dual tensor (Figure 2):

R ¼ 0R1 �
1R2 …

m�1Rm (117)

Instantaneous dual angular velocity (dual twist) of the rigid body in relation to
the reference frame it will be given by the equation

0ωm ¼ vect _RRT (118)

It follows from (110) and (111) that:

0ωm ¼ Ω1 þ
0R1Ω2 þ … þ 0R1 �

1R2 …
m�2Rm�1Ωm (119)

where

Ωk ¼ vect
k�1

_Rk
k�1

RT
k (120)

Using the denotation

ωk ¼
0R1 �

1R2 …
k�2R k�1Ωk (121)

Eq. (118) will be written

0ωm ¼ ω1 þ ω2 þ … þ ωm (122)

Figure 2.
Orthogonal dual tensors of relative rigid body motion.
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where ωk is the dual twist of the relative motion of the body Ck in relation to the
body Ck�1 observed from the body C0.

Remark 7. For m ¼ 2, 0ω2 ¼ ω1 þ ω2, we will obtain the space replica of
Aronhold-Kennedy Theorem: the instantaneous screw axis for the three relative rigid
body motions has in every moment a common perpendicular, at any given time. The
common perpendicular is line that corresponds to the dual vector ω1 � ω2.

To determine the field of the nth order accelerations of a rigid body Cm we have

to determine the 0ω
nð Þ
m , n∈.

We denote ω n½ �
p ¼ 0R1

1R2 …
p�2Rp�1Ω

nð Þ
p the nth order derivative of the relative

dual twist Ωp, resolved in the body frame of C0.

In order to determine the nth order accelerations field of a rigid body Cm, we

have to determine the 0ω
nð Þ
m , n∈

∗ .

To compute 0ω
nð Þ
m , n∈

∗ we will use the following

Lemma: If ωp ¼ R Ωp with R∈SO

3 and ωp,Ωp ∈V

3 , then

ω nð Þ
p ¼ pn ωð Þωp, p ¼ 1, n (123)

where pn ωð Þ are polynomials of the differential operator D ¼ d
dt, with coefficients in

the non-commutative ring of Euclidian dual tensors.

pn ωð Þ ¼
Xn

k¼0

Ck
nΦn�kD

k½ �, (124)

where Ck
n is the binomial coefficient, D k½ �ωp ¼ ω

k½ �
p and Φp are dual tensors

Φp ¼ R pð ÞRT,R∈SO

3 , p ¼ 0, n, (125)

which follow the recurrence equation:

Φpþ1 ¼ _Φp þΦp ~ω

Φ0 ¼ I
, p∈

(
: (126)

Theorem 11. The following equation takes place

0ω
nð Þ
m ¼ ω1

nð Þ þ pn ω1ð Þω2 þ pn ω1 þ ω2ð Þω3 þ …

þ pn ω1 þ ω2 þ … þ ωm�1ð Þωm;∀n∈ (127)

where pn ωð Þ are polynomials of the derivative operator D ¼ d
dt, with coefficients in

the non-commutative ring of Euclidian dual tensors

pn ωð Þ ¼
Xn

k¼0

Ck
nΦn�kD

k½ � (128)

where Ck
n is the binomial coefficient, D k½ �ωp ¼ ω

k½ �
p and Φp are dual tensors

Φp ¼ R pð Þ � RT,R∈SO

3 , p ¼ 0, n (129)

which follow the recurrence equation:
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Φpþ1 ¼ _Φp þΦp ~ω

Φ0 ¼ I
, p∈

(
: (130)

Other equivalent forms of Eq. (127) are the following recursive formulas
(Figures 3 and 4):

ω nð Þ
m ¼ ω

nð Þ
1 þ pn 0ω1

� �
ω2 þ pn 0ω2

� �
ω3 þ … þ pn 0ωm�1

� �
ωm, ∀n∈ (131)

The previous equations are valid in the most general situation where there are no
kinematic links between the rigid bodies C1,C2, … ,Cm.

The following identity can be proved:

Φk ω1 þ ω2 þ … þ ωp�1

� �
¼

X

k1þk2þ…þkp�1¼k

C
k1,… ,kp�1
n Φk1 ω1ð ÞΦk2 ω2ð Þ…Φkp�1

�
ωp�1

�
(132)

where C
k1,… ,kp�1
n ¼ n!

k1!… kp�1!
is the multinomial coefficient.

From Eq. (131), on obtain the closed form non-recursive coordinate-free
formula:

0ω
nð Þ
m ¼ ω

n½ �
1 þ ω

n½ �
2 þ … þ ω n½ �

m þ

þ
Xm

p¼2

Xn

k¼1

Ck
n

X

k1þ…þkp�1¼k

C
k1,… ,kp�1
n Φk1 ω1ð Þ…Φkp�1

�
ωp�1

�
ω n�k½ �

p , (133)

where

Φ0 ωð Þ ¼ I

Φ1 ωð Þ ¼ ~ω
(134)

Figure 3.
Higher-order time derivative of dual twist of relative motion.
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Φ2 ωð Þ ¼ ~ω 1½ � þ ~ω2

Φ3 ωð Þ ¼ ~ω 2½ � þ ~ω~ω 1½ � þ 2~ω 1½ �
~ωþ ~ω3

Φ4 ωð Þ ¼ ~ω 3½ � þ ~ω ~ω 2½ � þ 3~ω 1½ � þ ~ω2
� �

~ω 1½ � þ 3~ω 2½ �
~ωþ 3~ω 1½ �

~ω2 þ 2~ω ~ω 1½ �
~ωþ ~ω4

…

Φn ωð Þ ¼ Pn ~ω, n∈
∗ (135)

8. Higher-order kinematics for general 2C manipulator

We’ll apply the general results obtained in the previous chapter for the particu-
lar case of four degrees of freedom 2C general manipulator. In this case the relative
motions of three bodies C0,C1,C2 are given, the spatial motion of the terminal body
C2 been described by dual orthogonal tensor as it follows:

0R2 ¼
0R1

1R2 (136)

where

0R1 ¼ eα1 tð Þ
0
~u1 (137)

1R2 ¼ eα2 tð Þ
1
~u2 (138)

In Eqs. (138) and (139), the dual angles α1 tð Þ and α2 tð Þ are four times differen-
tiable functions, and unit dual vectors 0u1 and 1u2 being constant. To simplify the
writing, we will denote:

Figure 4.
Higher-order time derivative of dual twist of relative motion on terminal body.
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0u1 ¼ �u1 (139)

0u2 ¼ I þ sin α10~u1 þ 1� cos α1ð Þ0~u
2
1

� �
1u2 ¼ �u2 (140)

ω1 ¼ _α1 tð Þ þ ε _d1 tð Þ (141)

ω2 ¼ _α2 tð Þ þ ε _d2 tð Þ (142)

According to the observations from Section 6, the vector field of the velocity, the
acceleration, the jerk, the jounce is uniquely determined by the dual vectors
ω, _ω, €ω,ω

:::

. Taking into account Eq. (133), we will have:

ω ¼ ω1u1 þ ω2u2 (143)

_ω ¼ _ω1u1 þ _ω2u2 þ ω1ω2u1 � u2 (144)

€ω ¼ €ω1u1 þ €ω2u2 þ 2ω1 _ω2 þ _ω1ω2ð Þu1 � u2 þ ω2
1ω2u1 � u1 � u2ð Þ (145)

ω
:::

¼ ω
:::

1u1 þ ω
:::

2u2 þ €ω1ω2 þ 3 _ω1 _ω2 þ 3ω1€ω2 � ω3
1ω2

� �
u1 � u2 þ 3 ω2

1 _ω2 þ _ω1ω1ω2

� �
u1 � u1 � u2ð Þ (146)

ω
:::

¼ ω
:::

1 þ 3 ω2
1 _ω2 þ _ω1ω1ω2

� �
u1 � u2

 �
u1 þ ω

:::

2 � 3 ω2
1 _ω2 þ _ω1ω1ω2

� � �
u2

þ €ω1ω2 þ 3 _ω1 _ω2 þ 3ω1€ω2 � ω3
1ω2

� �
u1 � u2 (147)

Similarly, the results for six degrees of freedom general 3 C manipulator can be
obtained, the calculus being a little longer.

9. Conclusions

The higher-order kinematics properties of rigid body in general motion had
been deeply studied. Using the isomorphism between the Lie group of the rigid
displacements S3 and the Lie group of the orthogonal dual tensors S3, a general
method for the study of the field of arbitrary higher-order accelerations is described.
It is proved that all information regarding the properties of the distribution of high-
order accelerations are contained in the n-th order derivatives of the dual twist of
the rigid body. These derivatives belong to the Lie algebra associated to the Lie
group S3:

For the case of the spatial relative kinematics, equations that allow the determi-
nation of the n-th order field accelerations are given, using a Brockett-like formulas
specific to the dual algebra. In particular cases the properties for velocity, accelera-
tion, jerk, hyper-jerk (jounce) fields are given.

The obtained results interest the theoretical kinematics, jerk and jounce analysis
in the case of parallel manipulations, control theory and multibody kinematics.
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